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Comparison of Splitting Methods on Survival Tree

Abstract: We compare splitting methods for constructing survival trees that are used as a model of survival
time based on covariates. A number of splitting criteria on the classification and regression tree (CART)
have been proposed by various authors, and we compare nine criteria through simulations. Comparative
studies have been restricted to criteria that suppose the survival model for each terminal node in the final
tree as a non-parametric model. As the main results, the criteria using the exponential log-likelihood loss,
log-rank test statistics, the deviance residual under the proportional hazard model, or square error of
martingale residual are recommended when it appears that the data have constant hazard with the passage
of time. On the other hand, when the data are thought to have decreasing hazard with passage of time, the
criterion using the two-sample test statistic, or square error of deviance residual would be optimal.
Moreover, when the data are thought to have increasing hazard with the passage of time, the criterion
using the exponential log-likelihood loss, or impurity that combines observed times and the proportion of
censored observations would be the best. We also present the results of an actual medical research to show
the utility of survival trees.

Keywords: survival tree, CART, recursive partitioning

DOI 10.1515/ijb-2014-0029

1 Introduction

In the field of medical research, analysis of time-to-event data is an important subject. The estimation of a
survival function using time-to-event data cannot be considered a simple regression problem owing to the
presence of censored data. Censored data does not have the correct interval length between the start point
(e.g. detection date of illness or surgery date) and end point (e.g. date of death or date of recurrence) as a
response variable. In this paper, we deal with right censored cases because they are frequently encountered
in medical data analyses. In order to handle a regression problem that includes censored data based on
covariates, the Cox proportional hazard (PD) model [1] has been most widely used. In addition to the
simpleness of inference, this semiparametric model has an advantage in that it can easily understand the
covariate effects. However, this model requires PD assumptions, and certain assumptions about the
relationship between covariates and response variables. Moreover, when this model includes many covari-
ates, interpretation is difficult. In this paper, we deal with survival trees, which involve constructing a tree-
structured model based on covariates. Because the proposed method uses a hierarchical structure, the
relationship between covariates and hazards can be determined easily. Moreover, it is easy to predict the
survival function for a new patient based on the estimated model. For example, men older than 10 years
with a tumor of size greater than 10 mm have a high risk of mortality.

The classification and regression tree (CART), proposed by Breiman et al. [2], is used extensively for
constructing tree structures. We only deal with binary tree structures, which dichotomize sample data
recursively. The CART is composed by three steps: splitting, pruning, and selection. Learning samples are
recursively dichotomized in the splitting step, and thereby, a maximum size tree is constructed. Criterions

*Corresponding author: Asanao Shimokawa, Department of Mathematical information Science, Tokyo University of Science, 1-3
Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan, E-mail: a.shimokawa0226@gmail.com
Yohei Kawasaki, Etsuo Miyaoka, Department of Mathematics, Tokyo University of Science, Tokyo, Japan, E-mail:
ykawasaki@ma.kagu.tus.ac.jp, miyaoka@rs.kagu.tus.ac.jp

Int. J. Biostat. 2015; 11(1): 175–188



for splitting have been proposed by various authors, and these criterions of two types: one that minimizes
the risk within the node, and the other that maximizes the degree of separation between nodes. The
maximum size tree obtained by the splitting step suffers from an overfitting problem. To handle this
problem, a set of nested subtrees is produced from the maximum size tree in the pruning step. The cost-
complexity measure, proposed by Breiman et al. [2], or the split-complexity measure, proposed by Leblanc
and Crowley [3], is used in the pruning step. Each subtree obtained by this step is considered as a candidate
of the final survival regression model. In the selection step, the optimal size tree is selected.

In this paper, we compare the nine splitting criteria that suppose the survival model for each terminal
node in the final tree as a non-parametric model. That is, the survival functions constructed from each
terminal node of the final tree model are estimated by the Kaplan–Meier method. Specifically, the criterions
compared are as follows. Gordon and Olshen [4] used the L1-Wasserstein distance between Kaplan–Meier
survival curves associated with two child nodes as a criterion of separation. Davis and Anderson [5] used
the exponential log-likelihood loss (EL) as the criterion, where the split that minimizes the loss among the
possible splits is selected. The criteria using two-sample test statistics have been studied by some authors
[3],[6],[7]. These statistics have various forms based on the choice of the weights. We use the log-rank (LR),
generalized Wilcoxon (GW) and Tarone–Ware (TW) test statistics in this paper. Leblanc and Crowley [8]
used the node deviance measure under the PD model, the full likelihood of which is approximated by
replacing the cumulative baseline hazard function by the Nelson–Aalen estimator. Zhang [9] proposed a
criterion that combines two impurity measures, one for the observed times and one for the proportion of
censored observations. Finally, we use the martingale residuals (MR) from a null Cox model, proposed by
Therneau et al. [10]. Keles and Segal [11] constructed a survival tree based on the square error of these
residuals. In addition to the MRs, we compared the criterion based on the deviance residuals (DR) from the
null Cox model.

A comparative research of splitting methods on survival trees was performed by Radespiel-Tröger et al.
[12]. They compared seven splitting criteria. Some of these criteria use pruning while the others do not. In
Radespiel-Tröger et al. [13], six splitting methods were compared using Gallstone Clearance data. We restrict
the splitting methods that are considered in this study to those using the pruning algorithm and compare
the criteria in more situations than those done in previous studies using simulations. As one of the
simulation-based evaluation methods, we use the integrated Brier score [14], which was used by
Radespiel-Tröger et al. Bou-Hamad et al. [15] have provided a good review that includes the method for
constructing the survival tree and for applying the model.

Toward the end of this paper, we construct a survival tree using the bone marrow transplantation data
for leukemia patients as an example of the application of the survival tree. This data consists of 137 samples
and 54 of these are censored. We use 10 covariates for each patient.

The remainder of this paper is organized as follows. In Section 2, we describe the notations and
constructing method of survival trees, splitting methods are compared. Simulation methods, validation
methods and the results are shown in Section 3. We analyze the actual data using survival trees in Section
4, and the conclusion is presented in Section 5.

2 Methods

2.1 Notation and survival function

We denote the true survival time as Y and the true censoring time as C. Then, the observation time is given by
X ¼ minðY ;CÞ. δ ¼ IðY � CÞ represents the censoring indicator, which is 1 if the observation is an event and
is 0 if the observation is censored. Let Z ¼ ðZ1; Z2; . . . ; ZpÞ denote a p-dimensional covariate vector. In this
study, we only deal with the continuous covariate; however, more generally, it is possible to include the
categorical variable. An observed learning sample will be represented by l ¼ fðxi; δi; ziÞ; i ¼ 1; 2; � � � ;Ng.
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Let t denote a node in the tree T. We denote a split of the node t as st and denote a set of terminal nodes
of T that represents the nodes at the bottom layer of the tree structure as ~T. Further, the set of internal
nodes of T, which represents the nodes other than the bottom layer of the tree structure, is denoted by S.

In this paper, we consider a non-parametric estimate of the survival function at each terminal node of
T. That is, the survival function of each terminal node is estimated by the Kaplan–Meier method. If the
learning samples in the node t are represented as ltj ¼ fðxi; δi; ziÞ; i ¼ 1; 2; � � � ;Ntg, then the Kaplan–Meier
survival function of t is given by

ŜtðxÞ ¼
1 ðx < yð1ÞÞQ
iðxi�xÞ

1� di
ni

� �
ðyð1Þ � xÞ

8<
: ; ð1Þ

where yð1Þ represents the earliest event occurrence time in lt. di and ni represent the number of events and
risk at time xiði ¼ 1; 2; � � � ;NtÞ, respectively. We will be able to estimate the conditional survival function
SðxjznewÞ for a new patient with covariate Z ¼ znew by precomposing the tree structure and the Kaplan–
Meier survival function for each terminal node using l.

2.2 Construction of survival tree

The CART algorithm for constructing the tree structure using l learning samples consists of three steps:
splitting, pruning, and selection. First, all the learning samples are divided into two groups according to the
covariates. The selection method of the covariate and the threshold for this separation is described later. A
maximum size tree, T0, is constructed by repeated divisions of data in each node. Tree T0 is the optimal tree
model of the learning samples, but it is not always optimal for a new patient (i.e. overfitting occurs).
Therefore, we need to yield an optimal model through pruning and selection.

In the pruning step, a set of subtrees T1;T2; . . . ;TM can be constructed by using the cost-complexity
measure or the split-complexity measure, and we use the latter measure in this study. The split-
complexity measure is constructed from the degree of separation between nodes in the tree and the
complexity of the tree:

GαðTÞ ¼
X
t2S

GðtÞ � αjSj;

where GðtÞ is a measure of separation between child nodes of t, and we use the standardized log-rank test
statistics according to Leblanc and Crowley [3]. jSj is the number of internal nodes of T, which is a complexity
measure of the tree. GαðTÞ returns a high value when the degree of separation in each internal node of T is high
and the model is simple. The optimal subtree Tj for an arbitrary α is determined by using these measures. If the
value of α is 0, then the optimal subtree is T0. If α is 1, on the other hand, then the subtree of root node TM

only (i.e. a model that is not considered a tree structure) is selected as the optimal subtree. The set of optimal
subtrees is given by gradually increasing α from 0. It can be assured that these subtrees have nesting structures
on account of this algorithm, that is, Tj is the subtree of Tj�1 (j ¼ 1; 2; . . . ;M).

Finally in the selection step, an optimal subtree is selected from the set of subtrees created through the
pruning process. We use the bootstrap bias correction method in this step as described in Leblanc and
Crowley [3]. The number of bootstrap samples is set to 50, and a fixed penalty term of αc ¼ 2 for each
internal node is used.

2.3 Splitting methods

Splitting methods compared in this study are as follows:
(i) The criterion using the L1-Wasserstein distance between Kaplan–Meier survival curves (WD)
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Let FLðxÞ and FRðxÞ be the improper functions that are obtained from the Kaplan–Meier survival
curves SLðxÞ and SRðxÞ associated with two child nodes, where

FLðxÞ ¼ 1� SLðxÞ and FRðxÞ ¼ 1� SRðxÞ:
Let mL and mR be the limit values of FLðxÞ and FRðxÞ, and let m be minðmL;mRÞ. Then, the
L1-Wasserstein distance between the Kaplan–Meier survival curves obtained by two child nodes
can be written as

GðtÞ ¼
ðm
0
jF�1

L ðuÞ � F�1
R ðuÞjdu

where

F�1
L ðuÞ ¼ min

x
FLðxÞ � u and F�1

R ðuÞ ¼ min
x

FRðxÞ � u:

This criterion function represents the area between the Kaplan–Meier survival functions of the child
nodes, which is obtained by splitting. The split that maximizes GðtÞ is selected.

(ii) The criterion using the EL
Let the hazard of a node be

λðxjtÞ ¼ λt;

where λt represents a constant parameter. Then the maximum log-likelihood estimator of λt is given
by

λ̂t ¼

P
i2lt

δiP
i2lt

xi
:

The EL of the node t is given by

RðtÞ ¼ � log Lðλ̂tÞ
¼
X
i2lt

δi �
X
i2lt

δi logðλ̂tÞ:

The split that minimizes this EL is selected as the optimal.
(iii) The criterion using the two-sample test statistics

The two-sample test statistics for child nodes have the following form:

GðtÞ ¼

P
i2lt

wi½dLi � EðDLiÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i2lt

w2
iVarðDLiÞ

r ; ð2Þ

where dLi is the number of events in the left child node at xi, and wi are constants that are used to
weight the respective statistic. EðDLiÞ and VarðDLiÞ are represented as follows:

EðDLiÞ ¼ nLi
di
ni
;

VarðDLiÞ ¼ nLi
ni

1� nLi
ni

� �
ni � di
ni � 1

� �
di;

where nLi is the number of risks at xi in the left child node. With appropriate choices of weights wi,
statistic (2) becomes many test statistics. We used the LR, GW, and TW test statistics. That is, letting
wi ¼ 1 leads to the LR test statistic, wi ¼ ni gives the GW test statistic, and wi ¼ ffiffiffiffi

ni
p

gives the TW test
statistic. The split that maximizes the statistic is selected.
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(iv) The criterion using the DR under the PD model
Let the hazard of a node be

λðxjtÞ ¼ λ0ðxÞθt;
where λ0ðxÞ is the baseline hazard and θt is a nonnegative parameter. Then, the full likelihood for
sample data given tree T is

L ¼
Y
t2~T

Y
i2lt

ðλ0ðxiÞθtÞδi expð�Λ0ðxiÞθtÞ; ð3Þ

where Λ0ðxÞ is the baseline cumulative hazard function. The Nelson–Aalen estimate of Λ0ðxÞ is

Λ̂0ðxÞ ¼
X
iðxi�xÞ

di
ni
: ð4Þ

The one-step estimate of θt is

θ̂t ¼

P
i2lt

δiP
i2lt

Λ̂0ðxiÞ
:

By using these estimates, the full likelihood DR is obtained as follows:

RðtÞ ¼
X
i2lt

2 δi log
δi

Λ̂0ðxiÞθ̂t

 !
� ðδi � Λ̂0ðxiÞθ̂tÞ

" #

The split that minimizes the deviance is selected.
(v) The criterion using the impurity that combines observed times and the proportion of censored

observations (NI)
The impurity criterion proposed by Zhang [9] is

RðtÞ ¼ w1ixðtÞ þ w2iδðtÞ
where w1 and w2 are prespecified weights, and ixðtÞ and iδðtÞ are the impurities of node t for the
observed time and censoring, respectively. In this paper, ixðtÞ is defined as follows:

ixðtÞ ¼

P
i2lt

ðxi � �xðtÞÞ2

nt

where �xðtÞ is the average of the observation times in node t, and nt is the number of samples in the
node t. The impurity iδðtÞ is defined as

iδðtÞ ¼ �pt logðptÞ � ð1� ptÞ logð1� ptÞ;
where pt is the proportion of censoring in node t,

pt ¼

P
i2lt

ð1� δiÞ

nt

We compared three pairs of weights ðw1 ¼ 1;w2 ¼ 0Þ, ðw1 ¼ 1;w2 ¼ 1Þ and ðw1 ¼ 3;w2 ¼ 1Þ in the
simulation. The split that minimizes the impurity criterion is selected.

(vi) The criterion using the square error of residuals from a null Cox model
The sum of the square error of residuals in a node is

RðtÞ ¼
X
i2lt

ðri � �rðtÞÞ2

where ri is the residual of observation i, and �rðtÞ is the average of the residuals in node t. We use the
MR Mi and DR Di from a null Cox model such as ri. These residuals are represented as follows:
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(1) MR
The MR is given by

Mi ¼ δi � Λ̂0pðxiÞ;
where Λ̂0pðxÞ is the Nelson–Aalen estimator of the parent node tp, which is given by eq. (4).

(2) DR
The DR is

Di ¼ sgnðMiÞ½�2fMi þ δi logðδi �MiÞg�
1
2;

where Mi is the MR of observation i.
The split that minimizes the deviation of residuals is selected.

We make comparative studies for all these 9 splitting methods (there are 11 patterns if the three pairs of
weights in the NI method are included) by using simulation studies. The details of the simulation methods
are described in the next section.

3 Simulations

3.1 Validation methods

The integrated Brier score for censored observations proposed by Graf et al. [14] is used to compare the split
methods. This score is calculated using the test sample ltest ¼ fðxi; δi; ziÞ; i ¼ 1; 2; � � � ;Ntestg, which is an
independent sample drawn from the same simulated population. The integrated Brier score for survival
function ŜðxjzÞ that is modeled by the tree structure T is defined by

IBST ¼ 1
maxðxiÞ

ðmaxðxiÞ

0
BSTðxÞdx;

where BSTðxÞ is the Brier score of T. The Brier score is interpreted as the mean square error between the
inferred survival function ŜðxjzÞ and the test data that are weighted such that the loss of information due to
censoring is compensated:

BSTðxÞ ¼ 1
Ntest

X
i2ltest

fð0� ŜðxjziÞÞ2Iðxi � x; δi ¼ 1Þð1=ĜðxiÞÞ

þ ð1� ŜðxjziÞÞ2Iðxi > xÞð1=ĜðxÞÞg;
where ĜðxÞ is the Kaplan–Meier estimate of the censoring distribution of C, that is, the Kaplan–Meier
estimate based on ðxi; 1� δiÞ; i ¼ 1; 2; . . . ;Ntest. Let IBSTM be the integrated Brier score evaluated from the
TM that only has a root node. Then, the measure of the explained residual variation is given by

R2 ¼ 1� IBST
IBSTM

:

We evaluate the tree T obtained by each splitting method using IBST and R2.

3.2 Setting and tree structure

The true tree structure used in the simulation is given by Figure 1. This structure is constructed based on the
research of Radespiel-Tröger et al. [13]. The circles in the figure represent internal nodes. The covariates
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used in this simulation are Z1; Z2; . . . ; Z10; Z1 and Z4 � Z6 are continuous with uniform distribution on the
interval ½0; 1�, Z2 and Z7 � Z8 are binary values of f0; 1g, and Z3 and Z9 � Z10 are categorical values with five
levels f1; 2; 3; 4; 5g. The variables Z1; Z2; Z3; Z4 are used in the true tree structure and the other variables are
nuisances. The true thresholds for splitting of the root node is determined as 0.5.

We suppose four patterns of the survival model. First, we suppose the exponential model, the survival
function of which is given by

Sðy; λtÞ ¼ PðY > y; λtÞ ¼ expð�λtyÞ;
where the parameter λt represents the constant hazard of node t. The value of λt is defined as follows:

λt ¼

0:2 ðZ1 � 0:5˙Z2 ¼ f0gÞ
0:3 ðZ1 � 0:5˙Z2 ¼ f1gÞ
0:45 ðZ1 > 0:5˙Z3 ¼ f1; 2gÞ
0:85 ðZ1 > 0:5˙Z3 ¼ f3; 4; 5g˙Z4 � 0:7Þ
2 ðZ1 > 0:5˙Z3 ¼ f3; 4; 5g˙Z4 > 0:7Þ

8>>>>>><
>>>>>>:

Second, we suppose the Weibull model, the survival function of which is given by

Sðy; α; βtÞ ¼ PðY > y; α; βtÞ ¼ expð�βty
αÞ

where α and βt are the shape parameter and scale parameter, respectively. The value of α is set to 0.5 in this
study, where the model has decreasing hazard with the passage of time. The values of βt are set as follows:

βt ¼

0:6 ðZ1 � 0:5˙ Z2 ¼ f0gÞ
0:7 ðZ1 � 0:5˙ Z2 ¼ f1gÞ
0:9 ðZ1 > 0:5˙Z3 ¼ f1; 2gÞ
1:5 ðZ1 > 0:5˙Z3 ¼ f3; 4; 5g˙Z4 � 0:7Þ
2 ðZ1 > 0:5˙Z3 ¼ f3; 4; 5g˙Z4 > 0:7Þ

8>>>>>><
>>>>>>:

Third, we suppose the Weibull model which has the α ¼ 1:5, where the model has increasing hazard with
the passage of time. The same values of βt in the second model are set to this model.

Fourth, we suppose the bathtub-shaped hazard model [16], the survival function of which is given by

Sðy; at; b; cÞ ¼ PðY > y; at; b; cÞ ¼
exp � 1

2 aty
2

� �
ð1þ cyÞbc

;

where b ¼ 1, c ¼ 5, and at is set to the same values of βt in the second model.

Z1  ≤ 0.5

Z4  ≤ 0.7

Z2  = {0} Z3  = {1,2}

λ t  = 0.2 λ t  = 0.3 λ t  = 0.45

λ t  =  0.85
βt  = 1.5

λ t  = 2
βt  = 2

βt  = 0.6 βt  = 0.7 βt  = 0.9

Figure 1: True tree structure used in simulations.
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Through the all models, the covariate Z1 is considered easy to detect from the difference of hazards in
the tree model. On the other hand, the covariate Z2 is considered difficult to detect. The censoring rates used
are 0% and approximately 25%; 50%, and 75% using uniform random numbers. The number of learning
samples N, and test samples, Ntest, are set to 250. We set 10 minimum number of events in nodes as the stop
condition of splitting in this study. Simulations are repeated 300 times in every data group.

3.3 Results

The results of the simulations are shown in Tables 1–4. Table 1 lists the average values of the integrated
Brier scores, the explained residual validations, and the number of terminal nodes on each splitting method
obtained through simulations when the exponential model is used as the true model. The results of
simulations when the Weibull survival model, which has decreasing and increasing hazard with the
passage of time, are used as the true model are listed in Tables 2 and 3, respectively. The results of
simulations when the bathtub-shaped hazard model is used as the true model are shown in Table 4.

It turns out that the EL, LR, GW, TW, PD, NI(1,1), MR, and DR methods show good results about all
patterns of the censoring rate from Table 1. On the other hand, the WD and NI(1,0) methods show the not
good results. The MR and DR methods, which use the square error of residuals show similar good results as
the EL and PD methods when the censoring rate is high. The NI, MR, and DR methods have a tendency to
underestimate the size of tree even when the censoring rate is 0%. When the censoring rate is low, the NI
method without the weight for impurity of the censoring probability (w2 ¼ 0) shows better results than the
results of the NI method with the weight. If the censoring rate is high, on the other hand, the NI method
with the weight shows better results.

The best method of detecting the covariate Z2, which is difficult to detect, is the LR method, that can be
found about 20% when the censoring rate is 0%. When the censoring rate becomes about 25% and 50%, the
LR and PD methods show the best Z2 detection result that can be found about 11%. If the censoring rate is
over 75%, the Z2 is difficult to detect.

Table 1: The results of the simulations on splitting methods using the exponential survival model in the true tree structure.

Censor rate 0% Censor rate 25% Censor rate 50% Censor rate 75%

IBSTM ¼ 7:2 IBSTM ¼ 14:6 IBSTM ¼ 21:0 IBSTM ¼ 17:2

IBST R2 j~T j IBST R2 j~T j IBST R2 j~T j IBST R2 j~T j
WD . . . . . . . . . . . .
EL . . . . . . . . . . . .
LR . . . . . . . . . . . .
GW . . . . . . . . . . . .
TW . . . . . . . . . . . .
PD . . . . . . . . . . . .
NI(,) . . . . . . . . . . . .
NI(,) . . . . . . . . . . . .
NI(,) . . . . . . . . . . . .
MR . . . . . . . . . . . .
DR . . . . . . . . . . . .

Note: IBSTM : the integrated Brier score evaluated from the root node �100, IBST : the integrated brier score evaluated from the selected
tree �100, R2: the explained residual variation �100, j~T j: the number of terminal nodes about selected tree, WD: the criterion using the
L1-Wasserstein distance between Kaplan–Meir survival curves, EL: the criterion using the exponential log-likelihood loss, LR: the
criterion using the log-rank test statistic, GW: the criterion using the generalized Wilcoxon test statistic, TW: the criterion using the
Tarone-Ware test statistic, PD: the criterion using the deviance residual under the proportional hazard model, NI(w1;w2): the criterion
using the impurity which combines observed times and the proportion of censored observations, MR: the criterion using the square
error of the martingale residual, DR: the criterion using the square error of the deviance residual.
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As shown in Table 2, the not good results are obtained when the Weibull survival model which has the
hazard to decrease with the passage of time is used as the true model. The PD, the methods using two-
sample test statistic (GW, TW), and the methods using residuals (MR, DR) show good results when there is
no censoring data. When the censoring rate is increased, the methods of DR and NI, which has the weight
for impurity of the censoring probability (w2 ¼ 1), show good results. On the other hand, the method that
does not construct a tree structure shows better results when the data have high probability of censoring.

It turns out that the not good results are obtained when the bathtub-shaped hazard with the passage of
time is used as the true model from Table 4. Even when the censoring is not occurred, the method that does
not construct a tree structure shows better results. From the results of additional research (not shown), we
can find that, if sample size is increased, the performances of tree-structured model are improved. However,
in the case of canonical sample size and if the data is considered to have a bathtub-shaped hazard, we
recommend not using the survival tree.

Table 2: The results of simulations on splitting methods by using the Weibull survival model which has the hazard to decrease
with the passage of time in the true tree structure.

Censor rate 0% Censor rate 25% Censor rate 50% Censor rate 75%

IBSTM ¼ 3:8 IBSTM ¼ 17:0 IBSTM ¼ 23:4 IBSTM ¼ 18:1

IBST R2 j~T j IBST R2 j~T j IBST R2 j~T j IBST R2 j~T j
WD . –. . . . . . . . . –. .
EL . . . . . . . . . . –. .
LR . . . . . . . . . . –. .
GW . . . . . . . . . . –. .
TW . . . . . . . . . . –. .
PD . . . . . . . . . . –. .
NI(,) . . . . . . . . . . –. .
NI(,) . . . . . . . . . . –. .
NI(,) . . . . . . . . . . –. .
MR . . . . . . . . . . –. .
DR . . . . . . . . . . –. .

Note: See note in Table 1.

Table 3: The results of simulations on splitting methods by using the Weibull survival model which has the hazard to increase
with the passage of time in the true tree structure.

Censor rate 0% Censor rate 25% Censor rate 50% Censor rate 75%

IBSTM ¼ 9:8 IBSTM ¼ 12:3 IBSTM ¼ 17:8 IBSTM ¼ 16:3

IBST R2 j~T j IBST R2 j~T j IBST R2 j~T j IBST R2 j~T j
WD . . . . –. . . –. . . –. .
EL . . . . . . . . . . –. .
LR . . . . . . . . . . –. .
GW . . . . . . . . . . –. .
TW . . . . . . . . . . –. .
PD . . . . . . . . . . –. .
NI(,) . . . . . . . . . . –. .
NI(,) . . . . . . . . . . –. .
NI(,) . . . . . . . . . . –. .
MR . . . . . . . . . . –. .
DR . . . . . . . . . . –. .

Note: See note in Table 1.
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To research more complicated situations, we simulated under the model which the leftmost terminal node
and the rightmost terminal node in Figure 1 are replaced. From the results of simulations in several patterns
of hazard and splitting methods, we confirmed that the performance of all methods would be decreased
while the tendency of results in each method is maintained. The reason of this decrease is considered to be
due to the cause of exclusive OR problem. That is, if the true model is linearly inseparable, then the tree
becomes prohibitively large and sometimes it causes to lower performance of the obtained model.

Across the whole results, the average tree sizes given in Tables 1–4 are tend to be underestimated than the
true tree size. As one reason for this, it is considered that the number of samples for constructing survival trees
has not been sufficient in this simulations. To confirm this, we run additional simulations which the number of
learning samples is changed to N ¼ 1000 under several settings. As the results, in each settings, we confirmed
that the size of tree becomes approximately 0.5 larger than the tree which obtained under N ¼ 250.

To compare the correctness of the split selection in a node for each methods, the percentages that Z1 is
selected in root nodes, and the medians of thresholds at that time when censoring rate is 50% are shown in
Table 5. The methods other than WD, NI(1,0), and NI(3,1) show the high performance when the exponential

Table 4: The results of simulations on splitting methods by using the bathtub-shaped hazard with the passage of time in the
true tree structure.

Censor rate 0% Censor rate 25% Censor rate 50% Censor rate 75%

IBSTM ¼ 11:0 IBSTM ¼ 13:5 IBSTM ¼ 19:1 IBSTM ¼ 17:3

IBST R2 j~T j IBST R2 j~T j IBST R2 j~T j IBST R2 j~T j
WD . –. . . –. . . –. . . –. .
EL . –. . . –. . . –. . . –. .
LR . –. . . –. . . –. . . –. .
GW . –. . . –. . . –. . . –. .
TW . –. . . –. . . –. . . –. .
PD . –. . . –. . . –. . . –. .
NI(,) . –. . . –. . . –. . . –. .
NI(,) . –. . . –. . . –. . . –. .
NI(,) . –. . . –. . . –. . . –. .
MR . –. . . –. . . –. . . –. .
DR . –. . . –. . . –. . . –. .

Note: See note in Table 1.

Table 5: The results of the percentages that Z1 is selected at root nodes, and the medians of thresholds at that time when
censoring rate is approximately 50%.

Constant Decreasing Increasing Bathtub shape

Z1ð%Þ Med. Z1ð%Þ Med. Z1ð%Þ Med. Z1ð%Þ Med.

WD  .  .  .  .
EL  .  .  .  .
LR  .  .  .  .
GW  .  .  .  .
TW  .  .  .  .
PD  .  .  .  .
NI(,)  .  .  .  .
NI(,)  .  .  .  .
NI(,)  .  .  .  .
MR  .  .  .  .
DR  .  .  .  .

Note: Z1ð%Þ: the percentage that Z1 is selected at root node, med.: the median of thresholds when Z1 is selected at root node.
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survival model is used in the true tree structure. On the other hand, when the Weibull survival model is
used in the true tree the EL, LR, PD, and MR methods show the high performance. Moreover, when the
bathtub-shaped hazard model is used in the true tree the percentages that the true covariate is selected in
root nodes is lower than 50%.

From these results, we conclude that the EL, LR, PD, and MR methods would be recommended when
the data appears to have constant hazard at the time. On the other hand, the DR and the methods using
two-sample test statistics would be the best when the data are thought to have decreasing hazard with the
passage of time. When the data are thought to have increasing hazard with the passage of time, the
methods of EL and NI, which have the weight for impurity of the censoring probability would be the best.
Moreover, as mentioned previously, we recommend not using the survival tree when the data is considered
to have a bathtub-shaped hazard or the censoring rate is very high.

4 Example

In this section, we show the specific application of the survival tree using the leukemia patients bone
marrow transplantation data. These data pertains to the patients for whom transplants were conducted
from 1984 to 1989. The 137 patients used in this example were treated at one of four hospitals. The
observation time was defined as from the date of transplant surgery to the date of relapse, death, or the
last verification of survival. The censoring indicator is defined as 1 if the end of the observation was
determined by death or relapse. Censoring was included in the data of 54 of the patients; the number of
covariates used in this study, which are listed in Table 6, was 10. These covariates were measured at the
time of transplantation. The details of these data are given in Copelan et al. [17]; the data set used in this
section is available at the website offered in Klein and Moeschberger [18].

In Klein and Moeschberger [18], an optimal hazard model was estimated from these data using the Wald test
and Akaike information criteria:

λðxjZÞ ¼ λ0ðxÞ expð�1:091� IðZ1 ¼ 2Þ � 0:404� IðZ1 ¼ 3Þ
þ 0:837� Z9 þ 0:007� Z2 þ 0:004� Z3 þ 0:003� ðZ2 � Z3ÞÞ

We compare the survival trees using the all nine methods. We set five minimum number of events in nodes
as the stop condition of splitting in this example. In the selection step, the number of bootstrap samples is
set to 50, and a fixed penalty term of αc ¼ 2 for each terminal node is used.

Table 6: Used covariates for survival tree construction in example.

Z1: Disease group {1 – ALL, 2 – AML low risk, 3 – AML high risk}
Z2: Patient age in years – 28
Z3: Donor age in years – 28
Z4: Patient sex {1 – male, 0 – female}
Z5: Donor sex {1 – male, 0 – female}
Z6: Patient CMV status {1 – CMV positive, 0 – CMV negative}
Z7: Donor CMV status {1 – CMV positive, 0 – CMV negative}
Z8: Waiting time for transplant in days
Z9: FAB {1 – FAB grade 4 or 5 and AML, 0 – otherwise}
Z10: MTX used as a graft-versus-host prophylactic {1 – yes, 0 – no}

Note: ALL: acute lymphoblastic leukemia, AML: acute myelocytic leukemia,
CMV: cytomegalovirus, FAB: French–American–British classification, MTX:
methotrexate.
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Based on the result of the analysis, the EL, LR, TW, PD, MR, and DR methods have shown exactly the same
results. The obtained tree structure is given in Figure 2. The circle and square in the figure represent the
internal nodes and terminal nodes, respectively. The values in the shapes represent the number of patients
in the node, and the value in the bracket represent the number of events. The Kaplan–Meier survival curves
for each terminal node (t1 � t3) are shown in Figure 3. The tree have three terminal nodes where the node t1
has the highest risk and t2 has the lowest risk of death or relapse. As shown in Figure 3, the Kaplan–Meier
survival curves are well separated from each other, and we consider that the availability of the survival tree
for splitting the data on survival time is shown. The covariates used in the tree structure are Z3 and Z1,
which are the age of donor and the disease group of the patient, respectively. By using this model, a new
patient who transplanted bone marrow from donor of age 41 or younger and the AML low-risk group are
considered to be a low risk of death or relapse. On the other hand, a patient who transplanted bone marrow
from donor of age 41 or older is considered to be a high risk of death or relapse.

The GW method has shown the result that it would be better to not split the left child node of the root node
in Figure 2. Therefore, the obtained tree structure has one split and two terminal nodes. On the other hand,

137
(83)

124
(70)

t1
50(21)

t2
74(49)

t3
13(13)

Z3 ≤ 13

Z1 = {2} Z1 = {1,3}

Figure 2: The tree made from the bone marrow transplant patients data by using the EL, LR, TW, PD, MR, and DR methods.

Figure 3: The Kaplan–Meier survival curves for each terminal node of Figure 2 (horizontal axis: days; vertical axis: probability).
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the NI method has shown the result that it would be better to not split the data. Moreover, the WD method
has shown the completely different result from the other methods. The covariate of waiting time for
transplant in days is included in the tree structure as the splitting rule of the root node, and as a result,
the obtained tree structure has three splits and four terminal nodes. Although several different
tree structures are obtained from each splitting methods, we consider that the tree structure shown in
Figure 2 would be best considering the simulation results.

5 Conclusion

Tree-structured model has an advantage in that it is easy to understand the relationship between covariates
and hazards. Moreover, there is an additional advantage in that it is easy to predict the survival function for
a new patient based on the estimated model. However, it suffers from a disadvantage in that it involves a
rapid advancements in long learning time for a large sample data set. However, PC technology in recent
years may be able to resolves this disadvantage.

The criteria for splitting in survival tree have been proposed by many researchers. However, extensive
research on the comparisons of these criteria has not been conducted. In this paper, we concentrate heavily
on the comparison of these criteria using simulations. We have restricted the criteria researched in this
study to the methods that suppose the survival model for each terminal node in the final tree as a non-
parametric model. The simulation data have been obtained from the assumption of the constant, decreas-
ing, increasing, or bathtub-shaped hazard model with the passage of time. Under these conditions, the
performance of the 9 splitting methods (there are 11 patterns if the three pairs of weights in NI method are
included) have been compared.

We have concluded the results from the simulations as follows. The EL, LR, PD, and MR methods are
recommended when it appears that be the data have constant hazard with the passage of time. On the other
hand, when the data are thought to have decreasing hazard with passage of time, the DR and the methods
using two-sample test statistics would be the optimal. Moreover, when the data are thought to have
increasing hazard with passage of time, the EL and the NI methods would be recommended. Finally,
when the data is considered to have a bathtub-shaped hazard or censoring rate is very high we recommend
not using a survival tree. From the simulation, it is shown that the splitting method should be selected
based on the censoring rate of data and the hazard shape assumed.

As an actual example of the application of survival tree, we have constructed the survival tree of 137
leukemia patients that underwent bone marrow transplantation. The number of covariates used in the study
is 10 with a focus on the potential risk factors measured at the time of transplantation. The obtained tree
had three terminal nodes. From the results, the survival tree methods are considered to effectively cluster
the survival time data.

References

1. Cox DR. Regression models and life-tables. J R Stat Soc 1972;34:187–220.
2. Breiman L, Friedman JH, Olshen RA, Stone C. Classification and regression trees. Belmont, CA: Wadsworth, 1984.
3. Leblanc M, Crowley J. Survival trees by goodness of split. J Am Stat Assoc 1993;88:457–67.
4. Gordon L, Olshen RA. Tree-structured survival analysis. Cancer Treat Rep 1985;69:1065–9.
5. Davis RB, Anderson JR. Exponential survival trees. Stat Med 1989;8:947–61.
6. Ciampi A, Hogg SA, Mckinney S, Thiffault J. RECPAMF: A computer program for recursive partition and amalgamation for

censored survival data and other situations frequently occurring in biostatistics. I. Methods and program features. Comput
Methods Programs Biomed 1988;26:239–56.

7. Segal MR. Regression trees for censored data. Biometrics 1988;44:35–47.
8. Leblanc M, Crowley J. Relative risk trees for censored survival data. Biometrics 1992;48:411–25.

A. Shimokawa et al.: Comparison of Splitting Methods on Survival Tree 187



9. Zhang HP. Splitting criteria in survival trees. In Statistical Modelling. Proceedings of the 10th International Workshop on
Statistical Modeling. Innsbruck, Austria: Springer Verlag, 1995: 305–14.

10. Therneau TM, Grambsch PM, Fleming TR. Martingale-based residual for survival models. Biometrika 1990;77:147–60.
11. Keles S, Segal MR. Residual-based tree-structured survival analysis. Stat Med 2002;21:313–26.
12. Radespiel-Tröger M, Rabenstein T, Schneider HT, Lausen B. Comparison of tree-based methods for prognostic stratification

of survival data. Artif Intell Med 2003;28:323–41.
13. Radespiel-Tröger M, Gefeller O, Rabenstein T, Hothorn T. Association between split selection instability and predictive error

in survival trees. Methods Inf Med 2006;45:548–56.
14. Graf E, Schmoor C, Sauerbrei W, Schumacher M. Assessment and comparisons of prognostic classification schemes for

survival data. Stat Med 1999;18:2529–45.
15. Bou-Hamad I, Larocque D, Ben-Ameur H. A review of survival trees. Stat Surv 2011;5:44–71.
16. Hjorth U. A reliability distribution with increasing, decreasing and bathtub-shaped failure rates. Technometrics

1980;22:99–107.
17. Copelan EA, Biggs JC, Thompson JM, Crilley P, Szer J, Klein JP, et al. Treatment for acute myelocytic leukemia with allogeneic

bone marrow transplantation following preparation with BuCy2. Blood 1991;78:838–43.
18. Klein JP, Moeschberger ML. Survival analysis: techniques for censored and truncated data, 2nd ed. New York: Springer,

2003.

188 A. Shimokawa et al.: Comparison of Splitting Methods on Survival Tree


