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Abstract—A Battery Management System (BMS) is needed to
ensure a safe and effective operation of a Lithium-ion battery,
especially in electric vehicle applications. An important function
of a BMS is the reliable estimation of the battery state in
a wide range of operating conditions. To this end, a BMS
often uses an equivalent electrical model of the battery. Such
a model is computationally affordable and can reproduce the
battery behaviour in an accurate way, assuming that the model
parameters are updated with the actual operating condition of
the battery, namely its state-of-charge, temperature and ageing
state. This paper compares the performance of two battery state
and parameter estimation techniques, i.e., the Extended Kalman
Filter and the classic Least Squares method in combination with
the Mix algorithm. Compared to previous ones, this work focuses
on the concurrent estimation of battery state and parameters
using experimental data, measured on a Lithium-ion cell subject
to a current profile significant for an electric vehicle application.

I. INTRODUCTION

The Energy Storage System (ESS) is a key element in

Electric and Plug-in Hybrid Electric Vehicles (EVs/PHEVs),

as well as smart grid systems. In these applications, the

Lithium-ion (Li-ion) battery technology is currently the most

promising one, thanks to its high energy and power densities,

high charge/discharge efficiency and long cycle life. However,

Li-ion cells are very sensitive to under discharge, overcharge

and to operating temperatures outside the safety range. These

conditions can cause permanent damages to the cells and even

hazardous situations. To extend the battery life and to avoid

dangerous failures, the ESS includes an electronic Battery

Management System (BMS). This system mainly monitors

current, voltage and temperature of each cell and disconnects

the battery from the load/charger when an unsafe condition oc-

curs. BMS also tracks the battery internal state, i.e., the State-

of-Charge (SoC) and the State-of-Health (SoH), to estimate

the battery residual energy and to improve its performance

through charge balancing strategies [1], [2].

SoC indicates the residual charge that can be provided by

a cell at room temperature and at a low ampere-hour rate and

is usually expressed in percentage of the cell capacity [3]. As

SoC cannot be measured directly, many algorithms have been

developed to estimate this important state variable [3]–[10].

Coulomb Counting is the most used technique and is based on

current integration. Thus, errors on the current measurement

due to current sensor offset, noise and quantisation accumulate

and can cause the SoC estimation to become unreliable

over time. Another widely used method is based on Open

Circuit Voltage (VOC) measurement. VOC depends on SoC,

but slightly on temperature, ageing and current rate. However,

the cell voltage relaxes to VOC after a long time, when the cell

current is equal to zero. Thus, this technique cannot be used in

highly dynamic systems. Other accurate methods are based on

a black-box battery model (artificial neural networks and fuzzy

logic approaches) [5], but they are computationally intensive

and require long training procedures. Good results are reached

by the use of model-based algorithms, such as Kalman Filters

(KFs) [10], Particle Filters (PFs) [6] and the Mix algorithm

[4]. These techniques are closed-loop and suitable for real-

time implementation in a BMS. The model is used to predict

the cell voltage. The predicted cell voltage is compared with

the measured one and the resulting error is used to correct the

model state variable estimation. The SoC estimation accuracy

thus depends on the model capability to reliably reproduce the

cell behaviour.

There are many modelling approaches, such as electro-

chemical and mathematical models. A good trade-off between

complexity and accuracy is given by equivalent electrical

models, assuming that their parameters change with the cell

operating conditions and ageing. Moreover, also variations in

the manufacturing process should be considered. A typical

method to account for parameter variation is by means of

Look-up Tables (LUTs). However, this solution is suitable only

to consider the dependence on temperature and SoC [7]. In

fact, online parameter identification is needed to include the

ageing and manufacturing variability.

Two promising approaches for battery parameter identifi-

cation are Moving Window Least Squares (MWLS) method

used with the AutoRegressive eXogenous (ARX) structure of

the electrical model [8], [11] and Bayesian estimation with

the EKF, an extension of the KF for non linear cases [10]. A

preliminary comparison of these two methods is presented in

[12]. In that work, the battery voltage response is simulated

using a LUT-based equivalent cell model [13].

This work significantly extends the analysis in [12], by

comparing the capability of these methods to estimate the state

and parameters concurrently. Moreover, experimental data

representative of the use of the battery in an EV application are

used. The MWLS method is used in conjunction with the Mix

algorithm to estimate both SoC and the model parameters.

We refer to this method as the Adaptive Mix Algorithm. The

paper is organised as follows. Section II recalls the equivalent

electrical cell model. Section III describes the compared



Fig. 1. Equivalent electrical model.

state and parameter estimators, while the experimental results

are discussed in Section IV. Finally, Section V draws some

conclusions.

II. ELECTRICAL EQUIVALENT MODEL

The general form of an equivalent electrical model is shown

in Fig. 1. The left-hand side models the cell capacity and

SoC. In fact, SoC is expressed as Q/Qn, where Q is the

remaining charge stored in the cell and Qn is its maximum

value, expressed in Coulomb. Instead, the right-hand side

generates the cell terminal voltage vM, as the sum of VOC, a

voltage R0iL, due to the internal resistance, and one or more

relaxation voltages vRCi. The number of RC groups affects the

accuracy of the model and its computational complexity. The

transient effects are simulated with accuracy using two RC

groups [14]. For applications with fast transients, good results

are also achieved using only one RC group. The consequent

low complexity of the model supports its adoption in a BMS.

The time-domain state space model of the cell is the following:


































˙SoC = −

iL
Qn

˙vRC = −

vRC

RC
+

iL
C

vM = VOC −R0iL − vRC

(1)

Cell model parameters can be extracted offline by observing

the voltage/current relationship in the time domain [1]. This

method is typically used for cell characterisation, applying a

specific current waveform, such as a pulsed profile, to a cell in

several conditions. Each pulse has an amplitude and duration,

which make the cell SoC vary by a specific amount. Each

current pulse is followed by a pause, in which the voltage

relaxes towards VOC. The use of a pulsed current facilitates

the extraction of the model parameters [14]. The latter can

be stored in multi-dimensional LUTs that account for the

parameter dependence on SoC, temperature and current rate

[13].

A LUT-based model is easy to implement, but can hardly

model parameter variations due to manufacturing tolerances

and ageing. For this reason, an online identification of the cell

model parameters should be employed to take into account

Fig. 2. Adaptive Mix Algorithm block diagram.
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Fig. 3. Open circuit voltage VOC, as a function of SoC.

all the operating condition dependencies with the aim of

improving SoC estimation in a BMS.

III. STATE AND PARAMETER ESTIMATORS

This Section briefly discusses the Adaptive Mix Algorithm

(AMA) and the Dual EKF (DEKF), the performance of which

will be compared in the subsequent Section.

A. Adaptive Mix Algorithm

The Mix algorithm is a simple to compute model-based

SoC estimation method, firstly introduced in [4]. Its working

principle is shown in the block diagram seen in Fig. 2.

The model output voltage vM is generated by the electric

model shown in Fig. 1 with a single RC group. The VOC

voltage is the output of a LUT, which models the VOC-SoC
relationship, shown in Fig. 3, with a 1% SoC resolution. vM
is compared to the measured cell voltage vT to generate an

error signal. The latter is amplified by the observer gain L
and subtracted to the measured cell current iL. The resulting



current signal is then integrated over time to produce SoC, as

in the conventional Coulomb Counting method. The observer

gain L can be chosen to reduce the sensitivity to uncertainties

over the SoC initialisation and the current measurements

affecting the Coulomb Counting method [15].

However, such a valuable result relies on the capability of

the model to reproduce the cell behaviour in an accurate way.

Instead of using three-dimensional LUTs as in [7], a Parameter

Identification block is used here to adapt the cell model in

order to take into account also parameter variation due to

battery ageing and to manufacturing process tolerances. The

Parameter Identification block is implemented by the MWLS

algorithm, applied to an ARX structure of the electrical model

[12], [16].

In more detail, the equivalent electric model is linearised

around the time-variant cell operating point and the model

parameters are considered constant during the identification

time window. This is justified by the fact that the cell operating

point slowly changes over time. The VOC-SoC non-linear

function is approximated by a piecewise linear curve VOC =
α0+α1SoC, where α0 and α1 depend on the operating point.

Applying the Laplace-transform to state-space cell model (1),

we obtain the transfer function from the current input to the

cell terminal voltage output:

Y (s)− α0

U(s)
= −

R0s
2 + ( α1

Qn

+ 1

C
+ R0

RC
)s+ α1

QnRC

(s+ 1

RC
)s

(2)

where Y (s) and U(s) are the Laplace transforms of the voltage

output vT and current input iL, respectively. The discrete-time

system transfer function is obtained by the application of the

bilinear transform to (2):

Y (z−1)− α0

U(z−1)
=

b0 + b1z
−1 + b2z

−2

1 + a1z−1 + a2z−2
(3)

The discrete-time relationship between the input and output

samples can be obtain from (3):

y(k) =− a1y(k − 1)− a2y(k − 2) + α0(1 + a1 + a2)

+ b0u(k) + b1u(k − 1) + b2u(k − 2)
(4)

which is equivalent to a second order ARX model. The

MWLS technique implies the application of the LS method

to the current and voltage samples contained into a given time

window. This window is shifted in time when new voltage and

current samples are acquired, to track the parameter variation

over time. In this way, the parameters [a1, a2, b0, b1, b2] are

identified, from which the model parameters [R0, R, C] can

easily be computed [12].

B. Dual EKF

In the Bayesian framework, the discrete time evolution of

the parameters and the system observations are described by

the following equations:

p(k + 1) = p(k) + χ(k), (5)

vT(k) = G(x(k), iL(k), p(k)) + ψ(k). (6)

Equation (5) is the parameter equation (also called process

equation), while (6) is the measurement equation. Here, k is

the discrete time, x is the column vector of the system state

variables (including SoC), iL is the terminal current, p is the

column vector of the parameters, vT is the terminal voltage,

χ and ψ are the parameter and measurement noise, with zero

mean and covariance matrix Σ
χ and Σ

ψ , respectively. The

measurement operator G is non-linear because of the non-

linear relationship between VOC and SoC in (1).

Equation (5) is characterised by an identity transition opera-

tor acting on the parameters, while the parameter dynamics is

caused fictitiously by the Gaussian noise χ. From a practical

point of view, this process allows the parameters to change at

each time instant, tracking the system dynamically.

In order to perform an online estimation of the parameters,

the tracking of the battery state (and in particular of SoC)

is also needed. Indeed, (6) allows the output to be computed

from the information on the battery state. The problem can

be approached effectively with the so-called dual estimation

technique [17], in which two interleaved and interacting pro-

cesses take place: one for the parameters and the other for

the state. This approach can be considered more efficient for

online applications, as the involved matrix dimension is lower

[9]. The first process is still represented by (5), while the state

process equation is given by

x(k + 1) = F(x(k), iL(k), p(k)) + ξ(k), (7)

being F the state operator and ξ the state noise. The measure-

ment equation holding for both state and parameter evolution

is (6), which can be used twice, on the basis of the up-to-date

values available from the interleaved process.

Given a sequence of observations of vT, the optimal

Bayesian estimator, under mild Markovianity hypotheses, can

be calculated recursively in two successive steps [17]. For

linear Gaussian statistical models, running two interleaved
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Fig. 4. Cell behaviour in 4 consecutive UDDS cycles.



Fig. 5. Photograph of the experimental setup.

Kalman filters yields the optimal Bayesian solution [18]. This

method turns out to be very effective also in its extended form,

the Extended Kalman Filter, where the presence of non linear-

ities is taken into account [6], [10]. The EKF is based on the

application of a linear Kalman filter to the equations, which are

linearised around the actual state and parameter estimates. We

end up with the DEKF, which has been successfully applied

to the state and parameter estimation of batteries, sometimes

in combination with other techniques [19]. Implementation

details applied to battery state and parameter estimation can

be found in [6].

IV. EXPERIMENTAL RESULTS

Parameter identification strongly depends on the input stim-

uli. So, a representative battery current profile is necessary

to assess the performance of the AMA and the DEKF in an

electric vehicle application. To this end, the current profile

used to exert the battery in the experimental tests carried out,

was derived starting from a standard driving cycle, namely the

Urban Dynamometer Driving Schedule (UDDS), defined by

the U.S. Environmental Protection Agency [20]. The power

at the battery’s terminals and then the current is obtained

from the speed profile using a simple model of an electric

vehicle, as described in [12]. The resulting battery current was

scaled maintaining the same C-rate to be applied to a 1.5A h

NMC cell (Kokam SLPB723870H4), used in the experimental

tests. The cell has preliminary been characterised by means

of pulsed current tests to extract the VOC-SoC relationship,

as shown in Fig. 3, and an average value for the model

parameters. The battery current profile related to one UDDS

cycle determines approximately a 20% SoC variation and is

repeated 4 times, after a full charge (see Fig. 4). All the tests

have been carried out at room temperature.

A photograph of the experimental testbed is shown in Fig. 5.

It consists of a Source Meter Unit (SMU) Keithley 2440,

controlled by a LabVIEW application running on a PC, which

generates the current profile and acquires the cell voltage. The

acquired current and voltage samples are processed by Matlab

scripts. They implement the AMA and the DEKF, computing

the parameters of the cell model and the SoC over time.

Fig. 6 shows the results of the parameter identification,

i.e., R0, R, C and τ = RC. The results provided by the

two methods are in good agreement with each other and

with the average values (R0 = 26mΩ, R = 12mΩ and

C = 780F) extracted from the pulsed current tests. This is

especially noticeable for the series resistance R0, which is a

valuable result, as R0 strongly affects the capability of the

model to reproduce the cell behaviour and is very sensitive to

the cell operating conditions. Indeed, tracking R0 over time

can provide a good indication of battery ageing, enabling SoH
estimation [21].

To assess the capability of the model with online update of

its parameters using the MWLS and the DEKF approaches,

the model output is compared to the measured cell voltage.

In this analysis, SoC is obtained by the Coulomb Counting

of the current measured by the SMU (this value is used as

the reference value for the SoC variable). This means that

the observer gain L is set to zero for the Mix algorithm.

Fig. 7 shows the absolute difference between the measured

cell voltage and the voltage predicted by the model (i.e.,

ev = |vT − vM|), when the parameters are identified by the

MWLS method, by the DEKF, and when the parameters are

kept constant to their average values. The error behaviour

is similar in the three cases, even if a slight improvement

can be obtained by the online parameter update, as shown by

the maximum and rms values of the voltage prediction error

reported in Table I. A greater improvement can be expected

when the battery operates at a temperature or ageing state

different from that of the characterisation tests.

We now analyse the performance of the concurrent esti-

mation of the battery state and parameters, by comparing the

SoC estimated by the AMA, the DEKF and the Mix algorithm

(with constant parameters) to the reference value. This is

shown in Fig. 8 and in Table II. The estimated SoC behaviours

are in very good accordance with the reference one, apart from

the SoC interval 50% down to 25%. In this SoC interval,

the VOC-SoC curve is almost flat (see Fig. 3), thus making

SoC poorly observable [15].

Finally, we evaluate the response of the AMA and the

DEKF to uncertainty of the initial SoC value. Fig. 9 shows

the SoC behaviour estimated by the two methods, when the

SoC is initialised to the wrong value of 40% (instead of

the correct 99.3%). The slower response of the AMA is

determined by the choice of the observer gain L = 1/(R0+R),
which is able to cancel a steady-state error due to an offset

in the current sensor [15]. We can see that both algorithms

are able to recover from a wrong initialisation, feature that

cannot be achieved by the simple Coulomb Counting. More-

over, the DEKF algorithm is much faster than the AMA. In

fact, SoC estimated by the DEKF converges to the estimate

obtained with the correct initialisation after 40 s (when the

difference between the two cases is lower than 1%), whereas

this occurs for the AMA after 691 s.
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from the pulsed current tests.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

10

20

30

40

50

60

70

Time (h)

e
v
 (

m
V

)

 

 
Const. params

MWLS

Dual EKF

Fig. 7. Comparison of the voltage prediction errors.

V. CONCLUSION

This paper has discussed the performance of the Adaptive

Mix Algorithm (AMA) and the Dual Extended Kalman Filter

(DEKF) to estimate the battery state and parameters in an

electric vehicle application. Experimental tests have been

TABLE I
VOLTAGE PREDICTION ERROR

Estimator Max rms

Const. params 69mV 28mV
MWLS 59mV 26mV
Dual EKF 52mV 26mV

performed on a Li-ion NMC cell exerted with a current profile

obtained from a standard driving cycle. Both methods provide

good estimates of both parameters and SoC. The AMA seems

to be more noisy in the parameter estimation and shows a

slower response to wrong SoC initialisations. On the contrary,

it performs slightly better when SoC lies in the range in which

the slope of the VOC-SoC curve is low. This work proves

that both methods are capable of identifying the cell model

parameters, which is a valuable achievement as the model

parameters strongly vary with the cell operating condition.

The real effectiveness of online estimation methods can be

appreciated in different operating conditions (temperature and

ageing), from those in which the cell characterisation has

been executed. For this reason, future work will focus on

investigating the algorithm performance in a wider range of

operating conditions. Moreover, we will evaluate the compu-

tational resources required to implement both methods and,
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TABLE II
SoC ESTIMATION ERROR

Estimator Max rms

Adaptive Mix 9.3% 4.3%
Dual EKF 11.8% 5.1%
Mix 9.7% 4.6%
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Fig. 9. Comparison of SoC estimation after a wrong initialisation.

thus, their suitability to be used in a BMS for concurrent state

and parameter estimation in real time.
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