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Abstract

Background: While RNA-sequencing (RNA-seq) is becoming a powerful technology in transcriptome profiling, one

significant shortcoming of the first-generation RNA-seq protocol is that it does not retain the strand specificity of

origin for each transcript. Without strand information it is difficult and sometimes impossible to accurately quantify

gene expression levels for genes with overlapping genomic loci that are transcribed from opposite strands. It has

recently become possible to retain the strand information by modifying the RNA-seq protocol, known as strand-specific

or stranded RNA-seq. Here, we evaluated the advantages of stranded RNA-seq in transcriptome profiling of whole blood

RNA samples compared with non-stranded RNA-seq, and investigated the influence of gene overlaps on gene

expression profiling results based on practical RNA-seq datasets and also from a theoretical perspective.

Results: Our results demonstrated a substantial impact of stranded RNA-seq on transcriptome profiling and gene

expression measurements. As many as 1751 genes in Gencode Release 19 were identified to be differentially expressed

when comparing stranded and non-stranded RNA-seq whole blood samples. Antisense and pseudogenes

were significantly enriched in differential expression analyses. Because stranded RNA-seq retains strand information of a

read, we can resolve read ambiguity in overlapping genes transcribed from opposite strands, which provides a more

accurate quantification of gene expression levels compared with traditional non-stranded RNA-seq. In the human

genome, it is not uncommon to find genomic loci where both strands encode distinct genes. Among the over 57,800

annotated genes in Gencode release 19, there are an estimated 19 % (about 11,000) of overlapping genes transcribed

from the opposite strands. Based on our whole blood mRNA-seq datasets, the fraction of overlapping nucleotide bases

on the same and opposite strands were estimated at 2.94 % and 3.1 %, respectively. The corresponding theoretical

estimations are 3 % and 3.6 %, well in agreement with our own findings.

Conclusions: Stranded RNA-seq provides a more accurate estimate of transcript expression compared with

non-stranded RNA-seq, and is therefore the recommended RNA-seq approach for future mRNA-seq studies.
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Background
RNA-sequencing (RNA-seq) is a next-generation se-

quencing technique that allows an in-depth look into

the transcriptome [1–3]. Compared with microarray-

based profiling, RNA-seq can detect the expression of

low abundance transcripts and subtle changes under differ-

ent conditions. RNA-seq has a wider dynamic range and

avoids some of the technical limitations in a micro-

array experiment such as varying probe performance,

cross-hybridization, limited dynamic range of individual

probes, and nonspecific hybridization [4, 5]. RNA-seq is

not limited to known transcripts and thus delivers unbiased

and unprecedented information about the transcriptome

and gene expression levels. With decreasing sequencing

cost, RNA-seq is becoming an attractive approach to pro-

file gene expression levels or specific transcript abundance,

and to analyze differential gene expression between bio-

logical conditions.

While RNA-seq is emerging as a powerful technology

in transcriptome profiling, one significant shortcoming

of the standard RNA-seq protocol is that it loses the

strand of origin information for each transcript. Synthe-

sis of randomly primed double-stranded cDNA followed

by the addition of adaptors for next-generation sequen-

cing leads to the loss of information on which strand the

original mRNA template is coming from, and without

that information it becomes difficult to accurately deter-

mine gene expression from overlapping genes [6], i.e., those

genes that have at least partially overlapping genomic

coordinates, but are transcribed from opposite strands.

Knowing the strand information of the cDNA is essential

to determine from which of the overlapping genes the

RNA transcript originates.

It is now possible to retain the information pertaining

to strand origin by modifying the standard RNA-seq

protocol; this is known as strand specific RNA-seq, or

stranded RNA-seq. Recently, multiple protocols for

stranded RNA-seq have been published [7–10]. Seven

protocols were comprehensively evaluated by researchers

at the Broad Institute [10] and the authors found marked

differences in strand specificity, library complexity,

evenness and continuity of coverage, agreement with

known annotations and accuracy for expression profiling.

Weighing each method’s performance and ease of use, the

authors identified dUTP second-strand marking [7] as one

of the leading protocols (Fig. 1). The dUTP second-strand

marking method, or dUTP method for short [7], uses

dUTPs instead of dTTPs during the synthesis of the

second strand in the cDNA synthesis step of sequen-

cing library preparation. Prior to polymerase chain re-

action (PCR) amplification, the second strand, harboring

uracils, is degraded using uracil-N-glycosylase. With the

second strand degraded, only the first strand is amplified in

the subsequent PCR. This protocol was evaluated as super-

ior in terms of both its simplicity and the data quality [10].

According to the protocol in Fig. 1, because the sequence

reads generated from the dUTP method are reverse com-

plementary to the originating mRNA transcripts, the strand

information is retained throughout the sequencing process.

This new methodology is now emerging as a powerful

tool for transcript discovery, genome annotation, and ex-

pression profiling [11, 12]. Previous reports demonstrated

Fig. 1 Non-stranded versus stranded RNA-seq protocol. The stranded protocol differs from the non-stranded protocol in two ways. First, during

cDNA synthesis, the second-strand synthesis continues as normal except the nucleotide mix includes dUTPs instead of dTTPs. Second, after library

preparation, a second-strand digestion step is added. This step ensures that only the first strand survives the subsequent PCR amplification step

and hence the strand information of the libraries
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that data from stranded libraries are more reliable than

data from non-stranded libraries and can correctly evalu-

ate the expression of both antisense RNA and other over-

lapping genes [11]. Maintaining strand orientation also

allows identification of antisense expression, an important

mediator of gene regulation. The ability to capture the

relative abundance of both sense and antisense expression

provides insight into regulatory interactions that might

otherwise be missed [12]. With the ability to unlock

new information on global gene expression, stranded

RNA-seq holds the key to a deeper understanding of the

transcriptome.

To allow for efficient transcript/gene detection, highly

abundant ribosomal RNAs (rRNAs) must be removed from

total RNA before sequencing [13]. One standard solution is

to enrich for the polyadenylated (polyA) tail attached RNA

transcripts (so-called mRNA-Seq) with oligo (dT) primers.

Another approach removes rRNA through hybridization

capture of rRNA followed by binding to magnetic beads for

subtraction. For most transcriptome studies, mRNA-seq is

commonly used, as the sequencing depth required is lower

when focusing only on the protein coding fraction of the

transcriptome. In this paper, we performed a side-by-side

comparison of stranded and non-stranded mRNA-seq by

sequencing the same samples using both protocols. We in-

vestigated and characterized gene overlap in our RNA-seq

dataset, as well as performed theoretical analysis of the

number of overlapping genes based on genome annotation

in Gencode Release 19 [14]. We demonstrate that stranded

RNA-seq improves the accuracy of gene quantification,

and this is especially critical for accurate gene expression

quantification of antisense genes.

Results and discussion
The sample preparation, sequencing, and data analysis are

detailed in the Methods section. In brief, we collected

blood from five healthy donors into Paxgene RNA tubes

and pooled all samples. Four replicate samples (labeled as

PFE1, PFE2, PFE3, and PFE4) were sequenced using both

stranded (denoted as S) and non-stranded (denoted as NS)

protocols. We note that these samples are considered

technical replicates and therefore represent an ideal

scenario with minimal variation. In this paper, we use the

name convention “Sample_Protocol” to label each RNA-

seq dataset. For instance, PFE1_S represents the sample

PFE1 sequenced by stranded RNA-seq. For RNA-seq data

analysis, we implemented an in-house pipeline in the Pfi-

zer High Performance Computing environment as shown

in Fig. 2. Raw sequence reads were mapped to human

genome hg19 by STAR [15], and the uniquely mapped

reads were counted by featureCounts [16] in the Subread

package. Multiple mapped reads were excluded from

counting, and then differential analysis was performed

by the R packages edgeR [17] and Limma/voom [18].

Gene quantification and differential analysis results are

dependent upon the initial choice of gene annotation

[19–21]. In the previous paper [21], we evaluated the

impact of different annotations on RNA-seq data ana-

lysis, including RefGene [22], UCSC [23], and Ensembl

[24]. Gencode annotation [14] is based upon Ensembl

but with improved coverage and accuracy, and it is used

by the ENCODE consortium as well as many other

projects (e.g., 1000 Genomes) as the reference gene set. In

this evaluation, we therefore also chose the Gencode

annotation, and the conclusions in this paper should

largely (or for the most part) hold true when other gene

annotations are used (data not shown).

Read mapping and counting

Each replicate sample was sequenced by both non-

stranded and stranded RNA-seq. The summaries for

sequencing depth, mapping, and counting are shown in

Fig. 3 and listed in Additional file 1: Table S1. For each

sequenced library, there are over 60M paired-end reads

(Fig. 3a) available for alignment and gene quantification.

Overall, about 87–91 % of reads uniquely map to gen-

omic regions, while approximately 3.5 % of reads map

equally well to multiple locations. A remainder of ~5–

8 % of reads fails to map to any locus in the human gen-

ome (Fig. 3b). In principle, non-stranded and stranded

RNA-seq should have comparable mapping statistics for

the same sample. However, as shown in Fig. 3b, the per-

centage of uniquely mapped reads in non-stranded

RNA-seq is slightly higher than in stranded RNA-seq.

Fig. 2 Workflow for RNA-seq data analysis
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After further investigation, we found that the average

fragment size in non-stranded libraries is ~30 bp longer

than in stranded sequencing. This may be caused by spe-

cial treatment and the PCR enzyme in Illumina’s kit. As

a result, in stranded sequencing, there are an estimated

4 % of fragments whose sizes are even shorter than the

sequence read length used in this study (i.e., 100 bp).

Therefore, sequence reads derived from short fragments

end up contaminated with nucleotide bases from adapters

and thus might fail to map to the genome because of too

many mismatches.

As shown in Fig. 3c, the majority of uniquely mapped

reads are counted towards genes in both stranded and

non-stranded RNA-seq as expected for mRNA-seq.

About 7–8 % of mapped reads do not match to any gene

and thus are excluded from gene quantification. The am-

biguous reads in Fig. 3c are those reads mapped to over-

lapping gene regions, either on the same strand or from

the opposite strands. To highlight the genomic loci with

genes overlapping on the two opposite strands, the read

ambiguity in Fig. 3c is zoomed out and shown in Fig. 3d.

The read ambiguity in stranded RNA-seq arises only from

overlapping genes transcribed from the same strand. In

contrast, for non-stranded RNA-seq, the ambiguity arises

from both the overlapping genes on the same strand and

also from the opposite strands. For the four stranded

Fig. 3 Metrics for RNA-seq. a) The sequencing library size; b) the mapping summaries for sequence reads; c) the counting summaries for uniquely

mapped reads; d) the ambiguous reads arising from gene overlapping; on average, the percentage of ambiguous reads drops approximately

3.1 % from non-stranded to stranded RNA-seq, and this drop roughly represents the overlapping arising from opposite strands; e) the correlation

for gene expression profile among those eight samples; the samples are clearly clustered by sequencing protocol; f) the boxplot of

gene expression
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RNA-seq samples, the read ambiguity is an average of

2.94 % (Fig. 3d and Additional file 1: Table S1), while for

the four non-stranded RNA-seq samples it is 6.1 % (Fig. 3d

and Additional file 1: Table S1). Compared with non-

stranded RNA-seq, the percentage of ambiguous reads in

stranded RNA-seq drops by approximately 3.1 %, and this

drop roughly represents the magnitude of gene overlap

from the two opposite strands. As we demonstrate below,

the gene overlap from our RNA-seq dataset is also con-

sistent with our theoretical estimation.

The correlation for gene expression levels among the

eight samples studied is plotted in Fig. 3e. The samples

are clearly clustered by sequencing protocol, and while

the correlation for samples prepared with the same proto-

col is nearly 1, the correlation for samples sequenced by

the two different protocols is around 0.93. The correlation

plot in Fig. 3e indicates underlying gene expression profile

differences between the stranded and non-stranded RNA-

seq methods. The distribution of gene expression in each

sample is shown in the boxplot in Fig. 3d (note the y-axis

is log2(RPKM)). Overall, the distribution across samples is

very similar. The 1st quartile, median, and 3rd quartile are

approximately 0.77 RPKM, 3.0 RPKM, and 9.6 RPKM, re-

spectively. The gene expression distribution plot in Fig. 3d

is a good reference to evaluate whether gene expression is

relatively low, medium, or high.

Theoretical estimate of frequency and magnitude of gene

overlap

Every gene in Gencode Release 19 has genomic coordi-

nates, and the frequency of overlapping genes can thus be

calculated (Fig. 4 and Additional file 1: Tables S2 and S3).

There are more than 57,800 annotated genes in Gencode

Release 19. Figure 4a shows the overlaps at the gene level.

For all chromosomes, the frequency of opposite strand

overlap is greater than the same strand overlap in terms of

the number of overlapping genes. On average, approxi-

mately 9 % of genes overlap at the same strand, while for

the overlap from opposite strands, the overlap increases to

approximately 19 %. Stranded RNA-seq can resolve the

Fig. 4 Estimated gene overlaps in Gencode Release 19. a) The same strand and opposite strand overlaps at the gene level; about 19 % of genes

overlap with one or more genes at the opposite strand; b) the overlaps at the nucleotide base level. On average, the estimated overlapping at

the same and opposite strands are 3 % and 3.6 %, respectively, and agree well with the practical RNA-seq dataset shown in Fig. 3d
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read ambiguity in overlapping genes that are transcribed

from opposite strands. Accordingly, 19 % of genes (i.e.,

11,000 genes) in Gencode Release 19 are expected to have

more accurate gene quantification in stranded RNA-seq

than in non-stranded RNA-seq. As more and more novel

genes are discovered in the genome, it is expected that

additional genes will have overlapping genomic loci.

Genomic loci with longer overlapping genes will produce

more transcript reads that cannot be uniquely assigned to

either strand when using non-stranded RNA-seq. To fur-

ther estimate the impact of overlap on gene quantification,

we quantified the overlaps at the nucleotide level (Fig. 4b).

On average, the estimated overlaps at the same and oppos-

ite strands are 3 % and 3.6 %, respectively, and this agrees

very well with our practical RNA-seq data. According to

our stranded RNA-seq dataset, the read ambiguity in over-

lapping genes at the same strand is 2.94 % (Fig. 3d and

Additional file 1: Table S1), which is very close to the the-

oretical estimation (Fig. 4b and Additional file 1: Table S3).

In Fig. 3d, the opposite strand overlap in our actual RNA-

seq dataset is 3.1 %, slightly lower than the theoretical

3.6 % (Fig. 4b). It should be pointed out that the theoretical

estimation is based upon the assumption that all genes in

the Gencode annotation database are uniformly expressed.

In an actual RNA sample, the expression level varies

from gene to gene, including genes that are not expressed

at all. In addition, with our chosen sequencing protocol, a

transcript is not picked up if it does not have a polyA tail

at the 3’ end. Still, the theoretical estimation in Fig. 4b

explains very well the counting summary for ambiguous

reads in Fig. 3d and Additional file 1: Table S1. In practice,

the overlap in actual samples may be higher or lower than

our theoretical estimation depending upon the gene ex-

pression profile in a sample.

We also quantified the degree of gene overlap by ana-

lyzing all pairs of overlapping genes. First, we identified

the common or overlapping exon regions between any

two overlapping genes. Then, the shorter gene was

selected and the ratio (i.e., the overlapping percentage)

was calculated by dividing the length of overlapping

exons by the exon length of the shorter gene. A total of

6582 overlapping gene pairs were identified from oppos-

ite strands and the number was 3718 at the same strand.

The histograms and cumulative distributions of overlaps

are shown in Fig. 5. The histograms (Fig. 5a and b) indi-

cate the extent of overlap ranges from partial to complete.

There are 582 genes that are 100 % contained within other

genes at the same strand, while 654 genes are completely

contained within the same genomic locus of another gene

from the opposite strand. The cumulative distributions in

Fig. 5c and 5d describe the probability of having an over-

lapping gene pair with an overlap less than or equal to a

given threshold. For the same strand overlap, the medium

overlap is approximately 47.4 %, while for the opposite

Fig. 5 Histograms and cumulative distributions for all pairs of overlapping genes. The ratio (i.e., the overlapping percentage) for each pair of

genes is calculated by dividing the length of overlapping exons by the exon length of the shorter gene of the pair
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strand overlap, its medium is approximately 18.7 %. In

general, the magnitude of overlap for the same strand is

greater than the overlap from the opposite strands.

Differential analysis

The scatter plots of the gene expression profiles for the

four replicate samples are shown in Fig. 6. For compari-

son, the all-against-all scatter plots for stranded and

non-stranded samples are shown in Additional file 1:

Figures S1 and S2, respectively. For technical replicates

sequenced by the same protocol, all data points are

arrayed clearly along the diagonal lines with a relatively

large variation only for genes with low expression. How-

ever, when comparing the same samples sequenced by

the two different protocols, there are many genes that

are far away from the diagonal lines along the length of

the axis in Fig. 6. For samples PFE1, PFE2, PFE3 and

PFE4, the scatterplot patterns are very consistent as ex-

pected from technical replicates. As observed in Fig. 6,

for a large number of genes, the sequencing protocol has

a dramatic impact on the final gene quantification

results. It is not unusual that there are genes whose

expression levels are high in one protocol, but very low

or even zero in the other protocol.

To identify genes with large expression differences be-

tween stranded and non-stranded RNA-seq, we performed

a differential expression analysis using R packages edgeR

[17] and Limma/voom [18]. The raw read counts generated

by featureCounts [16] were normalized by TMM (trimmed

mean of M-values) in edgeR first, followed by standard dif-

ferential analysis. The statistical test results are summarized

in Fig. 7. Each point in the plot corresponds to a gene. The

x-axis represents the log2 fold change of stranded versus

non-stranded, while the y-axis (-log10(Adjusted PValue))

corresponds to the significance of statistical test. A total of

1751 significant genes were identified to be differentially

expressed (DE) and are colored in red in Fig. 7. The criteria

for significance are as follows: (1) an adjusted p value <0.05

(the horizontal dotted line in Fig. 7); and (2) a fold change

greater than 1.5 (the two vertical dotted lines in Fig. 7). Of

those significant genes, 941 genes (top right corner) have

higher expression in stranded than in non-stranded

sequencing, while 841 genes (top left corner) are down

regulated, having lower expression in stranded than in

non-stranded RNA-seq. The large number of differential

expression genes in Fig. 7, together with the scatter plots in

Fig. 6 and the correlation plot in Fig. 3e, clearly demon-

strates the substantial impact of sequencing protocols on

gene quantification.

A gene is considered to be expressed if its maximal

expression across all eight samples is greater than 1 CPM

(count per million), and accordingly, a total of 16,443

expressed genes survived this filtering. All genes that have

appreciable expression and those 1751 DE genes in Fig. 7

can be further broken down into the gene categories

shown in Table 1. The detailed description of each gene

category from Gencode annotation was described previ-

ously [25]. As shown in Table 1 and Additional file 1:

Figure S3, over 80 % of expressed genes are protein cod-

ing, while both antisense genes and pseudogenes account

for roughly 5 % each. However, for DE genes, the percent

of protein coding drops to 46 %, but both the antisense

and pseudogene categories increase to ~20 % each. Thus,

the differential expression we observe is associated with

gene type. Globally, 10.65 % of genes are differentially

expressed when comparing the stranded and the non-

Fig. 6 Scatter plots of gene expression profiles between stranded and non-stranded RNA-seq. For samples PFE1, PFE2, PFE3, and PFE4, the scattering

patterns are consistent. While the majority of genes are arrayed along the diagonal lines, there are still many genes whose expression levels were

dramatically impacted by sequencing protocols. The x- and y-axis represent Log2(RPKM)
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stranded RNA-seq data. However, for antisense genes and

pseudogenes, the ratios jump to 39 % and 43 %, respect-

ively (Table 1 and Fig. 8a). To test whether the apparent

enrichment of antisense genes and pseudogenes is statis-

tically significant, the built-in binomial proportions test

prop.test in R was used. The calculated p values are smaller

than 2.2E-16 for both gene categories, indicating the

enrichment is not by chance.

Next, we explored the association between differential

analysis results and sequencing protocol. Every gene (dot)

in Fig. 7 is either a DE (colored in red) or Non_DE (non-

differential expression, colored in black) gene, and these

genes are then further classified into one of two classes

(i.e., “No” and “Yes”) based upon whether it overlaps with

one or more genes transcribed from opposite strands. The

overlap for each gene type is summarized in the last four

columns in Table 1. The proportion of gene overlaps for

all genes, DE genes, and Non_DE genes are shown in

Fig. 8b. For protein coding, antisense and lincRNA gene

types, the overlap is significantly higher in DE genes than

in Non_DE genes. For instance, 87 % of antisense DE

genes are overlapping genes, while only 60 % of antisense

genes are overlapping genes in the Non_DE genes. For

pseudogenes, no apparent association is observed, and

confirmed by statistical test. To accept or reject the null

hypothesis that differential expression and gene overlap

are independent, the chi-square test was performed for

the top four gene categories in Table 1. A contingency

table was first prepared from the counts in the last four

columns in Table 1, and then the chisq.test R function was

called to evaluate the significance of the test. All tests re-

port a P value lower than 2.2E-16, except for pseudogene

(P value = 0.96).

As observed in Fig. 8, antisense genes are enriched

substantially in differential expression, and this differen-

tial expression is strongly associated with gene overlap.

The overwhelming majority of antisense DE genes show

higher expression in stranded RNA-seq, and their ex-

pressions in non-stranded RNA-seq are quite often zero

or very low. Antisense transcripts can act as regulatory

elements in the regulation of gene expression [12], and a

number of antisense transcripts are related to various

human disorders [26]. A proper elucidation of the anti-

sense transcriptome and its quantification will reveal

their novel function in regulation of gene expression.

Based on these observations, we have shown that the

stranded RNA-seq is more effective than non-stranded

Fig. 7 Differential analysis results for the comparison between stranded

and non-stranded RNA-seq. Every point in the plot corresponds to a

gene. The x-axis represents the log2 fold change of stranded over

non-stranded, while the y-axis (-log10 (AdjustedPValue)) corresponds to

the significance of a statistical test. All significant genes are

colored in red. The criteria for significance are as follows: (1) an

adjusted p value <0.05 (the horizontal dotted line); and (2) a fold

change greater than 1.5 (the two vertical dotted lines)

Table 1 The association between differential expression and gene overlapping is gene-type dependent

Gene_type Differential analysis Overlapping

All genes DE genes Ratioa

(%)
DE genes Non_DE genes

# % # % No Yes No Yes

Protein_coding 13219 80.39 810 46.26 6.13 226 584 8082 4327

Antisense 924 5.62 363 20.73 39.29 48 315 225 336

Pseudogene 845 5.14 365 20.85 43.20 304 61 398 82

LincRNA 764 4.65 100 5.71 13.09 43 57 571 93

Processed_transcript 182 1.11 36 2.06 19.78 7 29 76 70

Sense_intronic 113 0.69 19 1.09 16.81 12 7 90 4

Other 396 2.41 58 3.31 14.65 53 5 325 13

Total 16443 100 1751 100 10.65 693 1058 9767 4925

aNote: Ratio = (# of DE genes)/(# of All expressed genes). It represents what percentage of genes is differentially expressed. For a gene in each category, it is

either a DE or Non_DE (not differential expression) gene, and then it is further broken into two classes based upon whether it overlaps with one or more genes

transcribed from opposite strands. Therefore, the sum of the last four columns is equal to the total number of genes in that category
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RNA-seq in properly quantifying expression for anti-

sense genes.

The ENCODE project recently performed a survey of

publicly available expression data to identify transcribed

pseudogenes and found over 800 pseudogenes with strong

evidence of transcription [27].

Recent studies have shown that some pseudogenes are

transcribed and contribute to cancer when dysregulated

[28]. In particular, pseudogene transcripts can function

as competing endogenous RNAs [29]. However, reliable

quantification of pseudogene expression remains a chal-

lenging problem for a number of reasons. First, because

parent genes and pseudogenes are highly similar in

nucleotide sequence, short RNA-seq reads derived from

one may align equally well to others. Such reads are fun-

damentally ambiguous in terms of their origin. Second,

some reads may have nearly identical alignment to loca-

tions in the gene and pseudogene, and their mapping is

often determined by the location with the least error in

alignment. This strategy is unreliable and can result in

an incorrect assignment of the read [29]. The enrich-

ment of pseudogenes in differential analysis in Fig. 8a is

hard to explain because the gene overlap from the op-

posite strand seems to not be the cause (see Fig. 8b). Of

those 365 DE pseudogenes, 90 genes have higher expres-

sion in non-stranded RNA-seq, while 275 have higher

expression in stranded RNA-seq. Usually the expression

level for pseudogenes is not high. For those DE pseudo-

genes, the average expression is 3.9 RPKM across all eight

samples, while for protein coding genes, the average is as

high as 31.6 RPKM. We speculated the enrichment for

pseudogenes might arise from (1) the read mapping uncer-

tainty in pseudogenes, (2) the lower expression levels for

pseudogenes, and (3) the additional bias introduced by

sequencing protocols. We checked the read mapping pro-

files for some pseudogenes (unpublished results), and

found that quite often those reads that mapped to pseudo-

genes have mismatches. Because of the intrinsic uncer-

tainty in read mapping, we should be cautious about the

gene quantification and differential analysis results for

pseudogenes.

Exemplary differential expression genes

For a given gene, if stranded and non-stranded RNA-seq

report different expression levels, which one is more

reliable? In principle, the stranded RNA-seq should be

more accurate because additional information (i.e., the

read direction) is used in gene quantification, and the

ambiguous reads in overlapping genes transcribed from

opposite strands are resolved and counted. Below, we

selected a few example genes (i.e., IL24, ICAM4, and

GAPDH) to demonstrate this point. The expressions for

these three genes are shown in bar charts in Fig. 9.

Interleukin (IL) 24 is a secreted protein of the IL10

family, and its expression has been identified in certain

cell types. In vivo, IL24 is predominantly expressed by

skin tissue cells during inflammatory conditions, such as

psoriasis [30]. In non-stranded RNA-seq, this gene has

an expression level as high as approximately 22 RPKM

in whole blood, but stranded RNA-seq reports no

expression at all. The read mapping results in PFE1 are

shown in Fig. 10. All genes, transcripts, and sequence

reads in Fig. 10 are colored in blue if they are in the “+”

strand, and colored in green if in the “−“ strand. Because

too many reads were mapped to the IL24 genomic

region, particularly at the 3′UTR end, only a portion of

mapped reads are shown in the plot. In non-stranded

RNA-seq, all reads mapped to IL24 are counted,

Fig. 8 The association between differential expression and gene overlap is gene-type dependent. a The percentage of genes that are differentially

expressed in each gene category. Antisense and pseudogene are enriched. The y-axis represents percentage. b The dependency between differential

expression and gene overlap from opposite strands. For protein coding, antisense and lincRNA gene types, the overlap is significantly higher in DE

genes than in Non_DE genes
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regardless of their originating genomic strand. IL24 is on

the “+” strand, and thus a sequence read truly originat-

ing from IL24 must be reverse complementary and

mapped to the “−“ strand. Therefore, in stranded RNA-

seq, only those reads mapped to the “−“ strand are

counted. As can be seen, nearly all reads in stranded

RNA-seq are mapped to the “+” strand (Fig. 10). As a re-

sult, those reads are not counted, clarifying why stranded

RNA-seq reports no expression for IL24. The coverage

pattern of sequence reads in Fig. 10 also does not sup-

port that they would originate from IL24 either in

stranded or non-stranded RNA-seq. The uniformity bias

Fig. 10 The mapping profiles for IL24 in Replicate PFE1. In non-stranded RNA-seq, all reads mapped to IL24 are counted regardless if they are in

the forward or reverse strands. However, in stranded RNA-seq, nearly all reads are mapped to the “+” strand and thus not counted because these

reads are not reverse complementary to IL24 in the “+” strand. However, the coverage pattern of sequence reads does not support the sequence

reads mapped to the IL24 genomic region that truly originate from this gene. All genes, transcripts, and sequence reads are colored in blue if they

are in the “+” strand and colored in green if in the “−“ strand

Fig. 9 The gene expression of IL24, ICAM4, and GAPDH in stranded and non-stranded RNA-seq
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in RNA-seq does not explain the extremely uneven cover-

age pattern observed in Fig. 10. Moreover, this cytokine is

not expected to have a high expression in whole blood

RNA-seq [30]. The quantification of IL24 expression in

non-stranded RNA-seq is thus misleading. In contrast, the

result in stranded RNA-seq is more reliable, and biologic-

ally makes sense with previous observations.

Because those reads in Fig. 10 are not derived from

IL24, an obvious question is why so many reads are

mapped to the genomic region of IL24. As we know, our

current gene annotation is neither complete nor com-

prehensive, and it is likely that such reads originate from

a novel gene at the opposite strand of IL24. We cur-

rently do not have a good explanation for these mapped

reads. However, the scenario in Fig. 10 has shown that

stranded RNA-seq is likely more powerful than non-

stranded RNA-seq in detecting potentially novel unan-

notated transcripts from regions in which there is not a

currently annotated gene.

ICAM4 (intercellular adhesion molecule 4) shows mod-

erate expression in whole blood [31]. However, non-

stranded RNA-seq reports no expression for this gene, and

the reason is revealed in Fig. 11. ICAM4 is encoded on the

“+” strand, and it has three alternative splicing transcripts.

It overlaps with another gene CTD-2369P2.8 in the “−“

strand. CTD-2369P2.8 is a manually annotated gene from

the Havana (the Human and Vertebrate Analysis and

Annotation) project, and it is longer than ICAM4. As

observed in Fig. 11, ICAM4 is 100 % contained within

CTD-2369P2.8. In non-stranded RNA-seq, a read mapped

to ICAM4 is simultaneously aligned to CTD-2369P2.8 as

well. The ambiguous reads in overlapping regions are thus

excluded from counting in FeatureCounts, and this ex-

plains the lack of expression for ICAM4 on non-stranded

RNA-seq. The ambiguous reads in overlapping genes in

Fig. 11 can be perfectly resolved using stranded RNA-seq.

By considering the read direction, all reads are assigned to

ICAM4 (but not CTD-2369P2.8), because they are all

reverse complementary to ICAM4. According to our

sequencing protocol, it is impossible for such reads to

originate from CTD-2369P2.8. The gene expression in

stranded RNA-seq also agrees with other supporting

evidence [31], and is again more reliable than in non-

stranded RNA-seq.

For the scenario in non-stranded RNA-seq in Fig. 11, it

does not help if we use a different counting algorithm such

as RSEM (RNA-Seq by Expectation-Maximization) [32].

Despite the fact that RSEM is capable of fully handling

reads that map ambiguously or fall into the gene overlap-

ping regions, it proportionally distributes ambiguous reads

according to the number of unique reads in overlapping

genes. If a gene is completely contained within another

gene, it has no unique read at all. As a consequence, zero

reads are counted to that gene. According to the theoretical

calculation above, there are a total of 582 genes completely

contained with other genes from opposite strands. In short,

the read ambiguity in non-stranded RNA-seq in Fig. 11

cannot be resolved by a purely computational approach,

and stranded RNA-seq is required in this scenario to deter-

mine correct gene expression.

GAPDH (glyceraldehyde-3-phosphate dehydrogenase) is

a well-known housekeeping gene with very high expression

Fig. 11 The mapping profiles for ICAM4 (intercellular adhesion molecule 4) in Replicate PFE1. The gene ICAM4 is on the “+” strand, and 100 % contained

within CTD-2369P2.8 in the “−“ strand. In non-stranded RNA-seq, the ambiguous reads in overlapping regions are excluded from counting, which explains

why there is no expression for ICAM4. However, the ambiguous reads can be perfectly resolved in stranded RNA-seq. By considering the read direction,

all reads can be counted to ICAM4 because they are reverse complementary to ICAM4, but not CTD-2369P2.8
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in most cell types and tissues. Compared with stranded

RNA-seq, its expression in non-stranded RNA-seq is in

fact underestimated (Fig. 9). The reason for this underesti-

mation can be easily understood when considering the

gene overlap shown in Additional file 1: Figure S3. All of

the ambiguous reads in the overlapping region originate

only from GAPDH in stranded RNA-seq, thus the expres-

sion for GAPDH in stranded RNA-seq is more accurate

than non-stranded.

Conclusions
In this paper, we performed a side-by-side comparison of

stranded and non-stranded RNA-seq, and investigated the

gene overlap both in our practical whole blood RNA-seq

dataset and from the theoretical perspective. Our study

demonstrates that stranded RNA-seq provides a more ac-

curate estimate of transcript expression compared with

non-stranded RNA-seq and is therefore the recommended

RNA-seq approach for all future mRNA-seq studies.

Methods
We used various freely available open source tools and

implemented an in-house pipeline for stranded and non-

stranded RNA-seq data analyses (Fig. 2). The details on

each step in the data generation and analyses are de-

scribed below.

Blood sample collection, RNA extraction, and globin

mRNA depletion

Peripheral venous blood samples from five healthy male

volunteers were collected in PAXgene Blood RNA tubes

(PreAnalytiX GmbH, BD Biosciences, Mississauga, ON,

Canada). Blood was pooled across subjects to create a

single pooled sample. This pooled blood was dispensed

into a set of approximately 10-mL aliquots. Total RNA

was extracted from four aliquots of pooled blood using

the PAXgene Blood RNA Kit (cat# 762164, Qiagen,

Chatsworth, CA, USA) according to the manufacturer's

protocol. The yield and quality of the isolated RNA

were assessed using a NanoDrop8000 Spectrophotom-

eter (Thermo Scientific, Wilmington, DE, USA) and

Agilent 2100 Bioanalyzer (Agilent Technologies, Santa

Clara, CA, USA), respectively. An aliquot of 1.5 mg of

each RNA was further processed with a GlobinClear kit

(cat# AM1980, Life Technologies, Carlsbad, CA, USA) to

remove globin mRNA. After globin mRNA depletion, the

quality and yield of the RNA were assessed again using an

Agilent 2100 Bioanalyzer. Six hundred nanograms of RNA

(post-GlobinClear) were divided into two 300 ng aliquots,

with one aliquot submitted to stranded RNA-seq proces-

sing and the second aliquot submitted to non-stranded

RNA-seq processing.

cDNA library construction and sequencing

For stranded RNA-seq, cDNA libraries were prepared

with a TruSeq stranded mRNA library prep Kit (cat# RS-

122-2101, Illumina, San Diego, CA , USA). For non-

stranded RNA-seq, cDNA libraries were prepared with a

TruSeq RNA sample preparation kit v2 (cat# RS-122-

2001, Illumina). The resulting eight libraries were se-

quenced on a HiSeq 2000 (Illumina) using a paired-end

run (2 × 100 bases). A minimum of 60 M reads were gen-

erated from each library. The clean raw sequence reads in

FASTQ format were analyzed using the pipeline in Fig. 2.

Mapping and counting

The human genome database and gene annotation data-

base were used to map and count sequence reads. Gencode

Release 19 was downloaded from http://www.genco-

degenes.org/releases/19.html. The reads were mapped

to the hg19 reference genome using STAR v2.4.0h

[15]. The detail parameters for the STAR run were

“–runThreadN 8 –alignSJDBoverhangMin 1 –out-

ReadsUnmapped Fastx –outFilterMismatchNoverLmax

0.05 –outFilterScoreMinOverLread 0.90 –outFilterMatchN-

minOverLread 0.90 –alignIntronMax 1000000 –outSAM-

type BAM SortedByCoordinate”. The mapping was

performed on the Pfizer High Performance Computing

cluster. The mapping summaries, such as the percentage

of reads that were uniquely mapped, multiple mapped, or

unmapped, were then collected from the log files of STAR

runs (see Results).

To count reads mapped to individual genes in Gencode,

the program featureCounts [16] was used. FeatureCounts

assigns a read to a feature (a gene) or labels it as matching

to no feature or as ambiguous if it matches more than one

feature and it cannot determine which one it is. The

parameters in featureCounts run were “-p -T 4 -F

GTF -a hg19.gencode.v19.gtf -t exon -g gene_id -s

$Strand -B -C –minReadOverlap 60” (note $Strand

was set to 0 for non-stranded RNA-seq, and 2 for

dUTP second strand marking RNA sequencing protocol).

Only uniquely mapped reads are used in the counting

step. Like the mapping step above, the counting metrics

were collected from the summary file of each feature-

Counts run. Genes that have expression levels less than 1

CPM were labeled as low expressed. If a gene had zero or

low expression across all eight samples, it was omitted

from the correlation and differential expression analysis.

This filtering step was included to reduce the false posi-

tives in the differential analysis [33].

Differential expression analysis

A counts table was generated by featureCounts and then

used for the DE analysis. The differential analysis was per-

formed by R packages edgeR 3.8.5 [17] and Limma/voom

3.22.4 [18]. We compared the stranded versus non-
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stranded sequencing groups. All genes with a fold change

greater than 1.5 and a Benjamini-Hochberg adjusted

p-value smaller than 0.05 were reported as DE genes.

Theoretical estimation of gene overlapping at the same

and opposite strands

The estimation was performed by R package Genomic-

Features 1.18.3 [34]. First, a transcript database (TxDB)

was created from the Gencode annotation in GTF format

by calling R function makeTranscriptDbFromGFF. We then

extracted all exons from TxDb and grouped them by gene.

According to strand information, the genes in each

chromosome were divided into two groups. The over-

laps at the same and opposite strands were quantified

at both gene and nucleotide base levels (see Fig. 4).

For each pair of overlapping genes, for example G1

and G2, the lengths for flattened exons were calcu-

lated and the short gene was selected for calculating

the ratio of overlapping. The histogram and cumula-

tive distribution of overlap were quantified (Fig. 5).

Consent
The protocol for the Pfizer Research Support Program to

collect blood samples from volunteer donors was approved

by the Schulman Associates Institutional Review Board

(IRB#201065670; http://www.sairb.com/Pages/home.aspx).

Written informed consent was obtained from all volunteer

blood donors for the research described and potential pub-

lication thereof. A copy of the written consent is available

for review by the Editor of this journal. Samples from indi-

viduals were coded at the time of collection and then

pooled prior to data generation, removing any possible as-

sociation of analytical measurements with a single donor.

Availability of supporting data and script
All the raw sequencing reads have been submitted to the

NCBI Sequence Read Archive and are available under

accession SRP056985.

The R script to estimate the gene overlap is attached

as Additional file 1: Script 1.

Additional file

Additional file 1:Table S1. Reports the related metrics for all eight RNA-

seq samples, including library sizes, the mapping summaries, and the count-

ing summaries. Tables S2. and S3. Tabulate the overlapping summaries of

Gencode V19 annotation database at both the gene and the nucleotide

base levels, respectively. Figures S1. and S2. Show all-against-all scatter plots

of gene expression profile among RNA-seq samples sequenced by stranded

and non-stranded protocols, respectively. Figure S3. Explains why the

expression level for GAPDH (a well-known housekeeping gene) is

underestimated in non-stranded RNA-seq. Script 1. Contains the R script

to estimate the gene overlap in Gencode Release 19. (PDF 429 kb)
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