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Abstract 

Deep generative models have shown the ability to devise both valid and novel chemistry, which could significantly 

accelerate the identification of bioactive compounds. Many current models, however, use molecular descriptors or 

ligand-based predictive methods to guide molecule generation towards a desirable property space. This restricts their 

application to relatively data-rich targets, neglecting those where little data is available to sufficiently train a predictor. 

Moreover, ligand-based approaches often bias molecule generation towards previously established chemical space, 

thereby limiting their ability to identify truly novel chemotypes. In this work, we assess the ability of using molecular 

docking via Glide—a structure-based approach—as a scoring function to guide the deep generative model REIN-

VENT and compare model performance and behaviour to a ligand-based scoring function. Additionally, we modify 

the previously published MOSES benchmarking dataset to remove any induced bias towards non-protonatable 

groups. We also propose a new metric to measure dataset diversity, which is less confounded by the distribution of 

heavy atom count than the commonly used internal diversity metric. With respect to the main findings, we found 

that when optimizing the docking score against DRD2, the model improves predicted ligand affinity beyond that 

of known DRD2 active molecules. In addition, generated molecules occupy complementary chemical and physico-

chemical space compared to the ligand-based approach, and novel physicochemical space compared to known 

DRD2 active molecules. Furthermore, the structure-based approach learns to generate molecules that satisfy crucial 

residue interactions, which is information only available when taking protein structure into account. Overall, this work 

demonstrates the advantage of using molecular docking to guide de novo molecule generation over ligand-based 

predictors with respect to predicted affinity, novelty, and the ability to identify key interactions between ligand and 

protein target. Practically, this approach has applications in early hit generation campaigns to enrich a virtual library 

towards a particular target, and also in novelty-focused projects, where de novo molecule generation either has no 

prior ligand knowledge available or should not be biased by it.
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Introduction
Generative models are a class of machine learning algo-

rithms that model the distribution of training data, such 

that new data instances can be generated that resemble 

the training data distribution. �ese models have been 

successfully applied to de novo molecule generation, 
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namely deep generative models which utilise deep neu-

ral networks [1–3]. Generative models for de novo mol-

ecule generation can generate valid and novel chemical 

structures [4] by either learning from a dataset of exam-

ple molecules or learning appropriate actions to take 

given a set of symbolic rules. Although these models vary 

greatly in method [5], they can usually be categorised by 

four common architectures/approaches: (1) Language 

models (such as [6–8]) which require a chemical lan-

guage (e.g., SMILES [9]) to represent molecular struc-

ture and subsequently learn the probability of a symbol 

in a sequence given all previously observed symbols; (2) 

Autoencoders (such as [10–12]) which use an encoder 

and decoder network to embed molecules into a fixed 

size latent space which can then be traversed to generate 

de novo molecules; (3) Generative adversarial networks 

(such as [13–15]) which use a generator and discrimi-

nator neural network to transform random noise into a 

distribution indistinguishable from real data and (4) Pure 

reinforcement learning (such as [16–18]) which uses 

neural networks to learn which actions to take given a set 

of molecule building rules.

�e common goal of de novo molecule generation is 

to generate molecules within a desired property space, 

which in turn is often defined using ligand-based objec-

tives or scoring functions. Examples include using known 

bioactive molecules as training data to bias generation 

towards a similar property space (e.g. biased training or 

fine-tuning) [2, 6, 19], or using machine learning mod-

els trained on known bioactive molecules to predict de 

novo molecule bioactivity (e.g. quantitative structure–

activity relationship (QSAR) models). Generative models 

can then be optimized to maximize this predicted value 

e.g. using reinforcement learning [7, 8, 20, 21], Bayesian 

optimization [22] or particle swarm optimization [23]. 

Hence, a multitude of generative model methods exist, 

that can use none, one or multiple QSAR models or other 

external scoring functions to evaluate de novo molecules. 

Furthermore, generative models can then be optimized 

by one of several possible optimization algorithms. In 

drug discovery, most combinations of these methods rely 

on ligand data to optimize towards bioactivity.

However, ligand-based scoring functions (e.g. QSAR 

models) have inherent limitations. Firstly, machine learn-

ing models are restricted by their applicability domain 

i.e. they perform well on ‘in-distribution’ data but strug-

gle to extrapolate to ‘out-of-distribution’ data, which is 

often poorly accounted for in model validation [24, 25]. 

�is means that models will score molecules similar to 

those observed in the training data more accurately [26]. 

In fact, Renz et al. [27] recently demonstrated that deep 

generative models optimizing QSAR model predictions 

biased molecule generation towards these QSAR models 

so much that generated molecules were no longer pre-

dicted as active by control QSAR models, which were 

either initialized with a different seed or trained on a 

different data split. �is showed that ligand-based scor-

ing functions can subsequently lead to biased molecule 

generation, optimizing just one of many possible desir-

able property spaces—the one most similar to training 

data and conforming to particular model parameters and 

hyperparameters. �is is very likely a reason for the lack 

of diversity (and inability to access truly novel chemical 

space) seen in deep generative models [28, 29]. �is bias 

towards specific training data (either directly via fine-

tuning or indirectly via ligand-based scoring functions) 

therefore restricts the novelty aspect of such ligand-

guided deep generative models in practice and limits 

their exploration of novel chemical space. �is is a seri-

ous drawback from both an intellectual property and 

discovery perspective; for example, during lead optimiza-

tion the inability to discover novel chemistry can lead to 

property ‘dead zones’, where it can be difficult to optimize 

certain properties of a particular lead series further. �is 

lack of novelty observed in current deep generative mod-

els has also been commented on in the literature [30]. 

Hence, the choice and implementation of ligand-based 

approaches can have a significant impact on de novo 

molecule generation.

From a practical perspective, ligand-based scoring 

functions also require large enough amounts of anno-

tated ligand data to sufficiently train a machine learning 

model in the first instance, which typically restricts the 

use of machine learning models to data-rich areas. How-

ever, many key drug discovery objectives, such as being 

first-in-class with respect to a novel target, are typically 

ligand data poor. �is, therefore, even conceptually pre-

vents the application of ligand-guided deep generative 

models in this situation.

In this work, we explored the idea that structure-based 

scoring functions, as exemplified by molecular dock-

ing, may mitigate some of the limitations observed with 

ligand-based scoring functions. Molecular docking is a 

physics-based approach that uses the crystal structure 

(or in the absence of that a homology model) of a pro-

tein to estimate both the pose and free energy binding of 

a ligand [31–34]. Although the resulting free energy score 

is notoriously inaccurate [35, 36] and the performance of 

these scoring functions can be highly target-dependent 

[37], molecular docking consistently results in the early 

enrichment of known active molecules in virtual librar-

ies compared to random [35] and is a generally-applied 

computational ligand design method in pharmaceutical 

research today.

�e principal advantage of the physics-based nature 

of molecular docking is that it is not restricted to the 
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chemical space of existing bioactive training data from 

the ligand side. Provided a scoring function achieves 

enrichment of bioactive compounds against a protein tar-

get (which can be established on existing datasets where 

data is available, but where otherwise estimates can be 

made based on the character of the binding pocket and 

protein type [38, 39]), then the chemical space to be 

scored can be greatly expanded, beyond chemistry and 

chemotypes present in any ligand-based training dataset. 

As structural input, either experimentally resolved struc-

tures or homology models can be employed and given 

the increasing numbers of structures available (which 

increases by about 10,000 per year [40]) and develop-

ment of protein structure prediction technology [41], this 

renders this approach applicable to an increasingly wide 

range of protein targets.

In concrete terms regarding the methods employed, 

we utilized the REINVENT [7] algorithm that has evi-

denced competitive performance with respect to the cov-

erage of de novo chemical space [42]. REINVENT uses 

a language-based generative model that takes in molecu-

lar SMILES as input (one-hot encoded) and a recurrent-

neural network to predict the probability of the next 

SMILES symbol given all previously sampled SMILES 

symbols in a sequence. REINVENT uses reinforcement 

learning to optimize molecule generation to maximize 

a reward provided by an external scoring function (for 

further details see “Methods”). We used this approach 

to optimize de novo molecules to minimize the docking 

score returned by Glide [32]. To understand the differ-

ences between ligand-based and structure-based scoring 

functions, we compare the resulting de novo molecules 

to those generated by a model optimized to maximize 

the predicted probability of activity by a support vector 

machine (SVM) scoring function. �is work could also 

be conducted using open-source docking software (e.g. 

Smina [43]) which we also provide available code for (see 

“Availability of data and materials”).

As a case study, we chose affinity for Dopamine Recep-

tor D2 (DRD2). �is receptor has a wealth of associated 

ligand bioactivity data available, and it has been com-

monly used in deep generative model publications before 

[7, 21, 22, 29, 44], thereby allowing any further com-

parison to different methods. DRD2 also has a publicly 

available X-ray crystal structure [45] in complex with 

Risperidone, thereby allowing use of molecular dock-

ing without the requirement of generating a homology 

model. More generally, G protein-coupled receptors 

(GPCRs)—including DRD2—are the most commonly tar-

geted protein class accounting for approximately 34% of 

all FDA approved drugs [46]. However, they remain some 

of the most difficult proteins to crystallise. Although 

more structures are released every year [40], which offers 

an ever increasing opportunity to utilise structure-based 

design [47].

To our knowledge, few previous studies exist which 

have incorporated structural data into deep generative 

model scoring functions, compared to the ligand-based 

counterpart. Firstly, Ghanakota et al. [48] combined high 

throughput free energy perturbation (FEP) with REIN-

VENT to identify potential CDK2 inhibitors. To achieve 

this, they trained an AutoQSAR model [49] on a subset 

of 1,000 enumerated analogues of a potent inhibitor with 

the corresponding FEP predictions, which was subse-

quently used as the REINVENT scoring function. �e 

authors observed 1.5-fold enrichment selecting com-

pounds with activity below 10 nM, compared to select-

ing enumerated analogues using the AutoQSAR model 

alone. Secondly, Li et  al. [50] trained a recurrent neural 

network on known kinase CDK4 inhibitors and fine-

tuned the network by training on a selection of generated 

molecules screened using docking. �is was validated 

experimentally, with one out of nine tested molecules 

found to be active against the target (57.8% inhibition at 

10 µM). �irdly, Xu et  al. [51] similarly used molecular 

docking to guide ligand selection in the latent space of a 

variational autoencoder towards CDK2 predicted activ-

ity, resulting in the recovery of a known CDK2 inhibi-

tor and several molecules containing substructures of 

known CDK2 inhibitors. Cieplinksi et al. [52] evidenced 

that CVAE [10] and GVAE [53] were unable to gener-

ate molecules with optimized Smina [43] docking scores 

due to the inaccurate prediction of said docking score, 

which is used to guide de novo sampling in the respec-

tive methods. Although, the authors propose a docking 

benchmark on which REINVENT outperforms the above 

methods and baselines of both random and known active 

molecules [54]. Lastly, Boitreaud et al. [55] recently used 

a novel sampling approach combined with a graph to 

SELFIES [56] variational autoencoder, where the authors 

demonstrated the ability to optimize the Vina [34] dock-

ing score against Dopamine Receptor D3, while main-

taining chemical diversity.

Notable contrasts in our approach compared to the 

above approaches include: (1) We only require structure 

data, enabling the search of a much larger chemical space 

compared to the use of ligand data as in [50]. (2) We uti-

lize a recurrent neural network with reinforcement learn-

ing as opposed to a variational autoencoder with Bayesian 

optimization as in [55]. (3) We directly use a physics-

based scoring function (i.e. molecular docking) to obtain 

scores during the generative model training process, as 

opposed to predicting the outcome of said function via 

machine learning as in [48, 52]. (4) In our approach, the 

model actively learns the conditional probability distribu-

tion of SMILES symbols that are associated with better 
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docking scores and as such variable size distributions can 

be sampled (up to billions [57]) of molecules, as opposed 

to sampling a finite latent space as in [51]. �erefore, our 

approach presented here differs to previously published 

approaches conceptually.

Methods
Figure 1 depicts the approach taken for the comparison 

of a structure- and ligand-based scoring functions in a 

deep generative model setting undertaken in this work. 

We (1) first removed known DRD2 actives (according 

to the ExCAPE-DB [58]) from the MOSES curated [4] 

ZINC [59] database of small drug-like molecules for use 

as training data. We then utilized the REINVENT frame-

work [7] as a deep generative model. �is framework 

consists of two recurrent neural networks—a Prior and 

an Agent. �e Prior (2) is trained to learn the conditional 

probability distribution of symbols in one-hot encoded 

SMILES, in this case, a set of SMILES from the previously 

described ZINC training data. �e Agent is then initial-

ized (3) as an exact copy of the Prior. �e scoring func-

tions (4) used in this work either (4a) utilized structural 

data from the PBD [40] and the docking program Glide, 

or (4b) ligand data extracted from ExCAPE-DB [58] to 

build an SVM-based bioactivity model [7] to score mol-

ecules that have been generated de novo. �e agent then 

samples de novo SMILES strings which are subsequently 

evaluated by the scoring function (5), and the Agent is 

updated via reinforcement learning to optimize either the 

docking score (5a) or the predicted probability of activ-

ity (5b). One unique aspect of REINVENT is the use of 

the Prior network to evaluate the likelihood of Agent de 

novo molecules being sampled from it, and this likeli-

hood is used within the reward term used to update the 

Agent. �is acts to both regularize the Agent to prevent 

overfitting, but also to ensure that the Agent does not 

forget the underlying chemical principles learned from 

the Prior training dataset. For more detail about REIN-

VENT the reader is referred to the original publication 

[7]. Finally (6), we evaluated both model behaviour dur-

ing Agent training and properties of de novo molecules 

with respect to several different quantitative, chemical 

and structural aspects.

Datasets

�e dataset used to train the Prior network was modi-

fied from the curation described by MOSES [4], in 

which the authors extracted molecules as SMILES 

from the ZINC15 database [59]. In short, molecules 

were selected to adhere to the following rules: molecu-

lar weight between 250–350 Da; number of rotatable 

bonds not greater than 8; XlogP [60] not greater than 

3.5; no charged atoms; no atoms besides C, N, S, O, F, Cl, 

Br, H; no cycles larger than 8 members; custom medici-

nal chemistry filters [61, 62]; and finally PAINS filters 

[63] were applied. We deviate from this curation by first 

Fig. 1 Schematic of this work including data sources (blue), scoring functions (orange), the deep generative model framework REINVENT [7] (grey). 

Main steps are (1) removing known DRD2 active molecules from the ZINC training data; (2) Training the Prior model on drug-like molecules from 

ZINC; (3) Initializing the Agents as a copy of the Prior; (4) Preparing the scoring functions to evaluate de novo molecules; (5) Iteratively training both 

Agents via reinforcement learning; and (6) evaluating the structure- and ligand-based approach with respect to different quantitative, chemical and 

structural aspects of the generated molecules
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allowing charged atoms and then neutralizing protonat-

able groups. �is was achieved by modifying the MOSES 

pipeline, implemented using RDKit [64], to remove the 

filter that checks for formal charge on atoms and instead 

add/remove protons to neutralize atoms where possible 

[65]. As a result, the training split contains 2,454,087 

molecules as opposed to 1,584,664 described in the pub-

lication [4]. �e authors rationalized the charge filter as 

such, “we removed charged molecules to avoid ambigu-

ity with tautomer’s and pH conditions. Note that in the 

initial set of molecules, functional groups were present 

in both ionized and unionized forms”. However, given 

the nature of molecule generation conditional upon the 

rest of the molecule (or more specifically the sequence) 

using RNNs used in this work, we instead hypothesize 

that this filter could remove potentially relevant chemical 

structures in which the ‘functional group—whole struc-

ture’ conditional relationship may not be duplicated. We 

further find that only ~ 6500 charged variants are also 

present in the neutral form in the ZINC15 subset out of 

the ~ 870,000 removed due to the charge filter. �is may 

further lead to a bias towards non-protonatable chemical 

structures which are crucial for aminergic receptors as 

used in this work, as aminergic receptors typically require 

an ionic interaction with a conserved aspartic acid resi-

due in the orthosteric site (Ballesteros-Weinstein:  D3.32, 

GPCRdb:  D3x32) [66, 67]. To further require the deep 

generative model to explore novel chemical space, we 

also removed any canonical SMILES that matched the 

canonical SMILES of any known DRD2 active molecules 

extracted from the ExCAPE-DB [58] where canonical 

SMILES were generated using RDKit [64] for both sets. 

�is resulted in a training set of 2,454,048 canonical 

SMILES.

In order to generate a set of bioactive compounds 

with known DRD2 activity we extracted molecules 

from ExCAPE-DB [58]. ExCAPE-DB is a curation of 

ChEMBL20 [68] and PubChem [69] data that classifies 

molecules with a measured dose–response value equal 

to or lower than 10 μM as active, and with higher than 

10 μM (or those which were labelled inactive in the origi-

nal sources) as inactive. �is resulted in 4613 active and 

343,028 inactive molecules against human DRD2. How-

ever, as it may be unreasonable to expect the generative 

model to generate molecules outside the property space 

on which it was trained, we also apply the same filter-

ing as previously described to create another subset 

labelled ‘in’. In addition, for use as a reference baseline 

a set of random molecules with the same filters applied 

were extracted from ChEMBL26 [68]. Resulting in the 

following subsets (of size): Active_all (4613), Active_in 

(396), Inactive_all (10,000), Inactive_in (10,000), Random 

(10,000).

�e DRD2 X-ray crystal structure 6CM4 from the PDB 

[40] was used as the protein structure for docking.

Reinvent

�e training data described in Datasets was subject to 

further filtering in accordance with the REINVENT pipe-

line [7] to standardize SMILES input, tokenize SMILES 

symbols and construct a vocabulary for one-hot encod-

ing. �is filtering resulted in 2,453,916 unique, non-

isomeric (stereochemistry removed) SMILES that was 

subsequently used to train the Prior network for a total 

of 5 epochs with a batch size of 128 using the Adam opti-

mizer [70] with a learning rate of 0.001. �e Agent was 

then trained for 3000 steps using a batch size of 64 and 

the Adam optimizer with a learning rate of 0.0005 and a 

value for the scalar coefficient (σ) of 60. �ese hyperpa-

rameters were used as recommended by the publication 

[7] and not explored further. All neural network training 

was conducted on an NVIDIA  RTX2080Ti GPU.

Scoring functions

A ligand-based scoring function was used as a baseline. 

We used the SVM model previously published by Olive-

crona et al. [7] trained on 7218 active and 100,000 inac-

tive DRD2 molecules, which were also extracted from 

ExCAPE-DB [58]. Note that this figure differs from 

the human DRD2 bioactives we used for evaluation 

described in Datasets for the current work. It is likely that 

the authors did not filter bioactive molecules by species 

(as it stands this would result in 7919 active DRD2 mol-

ecules without further processing [58]), which however is 

particularly important in the current work due to the use 

of the human ortholog of DRD2 for docking, and hence 

we have paid particular attention to this here. �e result-

ing SVM predicts the uncalibrated probability of a mol-

ecule to be active against DRD2.

�e structure-based scoring function used protein–

ligand docking. �e DRD2 crystal structure was prepared 

using the Schrodinger Protein Preparation Wizard [71] 

using default parameters i.e. we added hydrogens, proto-

nated non-residue molecules (e.g. ligand, cofactors), at pH 

7 ± 2 using Epik [72], optimized hydrogen bond assignment 

at pH 7 using PROPKA [73] and minimized the structure 

using the OPLS3e force field [74]. Any waters, cofactors, or 

crystallisation artefacts (e.g., oleic acid) were removed from 

the structure. A grid was defined using the centroid of the 

co-crystallised ligand Risperidone as the centre. From the 

ligand side, before docking, molecules were prepared using 

LigPrep [75], enumerating unspecified stereocentres, tau-

tomers and protonation states (using Epik [72]). Up to 8 

variants were prepared per molecule based on a pH range 

of 7 ± 1 and minimised using the OPLS3e force field. Each 

molecule and any respective variants were then docked 



Page 6 of 20Thomas et al. J Cheminform           (2021) 13:39 

using Glide standard precision (GlideScore-SP [32]) with 

default settings, flexible ligand sampling, standard preci-

sion with Epik state penalties, post-docking minimization 

of five poses and final output of the single best scoring pose. 

For molecules where more than a single variant exists, the 

variant with the lowest (best) docking score was chosen. To 

make this task more computationally tractable, we used a 

Python script that parallelized the docking protocol across 

a compute cluster using the python library Dask [76]. Using 

between 36 and 50 CPUs, the wall time required for 3000 

iterations was approximately 7 days, based on an average 

scoring time of 3 min per 64 molecules (including mol-

ecule preparation and up to 512 individual docking runs for 

respective variants).

Retrospective validation of docking protocol and scoring 

functions

In the REINVENT study [6] the authors evaluated the per-

formance of the SVM model on an undisclosed held-out 

test set, resulting in an accuracy of 98%, precision of 97% 

and recall of 82%.

To also evaluate the performance of the docking proto-

col, all 4613 known DRD2 active molecules and a random 

subset of 10,000 DRD2 inactive molecules were docked. 

�e performance of classification into either active or inac-

tive molecules at various docking score thresholds was 

then investigated (see Additional file 1: Figure S1) accord-

ing to classification accuracy, precision, and recall (which 

can be calculated using the equations defined below and 

the number of true positives (TP), true negatives (TN), false 

positives (FP) and false negatives (FN)). A docking score 

of − 7.5 resulted in highest overall accuracy of about 76%. 

By decreasing the threshold to − 8.5 (i.e., a more stringent 

criterion for selecting active molecules), a higher precision 

of approximately 82% is achieved, although at lower accu-

racy of about 74% and lower recall of about 12%. However, 

the latter more stringent threshold might still be a more 

favourable one to use in practice, given that confidence in 

positive predictions of active compounds is often more rel-

evant than missing some active compounds (of which there 

are many) due to low recall. It should be remembered that 

the performance of the scoring function was not an objec-

tive in its own right (given that retrospective evaluations 

naturally favour ligand-based methods due to analogue 

bias in databases etc. [77]), but rather to ensure general 

suitability for the desired purpose of selecting active com-

pounds in this step.

Accuracy =
TP + TN

TP + FP + TN + TN

Model performance and diversity metrics

Several metrics were used to assess generative model 

performance, as used in GuacaMol [78] and MOSES [4] 

(see Additional file 1).

In particular, we propose a new metric to meas-

ure the diversity of de novo compounds which we call 

sphere exclusion diversity (SEDiv). SEDiv is the fraction 

of diverse compounds selected using the sphere exclu-

sion algorithm [79] with a sphere radius set to 0.65 

Tanimoto distance of Morgan fingerprints (radius = 2, 

nBits = 1024), using the algorithm implemented by 

Roger Sayle in RDKit [64, 80]. We interpret this as the 

minimum fraction of the dataset required to explain the 

chemical diversity in the context of bioactivity. As a set 

distance threshold of 0.65 (i.e., Tanimoto similarity of 

0.35 or above) broadly correlates to an 80–85% probabil-

ity of belonging to the same bioactivity class [80].

As opposed to internal diversity (see Additional file 1), 

we believe the interpretation of this metric to be more 

meaningful. As the internal diversity can be difficult to 

interpret due to the double average losing the notion of 

the underlying distribution, as well as the confounding 

effect of heavy atom count on Tanimoto similarity [81]. 

To investigate this further, we subset ChEMBL28 [82] 

to only include molecules with 5–50 heavy atoms and 

randomly sampled 500 molecules either side of a heavy 

atom threshold, for thresholds 10–45 in increments of 1 

(with 10 repeats per threshold)—to mimic datasets with 

different proportions of smaller/larger molecules. �ere 

is a clear decrease in internal diversity with an increase 

in mean number of heavy atoms in accordance with the 

hypothesized confounding effect [81] (see Additional 

file  1: Figure S2a). On the other hand, sphere exclusion 

diversity shows a similar trend to the count of molecules 

per heavy atom bin (see Additional file 1: Figure S2b).

To investigate the difference between SEDiv and inter-

nal diversity further, we calculate these two metrics on 

random subsets of different libraries (Fig.  2): enumer-

ated virtual libraries of stable molecules up to 17 and 

13 heavy atoms (GDB17 [83], GDB13 [84]), character-

ised molecules with varying bioactivities (ChEMBL28 

[82]), a synthetically accessible diversity orientated vir-

tual library (Enamine diverse [85]), synthetically acces-

sible targeted virtual libraries (Enamine GPCR and 

Enamine Kinase [86]) and characterised molecules with 

activity (pChEMBL ≥ 5) against specific target classes 

Precision =
TP

TP + FP

Recall =
TP

TP + FN
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(ChEMBL28 Family A GPCRs and ChEMBL28 Kinases) 

and single targets (ChEMBL28 HERG, ChEMBL28 

EGFR and ChEMBL28 DRD2). All datasets were simi-

larly processed to neutralize molecules and retain only 

those with a molecular weight less than 500 Da, to 

ensure a similar ‘drug-like’ chemical space. Most nota-

bly, internal diversity measures GDB13 as more diverse 

than GDB17—which contradicts chemical intuition, but 

further confers with hypothesized confounding effects 

[81]. Furthermore, internal diversity measures molecules 

active against hERG—a promiscuous target related to 

cardiotoxicity [87]—as diverse as all molecules reported 

active against any kinases, any family A GPCR and more 

diverse than a virtual library designed for diversity. Con-

versely, sphere exclusion diversity measures GDB17 as 

more diverse than GDB13 (which is better distinguished 

at larger sample sizes, see Additional file 1: Figure S3) and 

hERG active molecules as more diverse than single tar-

gets (EGFR and DRD2) but not as diverse as all molecules 

active against any family A GPCR or kinase. �erefore, 

the proposed approach better aligns with chemical intui-

tion regarding the chemical diversity of known libraries. 

Furthermore, this approach yields values in the full range 

of possible values 0–1 (unlike internal diversity which 

mostly lie in a range of ~ 0.7–0.9), which further has a 

direct interpretation as the fraction required to explain 

the chemical space; therefore, a comparative reference 

is not always necessary (unlike internal diversity). How-

ever, the values measured here provide some context 

for sample sizes of 1000 random molecules, which we 

recommend for future use in comparing de novo mol-

ecule diversity. Code to calculate the sphere exclusion 

diversity can be found at our associated GitHub page (see 

“Availability of data and materials”).

DRD2 �ngerprint analogues

Further to performance metrics, we also assess the num-

ber of molecular fingerprint analogues generated to 

known DRD2 active molecules. We follow similar meth-

ods as used in [29], converting molecules to Morgan 

fingerprints (radius = 2, nBits = 1024), where analogues 

were considered to be two molecules with a fingerprint 

Tanimoto similarity greater than or equal to 0.4. As 

opposed to [29], we used a smaller Morgan fingerprint 

radius and bit length in line with the other metrics used 

in this work, and did not require molecules to have a 

particular predicted probability of DRD2 activity, as pre-

dicted by the SVM.

Clustering

Molecular clustering was performed on molecules or 

their respective Bemis-Murcko scaffolds [88] using the 

sphere exclusion algorithm [79] as implemented by 

Roger Sayle [80] in RDKit [64]. �e sphere radius was 

set at a Tanimoto distance of 0.65 and 0.2 for molecules 

or their respective scaffolds using Morgan fingerprints 

(radius = 2, nBits = 1024). Once resulting sphere cen-

troids had been picked, molecules were assigned to the 

nearest centroid to form a cluster.

Fig. 2 The measured sphere exclusion diversity (SEDiv) (a) and internal diversity (IntDiv) (b) of a randomly sampled 1000 (@1k) subset of a variety 

of virtual libraries and datasets of characterised molecules with activity against particular targets belonging to a target class, or single targets. 

Internal diversity shows counterintuitive behaviour such as, measuring GDB13 as more diverse than GDB17 and hERG active molecules as diverse as 

molecules active against any family A GPCR, any kinase or a virtual library designed towards achieving diversity. Conversely, sphere exclusion diversity 

measures diversity in line with chemical intuition
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Chemical space visualization

In order to further understand the chemistry generated 

by both approaches (and their distribution across chemi-

cal space), Uniform Manifold Approximation and Projec-

tion (UMAP) [89] was performed using both molecular 

fingerprint and physicochemical/property space repre-

sentations, as well as calculating the normalized princi-

pal moments ratio (NPR) [90]. For the former, Morgan 

fingerprints (radius = 2, nBits = 1024, implemented using 

RDKit) of actives (either ‘in’ or ‘all’), Prior, Glide-Agent 

and SVM-Agent molecules were used as input features, 

and the UMAP was calculated using the Jaccard dis-

tance metric with a minimum distance 0. For property 

space, the MolLogP, MolWt, HeavyAtomCount, Num-

HAcceptors, NumHDonors, NumHeteroatoms, NumRo-

tatableBonds, NumAromaticRings, NumAliphaticRings, 

RingCount, TPSA, FractionCSP3, QED [91] and SAscore 

[92] were calculated using RDKit and scaled before input 

to UMAP using default parameters. Lastly, the NPR1 and 

NPR2 were calculated using RDKit after first generating 

3D conformations using the ETKDG method [93].

Structure interaction �ngerprints (SIFts)

Structure Interaction Fingerprints (SIFts) [94] were 

calculated on all resulting docked poses in order to 

understand ligand–protein interactions available to the 

generated ligands. �is resulted in a 9-element bit vec-

tor for each protein residue, corresponding to non-

exclusive residue interactions. For simplification, we 

converted the non-exclusive 9-element bit vector (com-

prising the possible interactions any contact, backbone, 

sidechain, polar, hydrophobic, hydrogen bond acceptor, 

hydrogen bond donor, aromatic, charged) to exclusive 

residue interactions in a hierarchical manner according 

to the following order: charged hydrogen bond donor/

acceptor, hydrogen bond donor/acceptor, charged, aro-

matic, hydrophobic/polar. For example, a residue initially 

defined as having sidechain, polar, charged and hydro-

gen bond acceptor interactions would be converted to 

charged hydrogen bond acceptor, due to this interaction 

type taking precedent in the above order. �is simplifica-

tion was performed to allow for more interpretable (and 

less redundant) subsequent analysis of the interactions 

observed.

Results and discussion
Optimization of SVM- and Glide-Agent-based scores 

by molecules generated de novo

We investigated whether the Agents were able to opti-

mize the respective properties evaluated by the two scor-

ing functions i.e., predicted probability of DRD2 activity 

based on bioactivity data (‘SVM-Agent’) and DRD2 dock-

ing score (‘Glide-Agent’), the results of which are shown 

in Fig.  3. Both the SVM-Agent and Glide-Agent learn 

to generate molecules with optimized properties, albeit 

at different rates (Fig. 3a and b). Whilst the SVM-Agent 

converges to generating optimal molecules within just a 

few hundred steps, the Glide-Agent only begins to con-

verge after about 2,000 training steps. Crucially, both 

Agents maintain high ratios of valid (> 0.9, Fig.  3c) and 

novel molecules per batch (> 0.9, Fig. 3e). However, from 

just 100 steps onwards, the SVM-Agent starts to generate 

fewer unique molecules than the Glide-Agent (Fig.  3d). 

�is suggests overfitting, as the SVM-Agent has maxi-

mally optimized the scoring function and begins to re-

sample molecules that it knows produce a high reward. 

�is is further supported by a drop in the diversity of 

sampled molecules and their scaffolds (Fig.  3f–h). We 

also introduce a new diversity metric, sphere exclusion 

diversity (see “Methods”), which indicates that after 200 

steps the chemical space of SVM-Agent de novo mol-

ecules can be explained by less than 10% of the valid and 

unique molecules, while for the Glide-Agent this slowly 

drops to about 20%. In addition, the SVM-Agent shows 

an increased FCD [95] to a held out test set with respect 

to the Glide-Agent (Fig.  3i). �is increase in FCD has 

shown to indicate a number of differences [95] to the 

Prior training data for example, ‘drug-likeness’ defined 

by [91] or internal diversity [96]. Beyond the perfor-

mance according to benchmark metrics, and similar to 

Blaschke et al. [29], we investigated the cumulative num-

ber of analogues generated de novo to known DRD2 

active molecules (see Additional file  1: Figure S4). �is 

analysis shows that the SVM-Agent generates more ana-

logues (~ 80,000) than the Glide-Agent (~ 25,000), how-

ever, when instead looking at the number of DRD2 active 

molecules with generated analogues, the Glide-Agent 

has analogues to more DRD2 actives (~ 1800) than the 

SVM-Agent (~ 1400). �us, the SVM-Agent generates 

more analogues per known active, but the Glide-Agent 

generates analogues to a broader range of known actives. 

Together, these results indicate that the Glide-Agent 

maintains better generative metrics throughout training, 

in particular with respect to the uniqueness and general 

diversity of the generated molecules. Also, the Glide-

Agent generates analogues to more known DRD2 active 

molecules, further evidencing increased diversity with 

respect to known DRD2 active molecules.

For any generative model, visual inspection of the 

generated molecules is crucial, both to see whether an 

approach tends to prefer different types of chemistry, 

and to identify any possibly idiosyncratic behaviour. In 

this regard, Fig. 4 displays the centroid of the largest clus-

ters generated during training, as well as the respective 

cluster size. �is shows that the chemotypes evolve from 

the Prior differently depending on the scoring function. 
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Overall, both Agents were able to optimize molecules 

towards their respective scoring functions (as shown 

quantitatively in Fig.  3); however, the Glide-Agent does 

so with more diversity (Fig. 3f–h) and with a more similar 

distribution to the training data (Fig. 3i–k).

For further analysis, 10,000 molecules were sampled 

from the unoptimized Prior, the SVM-Agent (trained 

for 500 steps, before significant overfitting occurred), 

and the Glide-Agent (trained for 2000 steps). We calcu-

lated the suite of MOSES metrics [4] on the generated 

molecules (see Additional file 1: Table S1–S3) as well as, 

Scaffold diversity and Scaffold uniqueness and Sphere 

exclusion diversity (see “Methods”). Coinciding with the 

results observed in Fig.  3, the Glide-Agent outperforms 

the SVM-Agent in all metrics except Novelty. Over-

all showing greater diversity of de novo molecules and 

Fig. 3 Generative model performance during optimization for the Glide-Agent (green) and the SVM-Agent (red), calculated every 100 steps. Mean 

optimization of scores—docking score and predicted probability of activity—are shown in (a) and (b) respectively, as well as the 95% confidence 

interval. Additional metrics shown are (c) validity, (d) uniqueness, (e) novelty, (f) internal diversity, (g) scaffold diversity, (h) sphere exclusion diversity, 

(i) Fréchet ChemNet Distance, (j) single nearest neighbour similarity and (k) fragment similarity. As the most important observation, the SVM-Agent 

reaches very high scores much more quickly, which comes at the cost of a significant reduction in uniqueness and diversity, when compared to the 

Glide-Agent. For definitions and detailed discussion see main text
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similarity to the training data (whilst still optimizing the 

docking score).

Next, we sought to better understand the extent to 

which the docking score could be optimized using 

our protocol, relative to known DRD2 active mol-

ecules. All molecules were docked, and their docking 

scores compared to the active, inactive and random 

reference dataset, the results of which are shown in 

Fig. 5a. The actives and inactives are further split into 

‘all’ molecules extracted from ExCAPE-DB and mol-

ecules ‘in’ a similar chemical space as imposed by the 

same filters applied to the training data. The docking 

score distribution of the Glide-Agent de novo mol-

ecules (μ = − 8.05, σ = 0.95) is significantly enriched 

(one-tail t-test: adjusted p < 0.05) over unoptimized 

Prior molecules (μ = − 6.17, σ = 1.02) and importantly 

also over previously known DRD2 active molecules 

(μ = -7.45, σ = 1.01)(one-tail t-test: adjusted p < 0.05), 

especially those after filtering to impose similar chem-

ical space restrictions (μ = − 6.96, σ = 0.74)(one-tail 

t-test: adjusted p < 0.05). In other words, the Glide-

Agent de novo molecules are predicted to be often as 

active, and on average even more active, than known 

DRD2 active molecules according to the Glide dock-

ing protocol. If the precision for selecting active mol-

ecules for retrospective docking at a score threshold 

of − 8.5 (see “Methods”) translates also prospectively 

to de novo generated molecules, 32.70% percent of 

the Glide-Agent de novo molecules are predicted to 

be active against DRD2 (that is with a dose–response 

value lower than 10 µM), compared to 19.98% percent 

of SVM-Agent de novo molecules and 0.54% percent 

of Prior de novo molecules (which is relatively close 

to experimental hit rates that would be expected by 

chance alone, e.g. [97] which had an experimental hit 

rate against DRD2 of ~0.6%). Interestingly, the SVM-

Agent de novo molecules also exhibit a significant 

enrichment (one-tail t-test: adjusted p < 0.05) in dock-

ing score distribution (μ = − 7.85, σ = 0.80) beyond 

known DRD2 active molecules, although to a lesser 
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extent. This docking score distribution enrichment is 

hypothesized to be a factor of generating similar de 

novo chemistry to known DRD2 actives and hence, a 

docking score enrichment is observed. However, the 

improvement over known actives seen in Fig.  5a may 

also be due to an element of randomness, as Renz et al. 

observed different chemical space occupation for inde-

pendent runs with similar models [27]. Furthermore, 

a previous run we conducted resulted in a smaller 

enrichment for the SVM-Agent but an almost identi-

cal enrichment for the Glide-Agent (data not shown). 

We also compared the predicted probability of DRD2 

activity according the SVM (Fig.  5b) for all reference 

datasets. This shows that most known DRD2 actives 

and the SVM-Agent de novo molecules are predicted 

active with high probability (0.9–1.0). Unlike docking, 

which predicts SVM-Agent molecules to be equally as, 

or more active than known DRD2 active molecules, the 

SVM does not predict many Glide-Agent molecules to 

be active (about 75% with a low predicted probabil-

ity of 0–0.1). Due to the limitations of such machine 

learning models discussed in the Introduction, we 

believe this could be evidence of a limited applicability 

domain. This is supported by the greater single nearest 

neighbour similarity of the SVM-Agent de novo mole-

cules to DRD2 actives that were used by train the SVM 

model by [7] (see Fig.  7 and Additional file  1: Figure 

S5). Overall, we can conclude that the docking score of 

de novo molecules can generally be optimized by our 

Glide-based agent, and this is true even beyond the 

scores of known active molecules.

Overlap analysis of molecules generated de novo 

compared to known active and inactive molecules

To assess recovery of known active molecules we iden-

tified whether any of the canonical SMILES produced 

by either Agent matches those of known DRD2 active 

molecules. �e number of recovered molecules across 

ten samples of 10,000 molecules was converted into the 

probability of recovery (see Table 1) (based on valid and 

unique molecules generated). It is worth noting that 

the Prior has an inherent bias towards generating inac-

tive molecules over active molecules, where we quantify 

the bias simply as the probability of generating a known 

active molecule over the probability of generating a 

known inactive molecule. �is translates as the Prior 

being 0.002 times as likely to generate an active mole-

cule compared to an inactive (which is partly also due to 

removing known DRD2 active molecules from the train-

ing data). When considering recovery of ‘all’ extracted 

DRD2 actives and inactives, both Agents are still biased 

towards generating inactive molecules; however, the 

Prior bias is improved 95-fold towards generating active 

molecules by the SVM-Agent. �is bias shift is predomi-

nantly attributable to the SVM-Agent’s ability to avoid 

recovering known inactive molecules (approx. half the 

probability than the Glide-Agent), whereas the probabil-

ity of recovering known active molecules is more compa-

rable between the Glide- and SVM-Agents (63 ×  10–6 vs 

79 ×  10–6, respectively). It is important to consider that 

Glide docking does not incorporate any prior knowledge 

of known DRD2 active and inactive molecules (unlike the 

SVM), and therefore the Glide-Agent is able to learn to 

Fig. 5 Docking scores (a) and predicted probability of DRD2 activity (b) of molecules generated de novo using the Prior, the SVM-Agent and the 

Glide-Agent, compared to the active, inactive, and random reference datasets. The more negative the docking score, the better it is predicted to 

bind. The Glide-Agent generated molecules have the best docking score distribution, more so than known DRD2 active molecules, whilst the 

SVM-Agent generated molecule distribution is more similar to known DRD2 active molecules. The SVM-Agent molecules and known DRD2 actives 

score most highly according to the SVM, comparatively, the Glide-Agent molecules do not
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recover known active molecules (and improve the Prior 

bias 40-fold) from the information of the scoring func-

tion alone. Interestingly, of the single sample of 10,000 

molecules investigated throughout this work, there are 

no recovered active molecules in common between the 

Agents, and just three in total (see Additional file 1: Fig-

ure S6), further underlining their divergent behaviour. 

In summary, both Agents can similarly recover known 

DRD2 active molecules, however, the SVM-Agent is bet-

ter at not generating known inactives and thus provide 

different types of molecules generated de novo as a result.

Similarity analysis of molecules generated de novo 

to known active and inactive molecules

We first repeated the analysis conducted during train-

ing, investigating the number of analogues to known 

DRD2 active compounds as in [29]. Similar to the results 

observed during training, Table 2 shows the SVM-Agent 

sample contains a higher fraction of molecules consid-

ered fingerprint analogues to DRD2 actives (both to 

actives ‘in’ a similar chemical space and ‘all’ extracted). 

Furthermore, both Agent samples contain a higher frac-

tion of analogues to DRD2 actives than inactive mole-

cules (which one would expect to be relatively high based 

on the chemical series nature of drug design). Although 

the Glide-Agent generates analogues to a higher frac-

tion of DRD2 actives, indicating that the higher diversity 

observed (see Additional file 1: Table S2) is relevant with 

respect to active chemistry. In addition, the DRD2 actives 

with analogues generated differed depending on the Prior 

or Agent (see Additional file  1: Figure S7), evidencing 

complementary behaviour with respect to identifying 

similar molecules to known actives.

We also investigated how similar the de novo gener-

ated molecules were to known DRD2 active molecules 

and/or each other. �e known DRD2 active mol-

ecules were clustered together with the Prior, Glide- 

and SVM-Agent de novo molecules. Each cluster was 

then analysed to identify to which dataset each of its 

members belonged (similar to [98]). Figure  6 shows 

the results of this analysis as a Venn diagram for both 

entire molecules (Fig.  6a) and their respective Bemis-

Murcko scaffolds (Fig.  6b). �is analysis shows more 

clusters-105—are shared between known active DRD2 

molecules and the Glide-Agent, compared to the 

overlap of known active DRD2 ligands with the SVM-

Agent, where this number is 95. �is is also observed 

when clusters are calculated based on scaffolds (49 vs 

39 respectively). To qualitatively assess cluster behav-

iour, examples of clusters and structures are shown 

in Additional file  1: Figure S8–S9. Overall, both the 

Glide-Agent and SVM-Agent share a relatively similar 

number of clusters (i.e. ‘chemical space pockets’) with 

known DRD2 actives, but which precise clusters are 

shared differs largely between both Agents.

Table 1 Probability of recovering known DRD2 active and inactive molecules

The reported probability values are the mean (and standard deviation) across ten samples of 10,000 de novo molecules drawn from the model. The Glide- and SVM-

Agent have a similar probability of recovering known active molecules, therefore the SVM-Agent bias towards generating active molecules over inactivate molecules 

is mostly driven by the lower probability of generating inactive molecules

Origin of dataset Probability of generating 
active molecule (×  10−6)

Probability of generating inactive 
molecule (×  10−6)

Active bias (fold change from 
Prior)

Active DRD2 chemical space 
relative to training data

In All In All In All

Prior 10 (30) 10 (30) 5055 (604) 5957 (495) 0.002 (1) 0.002 (1)

Glide-Agent 11 (32) 63 (84) 422 (125) 917 (175) 0.025 (12.5) 0.069 (40.6)

SVM-Agent 34 (72) 79 (72) 256 (124) 486 (168) 0.130 (64.9) 0.163 (95.7)

Table 2 Fraction of molecules that are fingerprint analogues to 

DRD2 active molecules and respective fraction of DRD2 active 

molecules with analogues

The SVM-Agent generates more analogues to known actives, however, the 

Glide-Agent generates analogues to more known actives, demonstrating a 

greater coverage of known active space

Origin of dataset Fraction of 
molecules that are 
analogues to DRD2 
actives

Fraction of DRD2 
actives with 
analogues

DRD2 chemical space 
relative to training data

In All In All

Inactive (in) 0.020 0.089 0.197 0.116

Inactive (all) 0.025 0.102 0.242 0.116

Train 0.020 0.071 0.225 0.109

Random 0.024 0.075 0.313 0.120

Prior 0.021 0.071 0.220 0.110

Glide-Agent 0.051 0.124 0.268 0.105

SVM-Agent 0.179 0.563 0.237 0.102
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Novelty of de novo molecules relative to known DRD2 

active molecules

Similarity comparisons of de novo molecules to known 

molecules with desirable properties can provide a 

measure of confidence that a model is in the correct 

chemical space. However, prospective use case ulti-

mately requires structural novelty to known com-

pounds with activity against the same biological target. 

Fig. 6 Chemical space overlap between the Prior, SVM- and Glide-Agents with all DRD2 ligands extracted from ExCAPE-DB. Broader clusters (a) 

were defined by clustering molecules with a Morgan fingerprint Tanimoto similarity to a centroid of 0.35 or greater, while narrower clusters (b) were 

defined by clustering molecules on their Bemis-Murcko scaffold Morgan fingerprint Tanimoto similarity to a centroid of 0.8 or greater (examples 

shown in Additional file 1: Figure S8-9). Numbers specify the number of clusters with at least one member belonging to an annotated dataset. For 

example, there are 23 clusters (a) where each cluster has at least one member belonging to DRD2 actives and Glide-Agent molecules. Both the 

Glide-Agent and SVM-Agent share clusters with known DRD2 active molecules

Fig. 7 Kernel density estimates of the bivariate distribution of docking score and single nearest neighbour similarity to known DRD2 active 

molecules. The Glide-Agent distribution contains a shoulder with lower (better) docking scores at lower similarity to known actives than the 

SVM-Agent and Prior de novo molecules
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Figure  7 shows that the Glide-Agent generated mol-

ecules that have enriched docking scores below the 

retrospective threshold of − 8.5 also have lower single 

nearest neighbour similarity to known DRD2 active 

molecules than the SVM-Agent and Prior molecules. 

Therefore, the Glide-Agent molecules are not only 

predicted more active but are also more novel with 

respect to known actives than the SVM-Agent mol-

ecules. This could prove very important in the early 

stages of hit discovery.

Di�erences in chemical substructural and physicochemical 

property space between Glide- and SVM-Agent generated 

molecules

To further understand the chemical differences between 

the molecules generated by the Glide- and SVM-Agent 

Uniform Manifold Approximation and Projection 

(UMAP) [89] was used to reduce the molecular finger-

print and physicochemical and property descriptor-

based representations of chemical structures into two 

dimensions for visualization purposes. Furthermore, we 

investigate the 3D shape of molecules by looking at the 

normalized principal moments ratio (NPR) [90]. Figure 8 

Fig. 8 Chemical space representation of (a) molecular fingerprints and (b) physicochemical descriptors and (c) 3D space via moments of inertia. 

The plots show the calculated kernel density estimate with 100 randomly drawn samples overlayed. UMAP representation (a–b) was calculated 

for known active DRD2 ligands with filters applied to impose a similar chemical space, as well as the chemical structures associated with the Prior, 

Glide- and SVM-Agents. The Agents occupy complementary regions of topological space (a), physicochemical property space (b) and slightly 3D 

space (c) (where the Glide-Agent stretches slightly more towards spherical and the SVM-Agent slightly more towards disc shape)
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shows the two-dimensional embedded space of known 

DRD2 active molecules (filters applied to impose simi-

lar chemical space), as well as Prior, Glide- and SVM-

Agent generated de novo molecules. When molecules 

are defined by their molecular fingerprints (Fig.  8a), 

the Glide- and SVM-Agents occupy different regions of 

chemical space, of which neither have significant distri-

bution overlap with known DRD2 active molecules. �e 

SVM-Agent de novo molecules are more distinct from 

the Prior molecules, albeit still restricted by nature of 

the optimization function and inclusion of the Prior 

likelihood. In Fig.  8b, where molecules are defined by 

physicochemical and property descriptors, the Prior 

and Glide-Agent generated de novo molecules occupy a 

complementary and more diverse area of property space 

than SVM-Agent molecules. By annotating this embed-

ding, it can be seen that the clustering predominantly 

correlates with the number of hydrogen bond donors and 

number of aromatic/aliphatic rings (see Additional file 1: 

Figure S10). Figure  8c shows a smaller difference in the 

distribution of 3D shapes between the datasets, again the 

models show slight complementary behaviour where the 

Glide-Agent distribution stretches slightly more towards 

spherical shapes and SVM-Agent slightly more towards 

disk shapes, although this difference is minor. �e obser-

vations seen here are similar when considering ‘all’ DRD2 

actives extracted from ExCAPE-DB (see Additional file 1: 

Figure S11), however, the representation is compressed 

due to larger and more distinct molecules seen in the 

active set. �is analysis further corroborates, in a visual 

manner, the chemical differences between the structure- 

and ligand-based approaches, and the additional physico-

chemical diversity obtained by the Glide-Agent, which 

is not biased towards the properties of known bioactive 

molecules. For further exploration, we refer readers to 

Additional file  2 that allows exploration and visualiza-

tion of chemical structures associated with embedded 

molecules.

Characterization of de novo ligand chemistry

In order to understand the occupation of chemical 

space at the end of the runs on a ligand structural level, 

the molecules in each dataset were clustered accord-

ing to their Bemis-Murcko scaffolds [88] which resulted 

in more stringent clusters more akin to chemical series. 

When filtering out clusters with less than 10 members 

(i.e., smaller ‘virtual series’), the Glide-Agent set con-

tained more clusters with better mean docking scores 

than all other datasets (see Additional file 1: Figure S12). 

More specifically, the Glide-Agent set contains 30 such 

clusters with a mean docking score less than the previ-

ously defined threshold of -8.5, compared to just six 

clusters of DRD2 actives, 22 in SVM-Agent set and zero 

clusters in the Prior set. In this way, the Glide-agent was 

able to identify chemical series that dock consistently 

well; something that is less frequently observed for the 

SVM-Agent or even known actives, and non-existent 

for Prior de novo molecules. �is behaviour is analogous 

to the identification of bioactive chemical series in an 

experimental screening, where additional confidence is 

provided that the compounds identified are indeed true 

positive hits, as opposed to singletons, as false positives 

can occur due to experimental error (or, in the current 

case, idiosyncratic behaviour of the scoring function). 

Alternatively, it could be argued that the scoring func-

tion is not sensitive enough to identify subtle differences 

in ligand chemistry that result in inactivity, commonly 

referred to as activity cliffs i.e. strong nonadditivity in 

structure–activity relationships. However, one study 

investigated strong nonadditivity between matched 

molecular pair cycles with respective structural data [99], 

and identified that in 10 out of 15 possible cases there 

was a structural explaination, such as, complete rear-

rangement of binding mode or substituent interactions 

causing nonadditivity. �erefore, we theorize that scoring 

functions that take into account structural information 

may better account for nonadditivity than purely ligand-

based ones.

Figure 9 shows the cluster centroids of the two larg-

est and the two best-scoring clusters from each respec-

tive dataset (minimum of 10 clusters). Typical known 

DRD2 active molecules are ‘capped’ by mono- or bicy-

clic systems which are linked by an aliphatic chain that 

usually (but not exclusively) contains a piperidine/

piperazine moiety. This chemotype is not well reca-

pitulated by the Prior molecules as it is not optimized 

towards DRD2 bioactivity in any way. The Glide-Agent 

on the other hand learns to mostly cap the molecules 

with mono- or bicyclic systems, but it does not gener-

ate the piperidine/piperazine moiety in the compounds 

shown here. Likewise, the SVM-Agent also learns to 

cap the molecules in this manner, and the highest-

scoring cluster centroids also contain aliphatic chains 

with rings in the linker, although commonly pyrroli-

dine and diazepane, as opposed to piperidine or pip-

erazine. At least one protonatable nitrogen is common 

across most structures (from either origin), mostly 

located in the aliphatic linker. Somewhat concern-

ingly, some of the example structures shown in Fig.  9 

have the potential to be di-cationic. This can be unde-

sirable from a drug discovery perspective due to low 

logD and thus, potential implications with high clear-

ance and low permeability. We investigated this fur-

ther, and found (see Additional file 1: Figure S13) that 

the distribution of formal charge (as assigned by our 

protocol) for the Glide-Agent closely resembles that of 
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known DRD2 actives (predominantly + 1). In fact, the 

SVM-Agent is slightly shifted towards containing more 

di-cationic molecules (~ 30%), despite the SVM being 

trained on known DRD2 actives (< 10% di-cationic). 

Furthermore, the Glide-Agent was able to improve the 

docking score distribution from the Prior for all formal 

charges (see Additional file 1: Figure S14). Overall, we 

can conclude that we did not find any evidence that di-

cationic molecules were preferred by the Glide-Agent 

due to any biases in the scoring method employed.

One crucial requirement of de novo molecules for 

practical use is synthetic accessability. In this work, we 

find that both Prior and Agent generated molecules 

closely inherit the SAscore distribution of the ZINC 

training dataset (see Additional file  1: Figure S15) 

which is likely due to the inclusion of Prior likelihood 

in the optimization function [7]. Despite the fact that 

goal-directed optimization tasks have previously led 

to worse syntheizability [100]. Furthermore, we don’t 

find the need to add proxy functions such as SAscore 

or QED to the optimization function (unlike recent 

approaches [101, 102]) due to stringent filtering of the 

training dataset, of which the model does not deviate 

too much.

Understanding method behaviour at the ligand–protein 

interaction level

In order to interpret the interactions formed by de novo 

ligands originating from the different methods also at 

the ligand–protein interaction level, the docked poses 

of the two highest-scoring and the two most common 

cluster centroids from Fig. 9 were generated (Fig. 10). As 

expected, known DRD2 ligands form a hydrogen-bond 

interaction with  D1143x32, a highly conserved residue in 

aminergic receptors that has been shown to be crucial 

for ligand binding [66, 67]. �is reproduction of charge 

interactions with  D1143x32 can be observed in the high-

est-scoring molecules across all datasets, while in this 

instance, the Glide-Agent molecules show more distinct 

 D1143x32 interaction types (e.g. also hydroxyl interac-

tions, Fig. 10) and vectors.

To understand the protein–ligand interactions present 

in the datasets on a broader scale, Structural Interac-

tion Fingerprints (SIFts) [94] were calculated. Figure  11 

summarises the changes in these interactions observed 

relative to the Prior (as a baseline) visually. All DRD2 

binders extracted from ExCAPE-DB tend to form more 

interactions with residues located higher in the pocket 

(towards the extracellular surface). While the Glide-

Agent molecules more often satisfy interactions deeper 
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Fig. 9 Most common and highest-scoring chemotypes of two most highly populated and the two highest-scoring clusters for each individual 

dataset, annotated by cluster size (CS) and mean cluster docking score (DS). The Glide- and SVM-Agent generated molecules show similar mono- or 

bicyclic capping of molecules as known DRD2 active molecules
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in the pocket and less often shallower ones (dissimilar to 

known DRD2 active molecules). Likewise, SVM-Agent 

molecules more often form interactions with residues 

deeper in the pocket. �is is likely partially due to the 

restriction in molecular weight imposed by the ZINC 

subset used to train the Prior, which selects molecules 

with a molecular weight between 250 and 350 Daltons, 

subsequently biasing de novo molecule generation to 

a similar molecular weight range. Furthermore, when 

only considering actives with the same filters applied 

(i.e., molecular weight 250–350 Da) there are few residue 

interaction differences compared to Prior generated mol-

ecules. Surprisingly, the Glide-Agent de novo molecules 

have a lower molecular weight distribution (see Addi-

tional file 1: Figure S15), showing that in the current case 

smaller molecules are favourable for optimizing docking 

score, resulting in increased virtual ligand efficiency. �is 

is in contrast to previous publications, which frequently 

found that larger molecules are favoured by many scoring 

functions [103, 104]. Although there is no relative change 

in the sum of interactions satisfied with  D1143x32 (despite 

its crucial role in ligand binding), the ratio of interac-

tion type changes between datasets. �e Glide-Agent 

de novo dataset has a higher fraction of charged hydro-

gen-bonding interactions (~ 0.75) than the Prior (~ 0.4), 

SVM-Agent (~ 0.6) and known DRD2 actives (~ 0.4–0.5), 

where all other interactions are comprised of charged 

non-hydrogen-bonding interactions (see Additional 

file 1: Figure S16). In addition, charged hydrogen-bond-

ing interactions were associated with a better docking 

Fig. 10 Docked pose of the cluster centroids of the two most common and highest-scoring chemotypes with DRD2. The highest-ranked ligand in 

both cases is displayed with sticks (green), and the second-highest ligand with lines (cyan). The Glide- and SVM-Agent examples both reproduce 

crucial  D1143x32 interactions

Fig. 11 Change in the frequency of DRD2 residue interactions relative to Prior de novo molecules according to Structural Interaction Fingerprints 

(SIFTs). Green indicates a relative increase equal to or more than 10% than Prior molecules, while red indicates a decrease less than or equal to 10%
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score distribution than charged non-hydrogen-bonding 

interactions (see Additional file 1: Figure S17), an associ-

ation which is also experimentally confirmed with higher 

affinity [105]. In summary, Glide-Agent optimized de 

novo molecules satisfy more charged hydrogen-bonding 

interactions with  D1143x32 and generate lower molecular 

weight molecules than known DRD2 active molecules 

and SVM-Agent de novo molecules.

Conclusions
In this work we integrated a generative molecular de 

novo algorithm with ligand–protein docking and com-

pared the results obtained to a ligand-based scoring func-

tion. We show on a commonly used benchmark dataset 

for the Dopamine D2 receptor that this approach results 

in chemically sensible molecules, which can improve 

docking scores beyond that of known receptor ligands, 

while exhibiting increased physicochemical diversity 

compared to using the ligand-based scoring function. 

�e work presented here demonstrates the use of deep 

generative models in settings also where no ligand data 

is available, or novelty is of particular interest (provided 

an X-ray crystal structure or a suitable homology model 

of the target is available). Further validation on a variety 

of protein targets is both required and currently ongoing. 

Moreover, this work only investigates the optimization 

of the Glide docking score and does not validate alterna-

tive structure-based scoring functions. While we expect 

other scoring functions to be equally optimizable, the 

resulting de novo chemistry may differ as a function of 

other forcefield implementations and/or scoring func-

tion definitions such as changes in interaction terms, for 

example. Preliminary analysis (data not shown) suggests 

that this is the case when using Smina as opposed to 

Glide. Future work is also intended to further investigate 

the impact of incorporating prior structural knowledge, 

such as particular water/residue interactions that can 

affect selectivity.
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