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Abstract 

The main aim of the present study is to analyze the capabilities of two downscaling approaches 

(statistical and dynamical) in predicting wintertime seasonal precipitation over North India. For 

this purpose, a Canonical Correlation Analysis (CCA) based statistical downscaling approach and 

dynamical downscaling (at 30 km) with an optimized configuration of the Regional Climate 

Model (RegCM) nested in coarse resolution global spectral model have been used for a period of 

28 years (1982–2009). For CCA, nine predictors (precipitation, zonal and meridional winds at 850 

and 200hPa, temperature at 200hPa and sea surface temperatures) over 3 different domains were 
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selected. The predictors were chosen based on the statistically significant teleconnection maps and 

physically based relationships between precipitation over the study region and meteorological 

variables. The validation revealed that both the downscaling approaches provided improved 

precipitation forecasts compared to the global model. Reasons for improved prediction by 

downscaling techniques have been examined. The improvement mainly comes due to better 

representation of orography, westerly moisture transport and vertical pressure velocity in the 

regional climate model. Further, two bias correction methods namely Quantile Mapping (QM) and 

Mean Bias-remove (MBR) have been applied on downscaled RegCM, statistically downscaled 

CCA as well as the global model products. It was found that when the QM based bias correction is 

applied on dynamically downscaled RegCM products, it has better skill in predicting wintertime 

precipitation over the study region compared to the CCA based statistical downscaling. Overall, 

the results indicate that the QM based bias corrected downscaled RegCM model is a useful tool 

for wintertime seasonal scale precipitation prediction over North India.  

Key words: North India, winter precipitation, downscaling, CCA, RegCM, bias correction. 

 

 

1. Introduction 

Precipitation during winter seasons in north India (NI) is very important for Rabi crops, 

particularly for wheat as it supplements the moisture and maintains low temperature for the 

development of the crops. This NI region (comprising of the Indian states of Punjab, Haryana in 

the plains and Jammu and Kashmir, Himachal Pradesh, Uttarakhand in the Himalayas) receives 

about 25% to 30% of the annual precipitation during winter seasons  (Tiwari et al. 2016a). Most 

of the precipitation during winter over the mountainous regions of NI (western Himalayas) is in 

the form of snow which helps in maintenance of glaciers throughout the year. Snow and ice melt 
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(during spring and summer seasons) in the Himalayas influences the water availability 

downstream in the major river basins of south Asia (Tiwari et al. 2016b). Thus, advance 

information of winter precipitation (in terms of seasonal mean or anomaly) is useful for 

agriculture, water management sectors and various other sectors. Moreover, there is a demand of 

skillful seasonal prediction of winter precipitation from the resource managers as well as the 

farming community in north India (Mohanty et al. 2018). 

Seasonal prediction skill in the tropical region is driven by slowly varying boundary 

conditions such as sea surface temperatures, snow cover and soil wetness etc, therefore, should 

have higher skill than sub-seasonal or monthly prediction (Shukla et al. 2000). Although there has 

been considerable advancement in computing resources and representation of physical processes 

in General Circulation Model (GCM), the skill of GCMs is still not satisfactory in simulating the 

spatial and temporal variability of seasonal mean temperatures and precipitation over India 

(Kumar et al. 2005; Wang et al. 2005; Barnston et al. 2010; Tiwari et al. 2014 and Tiwari et al. 

2016a). A contributing factor is the coarse spatial resolutions (average spatial resolution is ~1.3º; 

Taylor et al. 2012) of these GCMs that are insufficient to correctly represent the regional 

processes, land surface distribution and topography (Tiwari et al. 2017). Moreover, there are 

inadequacies on how well the large-scale teleconnection patterns linking global forcing such as El 

Nino Southern Oscillation (ENSO) or North Atlantic/Arctic Oscillations (NAO/AO) with the 

regional climate are represented in global climate models. As a result, direct use of the GCMs 

products may not be useful in predicting seasonal precipitation distribution at a regional scale..  

In order to overcome the spatial scale issue, two approaches namely statistical and 

dynamical downscaling techniques are mainly used to downscale the coarse resolution GCM 

products to get regional information at finer scale. Christensen et al. (2007), in the Fourth 
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Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, AR4) have 

assessed the performance of several downscaling techniques and suggested that downscaling 

techniques are also capable of improving the skill of the predictions at local-scale. Similar 

conclusions on the use of downscaling techniques are reported by Flato et al. (2012) in the IPCC 

AR5 assessment. Dynamical downscaling is based on nesting of high-resolution regional climate 

models (RCMs) to simulate finer scale physical processes consistent with large scale weather 

simulated by a GCM (Giorgi et al. 2001). Statistical downscaling approach uses statistical 

relationships between the regional climate and statistical characteristics of the GCM data (Wilby 

et al. 2004; Marun et al. 2010; Goodess et al. 2012; Sachindra et al. 2014a; 2014b; Ayar et al. 

2015) and are grouped into three different categories namely perfect prognosis, model output 

statistics (MOS) and weather generators.  Sachindra et al. (2012) have reported that while 

dynamic downscaling approach is based on the use of complex physics of atmospheric processes 

and involves high computational costs, statistical downscaling is computationally less expensive. 

These reports further encourage to use the downscaling approaches for prediction of local/regional 

scale climate, however, both the techniques have some advantages and limitations.  The canonical 

correlation analysis (CCA) technique is very popular amongst the MOS techniques due to its ease 

in implementation and interpretation. However, this linear technique does not represent the non-

linearity in the relationship between predictors and predictands. A comparison of linear and non-

linear artificial neural network (ANN) models by (Trigo and Palutikof, 2001) for downscaling of 

monthly precipitation over Iberia had shown that the linear ANNs had better skill. Moreover, 

Ramirez et al. (2006) have reported that when the predictor-predictand relationship is nonlinear, or 

when the predictand is non-Gaussian (e.g daily precipitation) ANNs have an advantage over 

standard parametric approaches. Therefore, superiority of any non-linear statistical downscaling 
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method over the canonical correlation analysis method has not yet been established for 

downscaling monthly mean precipitation.  

In last few years, many efforts (Sinha et al. 2013a; Sachindra et al. 2014b; Ayar et al. 

2015) have been made using statistical downscaling techniques to predict regional precipitation at 

monthly as well as seasonal timescale. In all the studies, a clear improvement in precipitation 

prediction compared to parent GCM was obtained. On the other hand, studies using dynamical 

downscaling approaches (Sinha et al. 2013b, Tiwari et al. 2016b; Sorland et al. 2018) have also 

emphasized that the dynamical downscaling approach has potential to reproduce finer scale 

information with higher skill than the parent GCMs. A recent study conducted by Sorland et al. 

(2018) has shown that the regional climate models have systematically reduced the bias over the 

Alps and other regions of Europe. Further, these models are able to modify the climate change 

signals obtained from the driving GCMs, even on the scales that are considered well resolved by 

the driving GCMs.  

Further studies (e.g. by Schmidli et al. 2007; Su et al. 2017; Grigory et al. 2018) have been 

carried out to compare dynamical and statistical downscaling methods over different regions 

worldwide. Schmidli et al. (2007) have used statistical and dynamical methods over European 

Alps region and stated that performance of these methods varies significantly from region to 

region and season to season. Su et al. (2017) have compared the monthly rainfall generated from 

statistical and dynamical methods over Heihe River Basin in China and reported that the skill of 

these two methods of downscaling varied from month to month. Recently Grigory et al. (2018) 

have applied statistical and dynamical downscaling methods and assessed their utility to provide 

seasonal forecast (June–September) for impact modelling in eastern Africa. The study reports that 

where dynamical downscaling method is able to reproduce the predictive signal evident in the 
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driving GCM in hindcast, statistical downscaling, in general, loses a part of the GCM signal at 

grid box scale. Furthermore the study also states that there are no clear evidences that the 

dynamical and statistical downscaling provide added value compared to the driving GCM over the 

eastern Africa. 

In view of the above discussion and absence of any systematic effort to analyze the 

usefulness of either of these downscaling methods in predicting wintertime (seasonal mean) 

precipitation over northern India (NI), here we have attempted to downscale the GCM outputs so 

that these forecasts become useful to the user community at regional scale. Further an attempt has 

been also made to evaluate the skill of different bias correction techniques for wintertime 

precipitation over NI. Therefore, the main objectives of the present study are to:  

 develop a canonical correlation analysis (CCA) based statistical downscaling technique 

for wintertime precipitation forecasts over NI; and 

 compare the CCA based statistical downscaling against bias corrected dynamically 

downscaled RCM and bias corrected CCA model. 

The description of model, data used and methodology are provided in Section 2. Discussions of 

the main findings of the study are presented in Sections 3. The summary and conclusions of the 

study are given in Section 4. 

2. Model description and experimental framework, data used and methodology 

2.1 The Model and Experimental framework 

In this study, products from the National Centre for Medium Range Weather Forecasting 

(NCMRWF) global spectral model (hereafter referred as T80 model) have been used. This model 
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has 80 waves in Triangular truncation equivalent to 1.4° × 1.4° (~150 km) horizontal grid 

resolution. Further details about the model are provided in Kar (2007) and Kar et al. (2011).   The 

model is initialized in November and integrated until the end of February for each year over the 

period 1982 to 2009. The 10 member ensembles are generated using the initial conditions from 1-

10 November (total 10 different days) of each year, and for each initial date. The NCEP Climate 

Forecast System version 2 (CFSv2; 126 waves in Triangular truncation equivalent to 0.9° × 0.9°,  

~100 km horizontal grid resolution)) forecasted SST (Saha et al. 2014) is provided to the model as 

boundary condition. The regional climate model used in the present study is the International 

Centre for Theoretical Physics (ICTP) Regional Climate Model (RegCM4, version 4.1.1). More 

details of the model can be found in Elguindi et al. (2011) and Giorgi et al. (2012). The 

configuration of the RegCM used in the present study has been optimized for the domain of 

interest in a previous study by Tiwari et al. (2016b). For dynamical downscaling, the T80 model 

products at 12 hourly intervals are provided as the input to RegCM. 

2.2 Data used  

In this study ensemble mean of 10 members of the T80 model outputs for the period 1982-

2009 are considered for statistical downscaling approaches. The observed SST (Smith et al. 2008) 

and ERA-Interim reanalysis (Dee et al. 2011) for the period 1982-2009 are used to examine 

observed teleconnection patterns. Observed daily rainfall data at 0.25° × 0.25° resolution (Pai et 

al. 2014) obtained from India Meteorological Department (IMD) and station data sets from Snow 

Avalanche Establishment (SASE) has been used for validation purpose. 

2.3 Technique  

 As mentioned earlier, so far, no statistical downscaling approaches using CCA have been 

developed for predicting wintertime precipitation over northern India. In the present study, the 
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model output statistics approach is the CCA based on Wilks (1995). This CCA technique 

considers two multivariate datasets and selects a sequence of pairs of patterns. The original data 

are then projected onto these patterns and sets of transferred variables are constructed. The 

technique is elaborated further in the next paragraph. 

 In the CCA technique, the original data P (independent) and Q (dependent) are 

transformed into a new set of variables X
m

 and Y
m

 respectively, called canonical variables (Wilks, 

1995). Here, P’s are the predictor variables from the global model and Q is the predictant 

(observed precipitation data). 

  The canonical variables are defined as: 

                                              Xm  = A x P                        ....(1) 

                                              Ym  = B x Q                         ....(2) 

The calculation of canonical vectors (A and B) is similar to that of Principal Component 

Analysis (PCA). The linear regression between the canonical variables can be written as:   

                                              Ym  = a  x Xm                         ....(3) 

It can be easily proved that a = Tc, where Tc, is the diagonal matrix of the canonical 

correlations. The original data Y can be easily estimated using the relation Q=B-1 Ym B. Further 

details of the CCA methodology can be found in Singh et al. (2012) and Sinha et al. (2013). 

Observations as well as model output data for the period from 1982–2009 are averaged 

from December to February for each month to get monthly values. From these monthly values, 

seasonal mean (DJF) values are also computed. Model precipitation fields were bi-linearly 

interpolated to the observed grid. Application of any other interpolation method (such as spline) 

did not provide any different output. The model precipitation outside the Indian region are not 

considered in the present study.  
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Two bias correction methods (i) quantile mapping (QM) and (ii) mean bias correction 

(MBR) described in Tiwari et al (2016b) have been used in the present study. The bias corrections 

have been applied to monthly mean precipitation predictions from the T80 model, the RegCM 

model and the CCA model before making seasonal mean. Based on the observed data few wet 

years (1991-92, 1994-95, 1995-96, 1997-98) and dry years (1984-85, 1996-97, 2000-01, 2008-09) 

were selected for more detailed analysis. For evaluation of the results, several skill metrics such as 

mean squared error, multiplicative bias, Kendall rank correlation coefficient, Wilmott’s index of 

agreement (WIOA), percent error of prediction have been used. The Student t-test is used for 

statistical significance test of correlation and the critical value is 0.33 at 95% confidence level. 

The above mentioned skill metrics are briefly discussed below: 

Mean squared error: It measures the mean squared difference between the forecasts (F) and 

observations (O). The perfect score for this metric is 0. 

Multiplicative bias: This skill metric mainly represent the model’s ability to simulate the observed 

climatology and it is defined as ratio of the climatology of predicted and observed climatology. 

The perfect score for this metric is 1.  

Kendall rank correlation coefficient: It is commonly referred as Kendall’s tau and measures the 

association with the presumption that the predictor–predicted relationship may not be linear 

(Wilks 2006). This skill metric is considered more general and alternative to Pearson’s correlation. 

Willmott’s index of agreement: Willmott (1982) proposed a skill metrics which is called 

‘Willmott’s index of agreement (WIOA)’ and it is defined as: 
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where Fi and Oi are the ith year forecast and observation respectively and O is the observed 

climatology. WIOA is bounded between 0 and 1 (0 ≤ WIOA ≤ 1) and the perfect score for this 

index is 1. 

Percent error of prediction (PE): Perez and Reyes (2001) suggested that a predictive model will 

be termed as good one if the PE is close to 0. It is computed as:  

where Oi and Fi denotes the observed and predicted values in the ith case and < > implies the 

average over the whole test set. 

 

3. Application 

The techniques described in section 2.3 have been applied here and presented into three 

segments namely i) the NCMRWF global model diagnosis, ii) model output statistics (MOS) 

approach for predicting wintertime (DJF) precipitation and, iii) comparison of dynamical (bias 

corrected downscaled RCM) and statistical downscaling. Before presenting the results related to 

the prediction of wintertime precipitation using statistical downscaling, the results of a brief 

diagnostic study of the NCMRWF (T80) model output are described.    

3.1 Global model diagnosis 

As the global T80 model simulated precipitation is provided as input to the statistical 

downscaling model, as a first step, salient features of the model simulated precipitation have been 
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examined. As mentioned earlier, western disturbances (WD) propagating from west to east 

contribute to major part of precipitation during winter over the NI region. In order to study the 

precipitation characteristics, the longitudinal mean of precipitation (Hovmoller diagram) of 

available 26 years (1982-2007) from the observation and the T80 model are plotted in Figure 1 (a) 

and (b) respectively. It can be seen from Fig. 1 (a) that the maximum precipitation lies between 

the latitudinal belt of 32o N to 36o N for each year. The northern part of Kashmir receives 

maximum precipitation (2-7 mm/day) during winter and the precipitation amount reduces 

gradually southward. Figure 1 (b) indicates that the precipitation distribution is represented well in 

the model simulations, however the maximum precipitation belt is shifted towards south. Further, 

the model simulated precipitation amount is lower (by about 2 mm/day) than observed values in 

some years. Fig. 1 (C) has the bias between the model and observed precipitation. It is seen that 

the T80 model has dry bias mainly between 33oN to 36oN. Interannual precipitation variability 

(standard deviation) at each grid point has been calculated from the observed and model simulated 

precipitation for the period of study (figure not shown). It is noticed that the interannual standard 

deviation is high over NI region and some pockets of North East India. The values of interannual 

standard deviation (ISD) over these regions range from 15 to 35 mm. The highest ISD is found 

over the areas experiencing large amount of precipitation during winter that is the northern part of 

India in observation. The T80 global model is able to show the total variance of precipitation as in 

observation up to certain extent and the ISD values are less than 30 mm over NI region.  

The spatial averages (NI region) of seasonal mean precipitation anomalies (based on 

baseline period 1982-2007) from the observed gridded data and the ensemble mean along with 

individual members of the T80 model forecasts are shown in Figure 2. It is seen from the figure 

that over the region of interest, maximum observed precipitation was in 1994 and minimum 
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precipitation occurred in 2000 (~1 mm/day). The T80 model generally produces less precipitation 

over NI region as compared to observed precipitation as discussed below. In 1994, observed 

precipitation during the season was more than 4 mm/day. However, the precipitation value from 

the T80 model is within 2 mm/day, indicating large bias in the model precipitation. Moreover, it is 

seen from the figure that interannual variability of the model-simulated precipitation does not 

agree with that of observed precipitation. Further it can be also noted that the model precipitation 

anomaly shows opposite sign compared with observations during the few extreme years such as 

1996, 2000. 

Figure 3 (a) and (b) show the correlation coefficient (CC) and normalized mean squared 

error (NMSE) between the model precipitation and observations respectively. It can be seen that 

the values of correlation coefficients for the T80 model over Northern parts of India are low and 

range from 0.3 to as low as -0.1. For the number of years used this computations, correlation 

values greater than 0.33 are statistically significant at 95% confidence level. Therefore, the T80 

model does not have statistically significant correlation skill for precipitation over the NI region 

during winter season. The NMSE values lies in between 0.5 to 2 mm/day over Jammu and 

Kashmir (J&K) region of NI. Further the maximum value of NMSE can be see over the northwest 

Kashmir where it is about 2 mm/day. 

This study reveals that the T80 model has a number of deficiencies in its predictions of the 

precipitation in terms of intensity and variability. Interannual variation as well as the flow pattern 

for extreme years in the model exhibit differences with that of the observations. Interannual 

variability of the model ensemble-mean precipitation depends on how the model responds to local 

and remote SST forcing prescribed in the model. The analysis of precipitation variability of the 

model presented so far indicates that the model may be incorrectly responding to prescribed SSTs. 
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It also appears that the model precipitation over NI region is linked to the sea surface temperature 

over the Pacific and the Indian Ocean. This aspect is further examined in the next section while 

developing the CCA model. In the following, the potential for statistical downscaling of model 

output using CCA is explored to improve seasonal forecasts of wintertime precipitation over NI 

region. 

3.2 Wintertime precipitation prediction using MOS approach 

  As mentioned earlier, Model Output Statistics (MOS) approach using the CCA technique 

has been used in this study. As a first step towards this, teleconnection maps have been prepared 

to find suitable predictors as well as domains and, then predictions of wintertime (DJF) 

precipitation over NI region have been made using MOS. Monthly values from observation as 

well as the T80 model have been used to build the CCA model. Seasonal mean precipitation for 

each year has been computed from these monthly mean downscaled values.  

 

3.2.1 Teleconnection maps 

Precipitation over NI is largely influenced by several global forcing such as the ENSO, NAO 

and AO (Kar and Rana, 2013). Teleconnection maps are generated using the correlation between 

wintertime precipitation over NI and different meteorological parameters (surface as well as upper 

air) obtained from observations and the T80 model output separately for the period 1982–2007. 

For this, correlation maps between NI precipitation and global variables (meteorological 

parameters of surface and upper air) are produced at 95% confidence level. The analysis is 

performed separately using observed and model hindcast data respectively, and the correlation 

maps are drawn. Based on the teleconnection maps and physically based relationships between NI 

precipitation and meteorological variables, nine predictors out of which two are precipitation and 
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meridional wind at 200hPa over the domain-1, four predictors (zonal wind at 850 and 200hPa, 

meridional wind at 850hPa and temperature at 200hPa) over the domain-2 and three predictors 

(zonal wind at 850 and 200hPa and SST) over domain-3 are considered for statistical downscaling 

from the T80 model using CCA. The anomaly correlation between wintertime precipitation over 

NI and different meteorological parameters (surface as well as upper air) obtained from 

observations and the T80 model output for the period 1982–2007 is shown in in Figure 4. 

Furthermore, the exact domains with their corresponding dimensions in latitude/longitude 

directions are shown in Figure 5. Since the length of the data period is moderate (26 years), only 

nine predictors have been chosen for the present study. The domain-1 covers the Indian region. 

Precipitation is the first automatic choice for the CCA model to predict precipitation. The 

meridional winds at 200hPa indicate the amplitude and zone of the westerly troughs over the study 

area which has strong relationship with precipitation variability in the region (Kar and Rana, 

2014). The domain-2 covers the north Indian Ocean along with central and west Asia. Interannual 

variation of precipitation over north India is due to passage of western disturbances that originate 

in the Mediterranean Sea and Caspian Sea regions. Zonal and meridional winds at 850hPa and 

200hPa and upper air temperature at 200hPa adequately represent the passage of these western 

disturbances. Moreover, the impact of the North Atlantic Oscillation and Arctic Oscillation are 

noticed in these variables. So there parameters get chosen for the CCA model.  The domain-3 is 

the eastern and central Pacific region and indicates the ENSO through the seas surface temperature 

and zonal winds at 850hPa and 200hPa. The relationship between precipitations over NI with that 

of ENSO has been described by Kar and rana (2014). Therefore, these 3 parameters have also 

been chosen for the CCA model 

3.2.2 Prediction of DJF precipitation 
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  In this study, while developing the CCA model, data for 26 years (1982–2007) have been 

considered for training period to compute canonical variables and correlations for the regression 

equations. Various studies (Ayar et al. 2015; Tiwari et al. 2014; Sinha et al. 2013a) have 

suggested that when the data length is limited, cross validation approach is very useful. Therefore, 

in the present study, leave-three-out (one forecasted year and another two years randomly 

selected) cross-validation technique has been used for calculation of the canonical coefficients. 

The omission of the two random years in addition to the forecasted year was found to make the 

CCA model more robust and reduces the cross-validation bias (Mason and Tippett 2004, Sinha et 

al. 2013a). The anomaly correlation has been plotted in Figure 6 to understand the performance of 

the CCA model.  It is seen that all predictors have reasonable skill in prediction of wintertime 

(DJF) precipitation over most parts of NI. However, reasonable skill of forecast using composite 

techniques is obtained over larger area than individual predictors. The number of grid points with 

skill more than 0.33 CC is 62 for composite forecast which is the highest as compared to any 

individual predictor forecast (47 grid points is the maximum among individual predictor forecasts) 

or mean forecast (31 grid points exhibit more than 0.33 CC).  Figure 6 also indicates that among 

all the predictor fields, the model precipitation over NI region has less potential than large-scale 

flow patterns in predicting wintertime (DJF) precipitation. This may be due to poor performance 

of the T80 model in predicting year-to-year precipitation variation as well as intensity over NI. It 

may be noted here that the correlation of the model precipitation (direct model output interpolated 

over observation grid) with observed precipitation is poor (statistically not significant) over NI 

region (Figure 3a) while, an improvement in skill is noticed with the use of CCA based statistical 

downscaling approach.  

3.3 Comparison of Statistical and dynamical downscaling approaches 
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 Evaluation of performance of both the statistical and dynamical downscaling approaches 

(forecast mode) has been made in predicting wintertime (DJF) precipitation over the NI region. 

For this purpose, model precipitation has been interpolated over IMD grid point and areas outside 

the Indian landmass are not considered. For dynamical downscaling, high-resolution (at 30 km) 

simulations of RegCM4 (along with two bias corrected methods namely MBR and QM) have been 

considered. The bias correction methods are explained in Tiwari et al (2016b). In the case of 

statistical downscaling, composite forecast of wintertime (DJF) precipitation have been considered 

to compare both the dynamical and statistical downscaling approaches. Firstly a comparison for a 

period of 26 years (1982-2007) is made. A number of statistical skill metrics such as 

multiplicative bias, Kendall rank correlation coefficient, Wilmort’s index of agreement (WIOA) 

and percentage error and prediction yield have been calculated and discussed below. Further, for 

better representation, the magnitude of all above stated skill metrics have been presented in Table 

1 for the T80, CCA, RegCM and two bias corrected methods (MBR and QM) applied on T80 

model (hereafter referred as T80_MBR and T80_QM), statistical downscaling based CCA model 

(hereafter referred as CCA_MBR and CCA_QM) and dynamical downscaled RCM (hereafter 

referred as RegCM_MBR and RegCM_QM) respectively. 

3.3.1 Multiplicative bias 

To comapre the climatology of the forecast with the climatology of observed precipitation, 

multiplicative bias has been computed and shown in Table 1. Esentially it represents the model’s 

ability to simulate the climatology of observations and is defined as the ratio of the climatology of 

predicted and observed climatology. Efficiency of the prediction is considered to be maximum 

when this index is close to 1. The Multiplicative bias of the T80, T80_MBR, T80_QM, CCA, 

CCA_MBR, CCA_QM, RegCM, RegCM_MBR and RegCM_QM is 0.49, 0.51, 0.54, 0.67, 0.69, 
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0.76, 0.58, 0.72 and 0.81 respectively.. The results clearly indicate that the QM based bias 

corrected downscaled RCM (i.e. RegCM_QM) is more efficient than CCA based statistical 

downscaling, bias corrected CCA (CCA_MBR and CCA_QM)  and other methods to reproduce 

the observed precipitation climatology. 

3.3.2 Kendall rank correlation coefficient 

While the Pearson’s correlation coefficient is a measure of linear association (i.e. it 

considers only linear relationship between the predicted and actual observation), the Kendall rank 

correlation coefficient (Kendall’s tau), measures the association with a presumption that the 

predictor–predicted relationship may not be necessarly linear (Wilks 2006). This skill metric is 

considered to be more robust and in general an alternative to Pearson’s correlation coefficient. The 

Kendall rank correlation coefficient (Kendall’s tau) for the T80, T80_MBR, T80_QM, CCA, 

CCA_MBR, CCA_QM, RegCM, RegCM_MBR and RegCM_QM is computed (Table 1) and 

which are 0.21, 0.24, 0.29, 0.33, 0.36, 0.41, 0.30, 0.37 and 0.45 respectively. A two tailed Student 

t-test has been performed and it shows that the Kendall’s tau for bias corrected dynamically 

downscaled RCM has significant skill (significant at 95% confidence level). Moreover, the 

advantages of QM based bias corrected downscaled RCM is also established in terms of Kendall’s 

tau. 

3.3.3 Wilmott’s index of agreement (WIOA) 

The above stated skill metrics have certain limitations as they are not bounded and are not 

suitable for very small (near zero) climatology of observation (Willmott 1982). Willmott index of 

agreement (WIOA) is bounded between 0 and 1 (0 ≤ WIOA ≤ 1). The closeness of this index to 1 

indicates the efficiency of the model in producing a good forecast. The usefulness of such a metric 

in judging the precipitation predictions has been discussed in many studies (Chattopadhyay et al. 
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2010; Acharya et al. 2013; Tiwari et al. 2014). In this study, the WIOA for the T80, T80_MBR, 

T80_QM, CCA, CCA_MBR, CCA_QM, RegCM, RegCM_MBR and RegCM_QM has been 

computed and shown in Table 1. The WIOA for the T80, T80_MBR, T80_QM, CCA, 

CCA_MBR, CCA_QM, RegCM, RegCM_MBR and RegCM_QM is 0.36, 0.39, 0.44, 0.55, 0.57, 

0.63, 0.51, 0.64 and 0.76 respectively. The result clearly indicates that bias corrected downscaled 

RCM has an edge over the RegCM and CCA based statistical downscaling in predicting witertime 

precipitation over NI region.  

3.3.4 Percentage error and prediction yield 

We have calculated percentage error for the T80, T80_MBR, T80_QM, CCA, CCA_MBR, 

CCA_QM, RegCM, RegCM_MBR and RegCM_QM. The average percentage error (averaged 

over 26 years) is 23.9, 23.7, 23.6, 22.4, 22.3, 22.2, 23.5, 22.1 and 21.7 respectively.. This further 

shows that the bias corrected downscaled RCM has an edge over the bias corrected CCA based 

statistical downscaling in predicting wintertime precipitation over NI region. The predicted yield 

for different error categories (5, 10, 15 and 20 % error) as followed by Chattopadhyay et al. 

(2010) were also computed for the T80, T80_MBR, T80_QM, CCA, CCA_MBR, CCA_QM, 

RegCM, RegCM_MBR and RegCM_QM respectively as well. It is found that if we allow an error 

as small as 5 %, the predicted yields of the T80, T80_MBR, T80_QM, CCA, CCA_MBR, 

CCA_QM, RegCM, RegCM_MBR and RegCM_QM turns out to be 0.06, 0.073, 0.08, 0.12, 

0.121, 0.136, 0.10, 0.14 and 0.18 respectively.. Further, if 10, 15, and 20 % errors of prediction are 

allowed, then the prediction yields are 0.24, 0.31 and 0.51 respectively for RegCM_QM method. 

Furthermore, it can be noticed that the prediction yields by the T80, T80_MBR, T80_QM, CCA, 

CCA_MBR, CCA_QM, RegCM and RegCM_MBR methods for 10, 15, and 20 % are less than 

the corresponding values in the case of RegCM_QM. For better understanding, the values of the 
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prediction yields for different percentage error categories is presented in Fig. 7. The result clearly 

indicates that the QM based bias corrected downscaled RCM (RegCM_QM) has an edge over the 

bias corrected CCA model (CCA_QM) in predicting wintertime precipitation over the NI region. 

Finally, the role of both downscaling approaces (CCA based statistical downscaling and 

two bias correction based dynamical downscaling methods) in prediction of magnitudes of 

precipitation anomalies for individual years (extreme years) has been examined. Forecasts for the 

NI region has been prepared independently for the year 2008 and 2009. In Figure 8, different bars 

(black, grey, cyan, sky-blue, dark-blue chocolate, green and gold) represents observed and 

predicted percentage departure of precipitation respectively. It can be noticed from the diagram 

that over the NI region for year 2008 the observed departure is -17.2% while the predicted 

precipitation departure is -8.9%, -9.1%, -10.4%, -13.7%, -12.9% and −15.7% for the T80, 

T80_QM, CCA, CCA_QM, RegCM and RegCM_QM respectively. Similarly, in 2009, the 

predicted percentage departures are of the same sign but the magnitude is 23.8%, 9.5%, 10.1%, 

15.6%, 18.7%, 18.1% and 21.4% respectively for observation, T80, T80_QM, CCA, CCA_QM, 

RegCM and RegCM_QM. In conclusion, the QM based bias corrected downscaled RCM (i.e. 

RegCM_QM) is able to capture most of the observed features in the years 2008 and 2009 and has 

maximum skill followed by the CCA_QM based predictions. 

From the above discussions, it is evident that the QM based bias corrected downscaled 

RCM (i.e. RegCM_QM) consistently outperforms other downscaling or bias correction methods. 

However, it may be noted that the quantile mapping procedure corrects the statistical moments and 

some statistical attributes of the cumulative distribution function (CDF) but it disrupts the 

temporal sequence Sachindra et al. 2014b. Improved time series data could be generated by 

employing monthly data for bias correction in the study of Sachindra et al. 2014b. Therefore, in 
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this study, bias correction has been carried out using monthly data (of global model, RegCM and 

statistically downscaled). The quantile mapping bias correction has also been applied to the raw 

model data before downscaling. It is found that the seasonal mean precipitation time series data 

obtained after following this procedure has better skill as compared to other methods. Sachindra et 

al. 2014b have suggested the use of nested bias correction (NBC) method to overcome the 

disruption of time sequence when quantile mapping bias correction is applied. However, in this 

study, the NBC method has not been used and will be attempted in future studies. 

3.4 Comparison and validation of downscaled precipitation with station observations  

 In the present section, both the downscaling approaces (CCA based statistical downscaling 

and QM based bias corrected dynamically downscaled RCM) along with the T80 global model are 

validated against the Snow and Avalanche Study Establishment (SASE), observations over 

seventeen stations located over the North Indian part of the Western Himalayas (IWH) region. The 

station–wise seasonal mean precipitation obtained from SASE observation, both the downscaling 

approaches and the T80 model is presented in Table 2. The italic shaded values indicate the closest 

ones to the SASE observations. Further, for a better insight, the Phase synchronizing events (PSE) 

have been computed based on Table 2 results. More details of PSE computation can be found in 

Tiwari et al. (2016b). It is noticed from Table 2 that the PSE value is maximum (with 94%) for 

composite (i.e., model output matches the sign of with observations 94% times) of wet minus dry 

years for QM method followed by CCA based statistical downscaling method (with 88%), 

T80_RegCM (with 70%) and T80 model (with 58%). Therefore, it can be concluded that the QM 

based bias corrected dynamically downscaled RCM is able to represent the precipitation well 

compared to CCA based statistical downscaling, T80 driven RegCM and the T80 model.  

4. Conclusion 
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Two downscaling approaches (CCA based statistical downscaling and dynamical downscaling 

using RegCM4 model) have been evaluated for wintertime (DJF) precipitation prediction over 

North India (NI) region. The NCMRWF global spectral model (T80) outputs have been used as 

input for both downscaling approaches. The major findings of this study are enumerated as 

follows: 

 The global T80 model has a dry bias over North India during winter seasons. The simulated 

mean climatological precipitation amount as well as its interannual variation are less than 

that of observations. 

 A CCA based model has been developed to statistically downscale the wintertime 

precipitation in seasonal timescale using the T80 model products. Based on the 

teleconnection maps and physically based relationships between NI winter precipitation and 

meteorological variables, nine predictors are considered for the CCA. The CCA method 

improves the forecast skill over some parts of NI. Further, the domain with higher 

correlations is more in case of composite forecast than the forecasts from individual 

predictors.  

  A detailed comparison of CCA and bias corrected CCA model is made against bias 

corrected dynamical downscaled RCM for a period of 26 years (1982-2007). All the skill 

metrics clearly indicate that the CCA based statistical downscaling has higher skill 

compared to the RCM based dynamical downscaling and the T80 model. Further analysis 

suggests that the QM based bias corrected downscaled RCM has an edge over the CCA 

based statistical downscaling and bias corrected CCA model in predicting wintertime 

precipitation over the NI region.  
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 The performance of both downscaling approaces in prediction of precipitation anomaly 

magnitudes for two extreme winter seasons has been examined. The result clearly indicates 

that the performances of both the downscaling techniques in representing the seasonal mean 

precipitation over the NI region are better than the GCM. Further, the QM based bias 

corrected downscaled RCM has maximum skill over the NI region.    

This study has shown that both the downscaling techniques have the efficiency to improve the 

skill in predicting wintertime seasonal precipitation over the NI region. Both the techniques are 

able to correct the GCM forecasts of precipitation over the NI region. Finally, QM based bias 

corrected downscaled RCM has statistically better performance over RegCM and CCA based 

statistical downscaling and can be used as a seasonal prediction system in predicting witertime 

precipitation over the NI region.  

 

 

 

Acknowledgements 

We thank the anonymous reviewers for their comments and suggestions that helped in improving 

the earlier version of the manuscript. Authors sincerely acknowledge the India Meteorological 

Department (IMD) and Snow Avalanche Establishment (SASE) for providing their daily gridded 

and station-wise precipitation data. The authors would also like to acknowledge European Centre 

for Medium-Range Weather Forecasts (ECMWF) for making their ERA-Interim data available to 

this study. The first author’s contribution to this work is supported by the ECR Program of the 

Centre for Atmospheric and Climate Physics Research at the University of Hertfordshire. The 

work is partly supported by research grant from Department of Science and Technology, Govt. of 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d
 A

rt
ic

le
India under contract DST/CCP/PR/11/2011 through a research project operational at IIT Delhi 

(IITD/IRD/RP2580). 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d
 A

rt
ic

le
References 

Acharya N, Chattopadhayay S, Mohanty UC, Dash SK, Sahoo LN. 2013. On the bias correction of 

general circulation model output for Indian summer monsoon. Met. Appl. 20: 349-356. 

Ayar PV, Vrac M, Bastin S, Carreau J, Déqué M, Gallardo C. 2015. Intercomparison of statistical 

and dynamical downscaling models under the EURO- and MED-CORDEX initiative 

framework: present climate evaluations. Clim. Dyn. 46 (3): 1301–1329. 

Barnston AG, Li S, Mason SJ, DeWitt DG, Goddard L, Gong X. 2010. Verification of the first 11 

years of IRI’s seasonal climate forecasts. J. Appl. Meteorol. Clim. 49: 493–520. 

Chattopadhyay G, Chattopadhyay S, Jain R. 2010. Multivariate forecast of winter monsoon 

rainfall in India using SST anomaly as a predictor: neurocomputing and statistical 

approaches. Compt. Rend. Geosci. 342: 755–765. 

Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Koli RK, Kwon W-T, 

Laprise R, Rueda VM, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P. 

2007. Regional climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis 

M, Averyt KB, Tignor M, Miller HL (Eds.), Climate Change 2007: The Physical Science 

Basis. Contribution of Working Group I to the Fourth Assessment Report of the 

Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 

pp. 847–940. 

Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, 

Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, 

Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm 

EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, 

Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F. 2011. 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d
 A

rt
ic

le
The ERA-Interim reanalysis: configuration and performance of the data assimilation 

system. Q. J. R. Meteorol. Soc. 137: 553–597. 

Dutta SK, Das S, Kar SC, Mohanty UC, Joshi PC. 2009. Impact of vegetation on the simulation of 

seasonal monsoon rainfall over the Indian subcontinent using a regional model. J. Earth 

Syst. Sci. 118: 413–440. 

Elguindi N, Bi XQ, Giorgi F, Nagarajan B, Pal J, Solmon F, Rauscher S, Zakey A, Giuliani G. 

2011. Regional climatic model RegCM user manual version 4.1.1. The Abdus Salam 

International Centre for Theoretical Physics Strada Costiera, Trieste, Italy. 

Flato G, Marotzke J, Abiodun B, Braconnot P, Chou SC, Collins W, Cox P, Driouech F, Emori S, 

Eyring V, Forest C, Gleckler P, Guilyardi E, Jakob C, Kattsov V, Reason C, 

Rummukainen M. 2013. Evaluation of climate models. In: Stocker TF, Qin D, Plattner G-

K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (Eds.), 

Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the 

Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge 

University Press, Cambridge, United Kingdom and New York, NY, U.S. 

Giorgi F, Hewitson B, Christensen H, Hulme M, Von Storch H, Whetton P, Jones R, Mearns LO, 

Fu G. 2001. Regional climate information evaluation and projections, Climate Change: the 

scientific basis. Cambridge University Press.  pp. 583-638.  

Giorgi F, Coppola E, Solmon F, Mariotti L, Sylla MB, Bi X, Elguindi N, Diro GT, Nair V, 

Giuliani G, Cozzini S, Gu¨ttler I, O’Brien TA, Tawfik AB, Shalaby A, Zakey AS, Steiner 

AL, Stordal F, Sloan LC, Brankovic C. 2012. RegCM4: model description and preliminary 

tests over multiple CORDEX domains. Clim. Res. 52: 7–29. 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d
 A

rt
ic

le
Goodess CM, Anagnostopoulo C, Bardossy A, Frei C, Harpham C, Haylock MR, Hundecha Y, 

Maheras P, Ribalaygua J, Schmidli J, Schmith T, Tolika K, Tomozeiu R, Wilby RL. 2012. 

An intercomparison of statistical downscaling methods for Europe and European regions - 

assessing their performance with respect to extreme temperature and precipitation events. 

Climatic Research Unit Research Publication (CRURP) N.11, University of East Anglia, 

UK. http:// www.cru.uea.ac.uk/cru/pubs/crurp/CRU_RP11.pdf. 

Kar SC. 2007. Global model simulations of interannual variability of the Indian summer monsoon 

using observed SST variability. NCMRWF research Report, NMRF/RR/2/2007; 40 pp. 

Kar SC, Iyengar GR, Bohra AK. 2011. Ensemble spread and model systematic errors in the 

monsoon rainfall forecasts using the NCMRWF global ensemble prediction system. 

Atmosfera 24 (2): 173–191. 

Kar SC, Rana S. 2013. Interannual variability of winter precipitation over northwest India and 

adjoining region: impact of global forcings. Theor. Appl. Climatol. 116: 609-623.  

Kumar KK, Hoerling M, Rajagopalan B, 2005. Advancing dynamical prediction of Indian 

monsoon rainfall. Geo. Res. Lett. 32 L08704. doi:10.1029/2004GL021979. 

Maraun D, Wetterhall F, Ireson AM, Chandler RE, Kendon EJ, Widmann M, Brienen S, Rust 

HW, Sauter T, Themel M, Venema VKC, Chun KP, Goodess CM, Jones RG, Onof C, 

Vrac M, Thiele-Eich I. 2010. Precipitation downscaling under climate change: recent 

developments to bridge the gap between dynamical models and the end user. Rev. 

Geophys. 48, DOI: 10.1029/2009RG000314. 

Mohanty UC, Nageswararao MM, Sinha P, Nair A, Singh A, Rai RK, Kar SC, Ramesh KJ, Singh 

KK, Ghosh K, Rathore LS, Sharma R, Kumar A, Dhekale BS, Maurya RKS, Sahoo RK, 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d
 A

rt
ic

le
Dash GP. 2018. Evaluation of performance of seasonal precipitation prediction at regional 

scale over India. Theo. and Appl. Climatol., https://doi.org/10.1007/s00704-018-2421-9]. 

Grigory N, Shakeel A, María M, Sandro C, Rita C, Jonas B, Jesús F, María F, Kristina F, Barbara 

F, Sixto G, Rodrigo M, José G, Ulf H, Michael K, Mark L, Pedro S, Christoph S, Ricardo 

T, Klaus W. 2018. Dynamical and statistical downscaling of a global seasonal hindcast in 

eastern Africa. Clim. Servi. 9: 72-85. 

Pai DS, Sridhar L, Rajeevan M, Sreejith OP, Satbhai NS, Mukhopadhyay B. 2014. Development 

of a new high spatial resolution (0.25° × 0.25°) long period (1901-2010) daily gridded 

rainfall data set over India and its comparison with existing data sets over the region. 

Mausam 65: 1–8. 

Perez P, Reyes J. 2001. Prediction of particulate air pollution using neural techniques. Neural 

Computing and Application 10: 165-171.  

Ramírez MC, N. J. Ferreira, and H. F. C. Velho, 2006: Linear and nonlinear statistical 

downscaling for rainfall forecasting over southeastern Brazil. Wea. Forecasting, 21, 969–

989. 

Sachindra DA, Huang F, Barton AF, Perera BJC. 2012. Issues associated with statistical 

downscaling of general circulation model outputs: a discussion. In Proceedings of 

Practical Responses to Climate Change National Conference. Canberra, Australia, 1–3 

May 2012. 

Sachindra DA, Huang F, Barton A, Perera BJ. 2014a. Statistical downscaling of general 

circulation model outputs to precipitation—part 1: Calibration and validation. Int. J. 

Climatol. 34: 3264-3281.  

This article is protected by copyright. All rights reserved.

https://doi.org/10.1007/s00704-018-2421-9


A
cc

ep
te

d
 A

rt
ic

le
Sachindra DA, Huang F, Barton A, Perera BJ. 2014b. Statistical downscaling of general 

circulation model outputs to precipitation—part 2: bias‐correction and future projections. 

Int. J. Climatol. 34: 3282-3303.  

Saha S, Moorthi S, Wu X, Wang J, Nadiga S, Tripp P, Behringer D, HouY-T, Chuang H-y, Iredell 

M. 2014. The NCEP climate forecast system version 2. J. Clim. 27(6): 2185–2208. 

Schmidli J, Goodess CM, Frei C, Haylock MR, Hundecha Y, Ribalaygua J, Schmith T. 2007. 

Statistical and dynamical downscaling of precipitation: An evaluation and comparison of 

scenarios for the European Alps. J. Geophys. Res. 112: D04105, doi: 10.1029/ 

2005JD007026. 

Shukla J. and Coauthors, 2000. Dynamical seasonal prediction. Bull. Amer. Meteor. Soc. 81: 

2593–2606. 

Singh A, Kulkarni MA, Mohanty UC, Kar SC, Robertson AW, Mishra G. 2012. Prediction of 

Indian summer monsoon rainfall (ISMR) using canonical correlation analysis of global 

circulation model products. Met. Appl. 19: 179–188.  

Sinha P, Mohanty UC, Kar SC, Dash SK, Robertson A, Tippett M. 2013a. Seasonal Prediction of 

the Indian Summer Monsoon Rainfall using Canonical Correlation Analysis of the 

NCMRWF Global Model Products. Int. J. Clim. 33: 1601–1614. 

Sinha P, UC Mohanty, SC Kar, SK Dash, Kumari S. 2013b. Sensitivity of the GCM driven 

summer monsoon simulations to cumulus parameterization schemes in nested RegCM3. 

Theo. and Appl. Climatol. 112 (1-2): 285-306. 

Smith TM, Reynolds RW, Thomas CP, Lawrimore J. 2008. Improvements to NOAA's Historical 

Merged Land-Ocean Surface Temperature Analysis (1880-2006). J. Clim. 21: 2283-2296. 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d
 A

rt
ic

le
Sorland SL, Schar C, Luthi D, Kjellström E. 2018. Bias patterns and climate change signals in 

GCM-RCM model chains. Environ. Res. Lett. 13:074017. 

Su H, Xiong Z, Yan X, Dai X, Wei W. 2017. Comparison of monthly rainfall generated from 

dynamical and statistical downscaling methods: a case study of the Heihe River Basin in 

China. Theor. Appl. Climatol. 129: 437-444. 

Taylor KE, Stouffer RJ, Meehl GA. An overview of CMIP5 and the experiment design. 2012. 

Bull. Am. Meteor. Soc. 9: 485–498. 

Tiwari PR, Kar SC, Mohanty UC, Kumari S, Sinha P, Nair A, Dey S. 2014. Skill of precipitation 

prediction with GCMs over north India during winter seasons. Int. J. Climatol. 34: 3440-

3455.  

Tiwari PR, Kar SC, Mohanty UC, Dey S, Kumari S, Sinha P. 2016a. Seasonal prediction skill of 

winter temperature over North India. Theo. and Appl. Climatol. 124 (1-2): 15-29. 

Tiwari PR, Kar SC, Mohanty UC, Dey S, Sinha P, Raju PVS, Shekhar MS. 2016b. On the 

dynamical downscaling and bias correction of seasonal-scale winter precipitation 

predictions over North India. Q. J. R. Meteorol. Soc. 142: 2398–2410. 

Tiwari PR, Kar SC, Mohanty UC, Dey S, Sinha P, Shekhar MS. 2017. Sensitivity of the 

Himalayan orography representation in simulation of winter precipitation using Regional 

Climate Model (RegCM) nested in a GCM. Clim. Dyn. doi:10.1007/s00382-017-3567-3. 

Trigo RM, Palutikof JP. 2001. Precipitation scenarios over Iberia: A comparison between direct 

GCM output and different downscaling techniques. J. Clim.14: 4422–4446,  

Wang B, Ding Q, Fu X, Kang I-S, Jin K, Shukla J, Doblas-Reyes F. 2005. Fundamental challenge 

in simulation and prediction of summer monsoon rainfall. Geophys. Res. Lett. 32: L15711, 

doi:10.1029/2005GL022734. 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d
 A

rt
ic

le
Wang B, Lee JY, Kang IS, Shukla J, Park CK, Kumar A, Schemm J, Cocke S, Kug JS, Luo JJ, 

Zhou T, Wang B, Fu X, Yun WT, Alves O, Jin EK, Kinter J, Kirtman B, Krishnamurti TN, 

Lau N, Lau W, Liu P, Pegion P, Rosati T, Schubert S, Stern W, Suarez M, Yamagata T. 

2009. Advance and prospectus of seasonal prediction: assessment of the APCC/CliPAS 14-

model ensemble retrospective seasonal prediction (1980–2004). Clim. Dyn. 33: 93–117.  

Wilby RL, Charles SP, Zorita E, Timbal B, Whetton P, Mearns LO. 2004. Guidelines for use of 

climate scenarios developed from statistical downscaling methods. Tech. Report, Data 

Distribution Centre of the IPCC. 

Wilks DS. 1995. Statistical Methods in the Atmospheric Sciences. Academic Press: San Diego, 

CA; 467 pp. 

Wilks DS. 2006. Statistical methods in atmospheric sciences. Elsevier Inc. Second Edition. 

Willmott CJ. 1982. Some comments on the evaluation of model performance. Bull. Am. Meteorol. 

Soc. 63: 1309 –1313. 

 

 

 

 

 

 

 

 

 

 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d
 A

rt
ic

le
List of Figures 

Figure 1. Hovmoller diagram (longitudinal mean) of precipitation (in mm/day) of each year      

form (a) observation (b) T80 model simulations and (c) bias. 

Figure 2. Spatial average of DJF precipitation anomaly over NI for observed (black line) and 

model simulations (red line denotes ensemble mean, red closed diamonds denote 

individual ensemble members respectively). 

Figure 3.Statistical analysis between observed and T80 model DJF precipitation (model 

precipitation is interpolated in observed grid) for the period 1982-2007 shown (a) for 

Correlation Coefficient and (b) for normalized mean squared error (mm/day). 

Figure 4. Anomaly correlation between wintertime (DJF) precipitation over NI and different 

meteorological parameters (surface as well as upper air) obtained from the observation 

vs T80 model output for the period 1982–2007. Only values significant at the 95% level 

are plotted. 

Figure 5. Spatial domains of various predictors used in MOS approaches. 

Figure 6. Anomaly correlation coefficient skill of Model Output Statistics (MOS)-corrected 

hindcasts (1982–2006) using various T80 model predictors over the three domains in 

Fig. 5: (a) precipitation, domain 1; (b) meridional wind at 200 hPa, domain 1; (c) zonal 

wind at 850 hPa, domain 2; (d) meridional wind at 850 hPa, domain 2 (e) zonal wind at 

200 hPa, domain 2 (f) temperature at 200 hPa, domain 2; (g) zonal wind at 850 hPa, 

domain 3; (h) zonal wind at 200 hPa, domain 3; (i) composite of all predictors forecast. 
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Figure 7. Prediction yields for T80, bias corrected T80 (T80_MBR & T80_QM), CCA, bias 

corrected CCA (CCA_MBR & CCA_QM), RegCM and bias corrected RegCM 

(RegCM_MBR & RegCM_QM) for different categories of percentage error. 

 Figure 8. Area average precipitation percentage departure (%) for T80 (in grey bars), QM based 

bias correction method applied on T80 (T80_QM, in cyan bar), CCA  based statistical 

downscaling (in coral bars), QM based bias correction method applied on CCA 

(CCA_QM, in dark orchid bar), dynamical downscaling based  RegCM (RCM, in sky-

blue bar),  QM based bias corrected method for downscaled RCM (in green bars) and 

the observed departure (in black bars) for years (a) 2008 and (b) 2009 respectively. 
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RegCM_QM) during 1982-2007. 

 Table 2. Seasonal mean precipitation over seventeen (17) stations obtained from SASE 

observation, T80, CCA based statistical downscaling, T80 driven RegCM (RCM) and 

bias corrected RegCM (QM) for composite wet minus dry years. The shaded values are 

closer to the observations. The model data is bi-linearly interpolated to the station 

locations. 
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                Table 1. Skill scores of the T80, bias corrected T80 (T80_MBR & T80_QM), CCA, bias 

corrected CCA (CCA_MBR & CCA_QM), RegCM and bias corrected RegCM 

(RegCM_MBR & RegCM_QM) during 1982-2007. 

 

Skill 

Metric

s 

T80 T80_MBR T80_QM CCA CCA_

MBR 

CCA_Q

M 

RegCM RegCM_M

BR 

RegCM_Q

M 

Multipl

icative 

Bias 

0.49 0.51 0.54 0.67 0.69 0.76 0.58 0.72 0.81 

Kendal

l’s tau 

0.21 0.24 0.29 0.33 0.36 0.41 0.30 0.37 0.45 

WIOA 0.36 0.39 0.44 0.55 0.57 0.63 0.51 0.64 0.76 
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Table 2. Seasonal mean precipitation over seventeen (17) stations obtained from 

SASE observation, T80, CCA based statistical downscaling, T80 driven 

RegCM (RegCM) and bias corrected RegCM (QM) for composite wet 

minus dry years. The shaded values are closer to the observations. The 

model data is bi-linearly interpolated to the station locations. 

    Station Composite (wet minus dry) 

SASE T80 CCA RegCM RegCM_QM 

1. Bahadur  1.41 1.76 1.32 -0.33 1.35 

2. Banihal  4.70 3.11 3.58 4.42 2.31 

3. Bhang  2.08 -0.51 1.91 3.62 0.97 

4. Dhundi  2.53 -0.23 2.96 4.05 2.91 

5. Dras  5.06 2.21 4.63 5.30 5.81 

6. Gulmarg  3.14 -0.33 2.81 3.23 3.19 

7. H-Taj  5.61 3.05 5.92 6.37 5.63 

8.Kanzalwan  6.05 2.91 6.25 4.12 6.16 

9. Kumar  1.46 1.41 4.75 2.73 2.18 

10. Neeru  2.32 1.84 2.26 -1.38 2.25 

11. Patsio  1.58 -0.07 1.45 -0.41 1.47 

12. Pharki  4.32 1.41 3.83 4.73 4.24 

13. Solang  5.31 3.31 5.27 4.29 3.91 

14. Stg-II  6.83 3.61 4.58 3.52 6.54 

15. Z-Gali  3.31 -0.23 3.85 4.63 3.27 

16. Gugaldhar  3.52 -0.16 -0.50 -0.49 -0.48 

17. Dawar  1.71 -0.17 -0.06 -0.32 1.74 
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