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ABSTRACT 

In thi s paper the performance o f four different system identification 
methods is compared using operatianaJ data obtained from an 
ambient vibration test of the Swiss Z24 highway bridge. The four 
methods are the frequency domain based peak-picking methods, the 
polyreference LSCE method, the stochastic subspace method for 
estimation o f state space systems and the prediction error method for 
estimation of Auto-Regressive Moving Average Vector models. It is 
not the intention to elect a winner among the four methods, but 
more to emphasize the different ad vantages o f each o f the methods. 

NOMECLATURE 

Y k Vector o f measured output. 
Rk Correlation function between outputs. 
D.t Sampling interval. 
Å; Discrete-time system pole. 
Il; Continuous-time system pole. 
E[ •l Expectation operator. 
\j!, Mode shape vector. 
L; Vector o f multipliers. 
A State (transition) matrix. 
C Output (observation) matrix. 
xk State vector. 
A, Auto-Regressive coefficient matrix. 
B, Moving Average coefficient matrix. 

l INTRODUCTrON 

The system identification task ofthe BRITE-EURAM project SIMCES 
(System Identification to Monitor Civil Engineering Structures) 
consists of extracting the dynarnic characteristics of bridges and 
other civil engineering structures from vibration data. These dynamic 
characteristics serve as input to model updating and damage 
assessment techniques. Different types ofbridge vibration tests exist. 
The major difference of these techniques is the way the excitation is 
applied. One way could be to excite the bridge with a heavy shaker 
o r a drop weight, whereas another could be to use ambient excitation 
(wind, trafik, waves ... ). This ladder method has the advantage of 

being inexpensive since no equipment is needed to excite the bridge. 
Al so by using thi s technique the service state o f the s trueture does 
not have to be interrupted. 

In this paper, as well as in the SIMCES project, the attention is 
focused on system identification techniques, which can deal with the 
ambient response case. The intention is to make a comparison o f four 
different system identification methods. The methods are the 
frequency domain peak-picking (PP) method, the polyreference 
LSCE (LSCE) method, a stochastic subspace identification 
technique for estimation of state space systems (SSI), and the 
prediction error method (PEM) applied to Auto-Regressive Moving 
Average Vector (ARMA V) models. 

There are several reasons why a comparison of different system 
identification techniques on operatianaJ data eannot be objective. 
Firstof all, there is the Jack o f a reference system, which means that 
the methods can only be compared relative to one another. The next 
problem is what to compare. Thisis a highly subjective choice that 
depends on the actual application. Some would claim that 
computational time is the most important parameter while others 
might emphasize the accuracy of e.g. estimated modal parameters 
instead. Some are only interested in e. g. the natura! frequencies and 
damping ratios, while others Iike to have a high resolution estimate 
of the mode shapes. In the modal analysis community the use of 
many sensors has for many years made the users emphasize the 
computationally fast techniques for system identification. However, 
in recent years, users and modal software companies have drawn 
their attention towards techniques that are perhaps more time 
consuming but which can provide more accurate results. At the same 
time techniques have been developed for optimizing the sensor 
positioning in order to reduce the number of required sensors. 
Combining thi s with the increasing speed o f computers, the issue of 
the computational time is perhaps not so important any more. 
Therefore, in this paper, emphasis is put on the assessment of the 
quality o f the estimated modal parameters. 

The test scenario in this paper involves a large number of sensors 
divided into several setups, and a large amount of measured data. 
This implies that the system identification techniques in this paper 
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are judged in terms of their ability to handle a large number of 
sensors and data points. It al so implies, that all the techniques have 
data enough to make i t possible to assess their asymptotic properties. 
Due to the Jack o f a reference system the comparison will not res u! t 
in the election o f a winner, but discuss the strong and weak sides o f 
the different techniques. The comparison will be based on the 
estimated natura! frequencies, damping ratios and mode shapes 
(Visual inspection and the Modal Assurance Criterion). 

The theory behind the tour different methods arebriefly reviewed in 
the chapter 2. In chapter 3, the test structure, the Swiss Z24 highway 
bridge, as well as the test procedure and the practical aspeels of 
using the four different methods, are presented. Chapter 4 presents 
the results, and in chapter 5 condusions are made. 

2 APPLIED IDENTIFICATION TECHNIQUES 

2.1 Peak-Picking 

A fast method to estimate the modal parameters o f a s trueture based 
on output-only measurements is the rather simple peak-picking 
method. The method is widely used and one practical 
implementation ofthe method was realized by Felber, see Felber [l]. 
In this implementation the natura! frequencies are determined as the 
peaks of the Averaged Normalized Power-Spectral Densities 
(ANPSDs). The ANPSDs are basically obtained by converting the 
measured data to the frequency domain by a Discrete Fourier 
Transform (DFT). The coherence function computed for two 
simultaneously recorded output signals has values close to one at the 
natura! frequencies, see Bendat et al. [2]. This faet also helps to 
deeide which frequencies can be considered natura!. The components 
of the mode shapes are determined by the values of the transfer 
functions at the natura! frequencies. Note that in the context of 
ambient testing, transfer function does not mean the ratio of 
response over force, but rather the ratio o f response measured by a 
roving sensor over response measured by a reference sensor. So 
every transfer function yields a mode shape component relative to 
the reference sensor. It is assumed that the dynamic response at 
resonance is only detemuned by one mode. The validity of this 
assumption increases as the modes are better separated and as the 
damping is lower. The method has been used successfully at EMPA 
for a large amount of structures, see Felber et al. [3]. 

2.2 Polyreference LSCE applied to Auto- and Cross-Correlation 
Functions 

On the assumption that the system is excited by stationary white 
noise it has been shown that correlation functions between the 
response signals can be expressed as a sum of decaying sinusoids, 
see James et al. [4]. Each decaying sinusoid has a damped natura! 
frequency and damping ratio that is identical to that of a 
corresponding structural mode. Consequently, the classical modal 
parameter estimation techniques using impulse response functions as 
input like Polyreference LSCE, Eigensystem Realization Algorithm 
(ERA) and Ibrahim Time Domain are also appropriate tor extracting 
the modal parameters from response-only data measured under 
operatianaJ conditions. This technique is also referred to as NExT, 
standing tor Natura! Excitation Technique, see James et al. [4]. In 
this paper the discussion will be linlited to polyreference LSCE. 

Tb e rorrelation functions between the outpuls and a set o f outpuls 
serving as references are defined as: 

R - E[ ' 'T J ffi./x/,.,1 
k- )k+m }rt~f;m E (l) 

y k E ffi.
1
x

1 is the output vector containing l channels, Y,,.
1
;k E ffi.

1
''1x

1 
is a 

subset of y k containing only the l"c~ references, and E(•] denates the 
expected value. The correlation functions can be estimated by 
replacing the expected value operator in (l) by a summation over the 
available measurements. Another way to estimate the correlation 
timetions can be implemented by taking the inverse DFT of power­
and cross-spectral densities which are calculated o n the basis o f the 
DFT and segment averaging. Although this metl1od is faster than 
perfornling the calculation in the time domain, it is Jess accurate as 
it suffers from leakage. 

The polyreference LSCE yields global estimates of the pol es and the 
modal reference factors [5]. Mathematically, the polyreference LSCE 
will deearnpose the rorrelation functions as a sum of decaying 
sinusoids: 

(2) 

where ni' is the number of poles; ljl,EC1
x

1 is the r mode shape; 
A. =e~'~1 is the r camplex discrete system pole (related to the 
c~ntinuous system pole f.!,. and the sample time Åt); L,.EC

1
"1x

1 
is a 

vector of multipliers which are conslant for all response stations for 
the r mode. Notethat in conventional modal analysis, these conslant 
multipliers are the modal participation factors. In case of output-only 
modal analysis, they will be further referred to as the modal 
reference factors. I t can be proved that i f the correlation data can be 
deseribed by (2), i t can also bedeseribed by the foliowing model: 

RJ + Rk-1 Fl + · · · + Rk-tFt = O (3) 

i f the foliowing conditions are fulfilled: 
T ( k k-1 k-i ) L, A.J + A., F 1 + ... + A., F1 = O (4) 

(5) 

Equation (3) represents a coupled set of l,,.1 finite difference 
equations with conslant matrix coefficients ( F 1, . .. , F1 E ffi.

1
••Jxl,,l). The 

condition expressed by (4) states that the terms 'A,, L/ are 
characteristic solutions o f this system o f finite difference equations. 
As (3) is a superposition o f 2nl' o f such terms, i t is essen ti al that the 
condition given by (5) is fulfilled. 

Polyreference LSCE essentially comes down to estimating the matrix 
coefficient F 1, .. • , F1• Once these are known, (4) can be reformulated 
in to a generalized eigenvalue problem resulting in to l,,

1 
x i 

eigenvalues A.,, yielding estimates for the system potes f.!, and the 
corresponding left eigenvectors L,T Equations similar to (3) can be 
formulated for all possible rorrelations Rk. The obtained over­
determined set of equations can than be solved in a least squares 
sense to yield the matrix coefticients F1, ••• ,F1• The arder i of the 
finite difference equation is related to the number of modes in the 
data. Selection of the model order can be done by observing the 
least-squares error as a function o f the assumed order. As an orderis 
reached such that themodel can describe as many modes as present 
in the data, the error silould drop significantly. In practice, 
stabilisation diagrams are typically used to deternline the optimal 
number of modes. Frequencies, damping values and modal reference 
factors calculated from models of consecutive order are compared. 
The selection of outpuls which function as references for the 
estimation o f the empirical rorrelations (l) has to b e made in such a 
way that they contain all o f the relevant modal information. In faet, 
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the selection of output-reference channels is similar to choosing the 
input-reference locations in a traditional modal test. 

Contrary to the stochastic subspace and ARMAV methods (cf. the 
next two sections), the polyreference LSCE does not yield themode 
shapes. So, a second step is needed to extract the mode shapes using 
the identified modal frequencies and modal damping ratios. This can 
be done either by titting the correlation functions in the time do main 
or by titting the power- and cross-spectral densities in the frequency 
domain, see Hermans et al. [6]. The titting step offers the advantage 
that not all responses should be included in the time-domain 
parameter extraction scheme and that consequently, mode shapes of 
a large number of response stations can be easily processed by 
consecutively titting the data. Additionally, it provides a graphical 
quality check by overlaying the test data with the synthesized data. 

2.3 Stochastic Subspace Identification 

Unlike the two previous methods the stochastic subspace 
identification method directly works with the recorded time signals. 
The peak-picking method requires frequency domain data while the 
polyreference LSCE method needs the correlation functions between 
time signals. I t is beyond the scope o f thi s paper to explain in full 
detail the stochastic subspace identification method. The interested 
reader is referred to Van Overschee et al. [7,8], Kirkegaard et al. [9] 
and Peeters et al. [l O, Il] for the theoretical background and 
applications in civil engineering. Here only the main ideas behind 
the method are given. The method assumes that the dynamic 
behaviour of a structure excited by w hi te noise can be deseribed by 
a stochastic state space model: 

xk+l = Axk + wk 

h= Cxk + vk 
(6) 

where xkElR
2""x 1 

is the internal state vector; ni' is the number of 
poles; ykElR1

x
1 is the measurement vector and w k' v k are white noise 

terms representing process noise and measurement noise together 
with the unknown inputs; A ElR

2""x2
"" is the state matrix containing 

the dynamics of the system and CElR
1
x

2
"" is the output matrix, 

transiating the internal state o f the system into observations. 

The subspace method then identifies the state space matrices based 
on the measurements and by using robust numerical techniques such 
as QR-factorization, Singular Value Deearnposition (SVD) and least 
squares. Roughly, the QR results in a significant data reduction, 
whereas the SVD is used to reject the noise (assumed to be 
represented by the higher singular values). Once the mathematical 
description of the structure (the state space model) is found, it is 
straightforward to delermine the modal parameters (by an eigenvalue 
decomposition): natura! frequencies, damping ratios and mode 
shapes. 

2.3 ARMA V Estimation using a Prediction Error Method 

Just like the stochastic subspace identification method the Prediction 
Error Method for estimation of ARMA V models works directly with 
the recorded time signals. A detailed description of the Prediction 
Error Method is provid ed in L j ung [ 12] and Soderstram et al. [ 13], 
and a comprebensive description of the u se o fARMAV models in 
relation to civil engineering and mechanical applications is found in 
Andersen [14] and Pandit [15]. It can be shown that the ARMAV 
model can model the dynamics of a structure subjected to filtered 
white noise, see Andersen [14]. In other words, the only restrietions 

are that the structure behaves Iinearly and is time-invariant, and that 
the unknown input force can be modelled by a white noise filtered 
through a linear and time-invariant shaping filter. The definition of 
the ARMA V model is: 

Yk +Alyk-1 + ... +Anyk-n = 

ek +Blek-1 + ... +Bnek-n 
(7) 

where ykElR1
x

1 is the measurement vector and e k ElR1
x

1 is a zero-mean 
white noise vector process. The auto-regressive matrix polynomial 
is deseribed by the coefficient matrices A; E JR1

x
1

. Thi s polynomial 
models the dynamics o f the combined system, i. e. the modes of the 
structural system combined with the noise modes. The moving 
average matrix polynomial is deseribed by the coefficient matrices 
B;ElR1

x
1

. This polynomial ensures that the statistical description of 
the data is optimal. It can be shown that by adding this moving 
average the covariance function of the predicted output ykof the 
ARMA V model will be equivalent to the covariance function of y k, 

see Andersen et al. [16]. Themodel arder n depends on the number 
o f modes as well as on the dimension o f the measurement vector. 

The ARMA V model is calibrated to the measured time signals by 
minimizing the prediction error yk -yk' i.e. the difference between 
the measured time signals and the predicted output of the ARMA V 
model. The eriterion function V that is minimized is defined as, see 
Ljung [12] and Andersen et al. [17]: 

V= det(_!_ t (Yk -.Yk)(Yk -.Ykf) (8) 
N k= I 

This eriterion function can be shown to correspond to a maximum 
likelihood if the prediction errors are Gaussian white noise, see 
Soderstram et al. [13]. In this case the eriterion provides maximum 
accuracy [Soderstrom]. The presence o f the moving average makes 
it necessary to apply a non-linear optimization scheme. This 
minimization is started by pro vi ding an initial ARMA V model. In 
the present case this model is obtained by a stochastic subspace 
method, see Andersen [14]. Again, once the optimal ARMAY model 
is determined by a stabilizalian diagram, it is straightforward to 
delermine the modal parameters by a modal decomposition. 

3 TESTING OF THE Z24 HIGHW A Y BRIDGE 

The bridge, used as test object to compare the above mentianed 
system identification methods, is the Z24-bridge overpassing the 
national highway Al between Bern and Ztirich in Switzerland. lt is 
a prestressed concrete bo x girder bridge with a main span o f 30 m 
and two side spans of 14 m. The bridge is supported by 4 piers 
clamped into the girders. The two piers at the abutments are 
completely embedded in the ramps. The bridge is slightly skew: the 
axes of the piers arenot perpendicular to the longitudinal axis o f the 
bridge (deviation by 13°). 

3 .l Description o f the Acquired Data 

In total, 145 points were measured, mainly in the vertical and 
transverse direction. This amounted to 172 degrees of freedom 
(DOFs). The same number of channels would have been necessary 
to measure all the DOFs at the same time. As a maximum of 23 
channels were available the testing were divided into 9 setups. In 
each setup 19 different DOFs on the bridge were measured, along 
with 4 extra DO F s serving as references (3 in vertical direction and 
l in the transverse direction). These reference stations were 
measured again in each setup. The data were sampled at a rate of 
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80Hz and the analogue anti-aliasing filter had a cut-off frequency at 
20Hz. A total of65536 samples (13 min, 39.2 sec) wes acquired for 
each channel and each setup. Figure l shows the measurement grid 
of the bridge. 

Figure 1: Geometry ofthe bridge. 

An important observation was that the excitation was not the same 
for each setup. This can be seen from tigure 2, showing the power­
spectral densities of a tixed reference station for setups 2 to 7. 

et-up 2 

Hz 

Figure 2: Power-spectral densities of a reference station in 
vertical direction for setups 2 to 7. 

The ambient excitation sources of the bridge were wind and traftic 
on the highway. All setups were measured between 9 PM and 
midnight. The test crew o f EMP A o b served that the w ind di ed off to 
a probably insigniticant level a short time after the beginning o f the 
test. The traftic on the highway seerned to die off after about 9 to 
l O PM, pieked up again towards Il PM, and di ed out cl ose to 
midnight. More details concerning the bridge test can be found in 
Kramer et al. [18]. 

3.2 Practical Aspects of Using the Dijferent ldentification 
Techniques 

For the peak-picking method, 16 segments of 4096 data points were 
transformed to the frequency domain and averaged to estimate the 
power-spectral densities. So all measured data were used in this 
method. By applying the procedures deseribed in section 2.1, 
estimates of the natura! frequencies and mode shape parts were 
obtained. Every setup with 23 simultaneously recorded signals yields 
the mode shape at the corresponding 23 DOFs. The different parts 
were glued together using one o f the reference sensors (the choice o f 
the reference sensor depends on the nature of themode shape). 

The polyreference LSCE method was applied to the auto- and eross­
correlations of the responses. For each setup, the correlations 
between all responses and 3 responses in the vertical direction 
servingasreferences were calculated using equation (!). The number 
of estimated time lags equalled 256 which corresponds to a duration 
of 3.2 sec. The correlation fimetions were then fed to the LSCE 
method in order to extract the natura! frequencies and damping 
ratios. As the correlation tunetions of the different setups were 
referenced to the same 3 reference stations, they could be combined 
into one global model, yielding global estimates for the frequency 
and damping. Stabilisation diagrams showing the stability of the 
pol es as fimetion of increasing model order were used to distinguish 
the spurious modes from the physical ones. Next to this global 
analysis, the modal parameters were also separately extracted for 
each setup and a comparison o f the modal estimates was made. As 
the LSCE method does not yield the mode shapes, an additional step 
was needed. This was done by titting the power- and cross-spectral 
densities between the responses and the selected reference stations 
in a least squares sense. The power- and cross-spectral densities were 
estimated on the basis ofthe DFT and segment-based averaging. The 
segment size equalled 2048 time points and 50% overlap was used. 
A Hanning window was used to reduce the leakage effects. As the 
excitation was different for each setup, the mode shapes were 
separately identitied for each setup and glued together via the 4 
reference stations. For setup 5, the power-spectral den si ties of a few 
DOFs were difficult to fit, which leads to some irregularities in the 
animation of the mode shape. Al so, for most setups, the tit was poor 
for frequencies higher than 12Hz and consequently, the shape o f the 
fifth mode (cf. next section) could not be extracted with high 
contidence. 

For the stochastic subspace method it was not possible to treat all 
65536 samples x 23 channels of one setup at once. The 
computational time and memory needed can increase to an 
inadmissible level with an increasing number of samples and 
channels. Therefore the analysis for all setups was limited to a high­
quality segment of 4096 samples. If such a segment did not give 
satisfactory results, another segment was chosen afterwards to 
perform a new analysis. The number of time lags used in the method 
were 20; since there were 23 channels, the maximum number of 
singular values was 460 (20 x 23). Consecutive state spacemodels 
of dimension 2 to 60 in steps of 2 were identitied. From all these 
state space models, the modal parameters were extracted. 
Stabilisation diagrams were then used to distinguish the spurious 
modes from the physical ones. For every setup, seven modes could 
be identitied. 

To apply the prediction error method for estimation o f ARMA V 
models, an accurate initial estimate was needed. By supplying an 
accurate initial estimate the number o f ilerations needed was kept at 
a minimum and convergence was ensured. To provide such initial 
estimates, a subspace technique returning ARMA V models was 
applied, see Andersen [ 14]. The modal parameters o f inierest o f the 
initial ARMA V models were then refined, one mode at a time, by 
minimizing (8) in modal space, see Brincker et al. [19]. In the 
subspace estimation the number of time lags used were 30. All 
available data were used, i.e. up to 65536 samples x 23 channels per 
setup. The orders o f the applied ARMA V models were in the range 
from n= l to n=5. Again, due to the differences of the excitation 
from setup to setup, the mode shapes were separate! y identified for 
each setup and glued together via the 4 reference stations. 
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4 COMPARISON OF MODAL RESULTS 

The results of the comparison are presented in thi s section mode by 
mode. In the comparison of themode shapes only the sensors Iocated 
at the girder are included. These sensors are placed in three rows 
along the girder, which means that each mode shape can be 
represented by three curves. These three curves are plotted in the 
same tigure for all four techniques. Bel o w each o f these tigures the 
Modal Assurance Criterion between the four techniques is Iisted in 
a table. Also Iisted are the estimated natura! frequencies, damping 
ratios, and standard deviations. 

Five modes have been identitied by all four methods. The l st mode 
is a vertical bending mode. In the 2nd mode, the piers arebending in 
the transverse direction and the girder is submitted to torsion. The 
3rd and 4th modes are both combinations o f bending and torsion. 
The 5th mode is a bending mode with very active side spans 
compared to the mid-span. For this reason, this mode is not very 
identitiable at the measurement points of setup 5 (The mid-setup). 
Two higher-frequency modes have been identitied by both SSI and 
PEM, but they are omitted in the foliowing comparison, since the 
two other methods have not identitied them. 

Figure 3: Comparison o f the l s t mode shape - All f o ur methods. 

p p LSCE SS! PEM 

p p l 0.9999 0.9999 0.9999 

LSCE 0.9996 l 0.999R 0.999R 

SS! 0.9999 0.9998 l l 

PEM 0.9999 0.9998 l l 

Tabte 1: Modal Assurance Criterion of the lst mode shape. 

f. [Hz] (, ['-l] o1,[Hz] o,,l\1·] 

p p 3.96 

LSCE 3.95 l. O ll.lll 11.2 

SS! 3.93 1.1 0.02 0.5 

PEM 3.95 1.1 0.01 0.3 

Tabte 2: The natura! frequencies and damping ratios of the l s t mode. 

Figure 4: Comparison of the 2nd mode shape -All four methods. 

p p LSCE SS! PEM 

p p l 0.9907 0.9923 0.9945 

LSCE 0.9907 l 0.9RR2 0.9R6R 

SS! 0.9923 0.9RR2 l 0.9909 

PEM 0.9945 0.9R6R 0.9909 l 

a e : o a T bl 3M d JA ssurance c ntenon o t e n mo es fh 2d d h ape. 

f.[Hz] (, ['il] o1,[Hz] 0(,['11] 

p p 5.27 

LSCE 5.23 LX 11.02 lU 

SS! 5.22 1.4 11.02 lU 

PEM 5.24 1.7 0.02 0.5 

Tabte 4: The natura! frequenc1es and dampmg ratws of the 2nd mode. 

Figure 5: Comparison o f the 3rd mode shape - All f o ur methods. 

p p LSCE SS! PEM 

p p l 0.9957 0.9952 0.9962 

LSCE 0.9957 l 0.9941 0.9972 

SS! 0.9952 0.9941 l 0.9972 

PEM 0.9962 0.9972 0.9972 l 

a e : o a T bl 5 M d lA ssurance c ntenon o t e.r m o e s fh 1d d h ape. 

.f. [Hz] (, ['!.] o1,1Hz] o,, l%] 

p p 10.20 

LSCE 10.10 1.4 0.03 0.4 

SS! 10.10 1.4 0.1>4 0.4 

PEM 111.09 1.3 0.05 0.5 

Tabte 6: The natura! frequencies and dampmg rallos of the 3rd mode. 
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Figure 6: Comparison of the 4th mode shape- All four methods. 

p p LSCE SSI PEM 

p p l 0.9~12 0.9H56 0.9771 

LSCE 0.9~12 l 0.9906 11.9913 

SSI 0.9R5fi 11.9906 l 0.9956 

PEM 0.9771 0.9913 0.995(1 l 

a e : o a T bl 7 M d l A ssurance c ntenon o t e t mo es fh 4h d h ape. 

f [Hz] (. [%] o1,[Hzj o(,l'if·] 

p p IO.R2 

LSCE lll.73 l.fi 0.05 0.5 

SSJ 111.75 1.2 0.03 0.3 

PEM 10.74 !.1 ().(15 0.3 

Table 8: The natura! frequenctes and dampmg rallos of the 4th mode. 

* ~ ,. 
....... ·~ 

t 
Figure 7: Comparison ofthe 5th modeshape-All four methods. 

p p LSCE SS! PEM 

p p l 0.9749 0.9753 

LSCE 

SSI 0.9749 l 11.9944 

PEM fl. Y? 53 0.9944 l 

a e : o a T bl 9 M d lA ssurance c ntenon o t e t mo e s fh 5h d h ape. 

j; [Hz] (, 1'>1 o1,1Hz] o(,l'> J 

p p 12.~ 

LSCE 12.~ 3.7 0.211 l. O 

SS! 12.R 2.1 (J.] (J O.fi 

PEM 12.7 3.R 11.115 l. O 

Table 10: The natura! frequenetes and dampmg ratws o f the 5th mode. 

In general, all methods seems to agree very well on the natura! 
frequency estimates of the firs! five modes. Even the damping ratio 
estimates correspond fairly well for three of the methods. The 
damping ratios have not been estimated in the peak-picking method, 
even though a halfband-width estimation approach could have been 
applied. In any case, such an approach would probably not provide 
comparable estimates. 

Themode shape estimates of the two time do main methods, the SSI 
and the PEM, tend to return similar mode shape estimates. The same 
can be said about the two other methods, which both estimates the 
mode shapes in frequency domain. Not surprisingly, it is the firs! 
mode that the methods agrees most o n. Thi s mode is shown in three 
dimensions in figure 8. 

Figure 8: Mode shape of the l st mode (bending) obtained by the SSI 
method. 

The advantages ofthe peak-picking method are that it is easy to use 
and provides fast estimates. However, the damping has not been 
estimated, and since no parametric model is calibrated, the mode 
shapes are in faet only operational detleetion shapes. In the present 
case, where all modes are well-separated, detleetion shapes seem to 
approximate the mode shapes well. The advantage of the LSCE 
method is its ability to identify modal parameters globally, even 
when data is divided into multiple setups. In the present case, it is 
seen to provide sound estimates of the natura! frequencies and 
damping ratios that are comparable with the two other time domain 
methods. Since themode shapes are estimated in frequency domain 
they aremore camparable with the peak-picking method than the two 
time domain methods. 

The time domain methods havethead vantages of operating directly 
on the measured time signals. However, they are a bit more 
complicated to use, and more time consuming. Different model 
orders have to be evaJualed in order to delermine the optimal one. 
However, stabilisation diagrams and other model validation 
techniques can be of aid to the user. The SSI method solves the time 
and memory problem by reducing the amount of data used in the 
analysis. The PEM method and the initial subspace estimator of 
ARMA V models both u se all available data. However, due to the 
high quality data this does not seem to improve the modal parameter 
estimates signiticantly. 

A final remark could bethat peak-picking and other non-parametric 
methods are fast, easy to use and give reasonable estimates. They 
should be applied firs! to give the user a quick look at the dynamic 
performance. If the user wants more accurate information, as well as 
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additional information that eannot be provided by non-parametric 
methods, then he or she can apply one of the more sophisticated time 
domain methods. 

5 CONCLUSIONS 

In this paper the performance o f four different system identification 
methods have been compared and discussed. The four methods are 
the frequency domain based peak-picking methods, the polyreference 
LSCE method, the stochastic subspace method for estimation of state 
space systems and the prediction error method for estimation of 
Auto-Regressive Moving Average Vector models. 

The comparison reveals that all methods give reasonable estimates 
o f the natura! frequencies and mode shapes. Three o f the methods 
also return camparable estimates of the damping ratios. The 
ad vantages of some of the methods are their simplicity and ability to 
provide fast estimates, whereas the ad vantages o f the other methods 
are their ability to provide accurate estimates of the modal 
parameters. 

It has not been the intention to elect a winner among the four 
methods. The preferable method depends solely on the actual 
application. Also, in practical application several of the methods can 
compiement one another. 
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