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Abstract. Without reliable software metrics threshold values, the efficient quality

evaluation of software could not be done. In order to derive reliable thresholds,

we have to address several challenges, which impact the final result. For instance,

software metrics implementations vary in various software metrics tools, including

varying threshold values that result from different threshold derivation approaches.

In addition, the programming language is also another important aspect. In this

paper, we present the results of an empirical study aimed at comparing system-

atically obtained threshold values for nine software metrics in four object-oriented

programming languages (i.e., Java, C++, C#, and Python). We addressed challenges

in the threshold derivation domain within introduced adjustments of the benchmark-

based threshold derivation approach. The data set was selected in a uniform way,

allowing derivation repeatability, while input values were collected using a single

software metric tool, enabling the comparison of derived thresholds among the cho-

sen object-oriented programming languages. Within the performed empirical study,

the comparison reveals that threshold values differ between different programming

languages.
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1. Introduction

Measurement is a key component for good software engineering, important for under-

standing, control and improvement [9]. It is performed with software metrics that facili-

tate the monitoring of the achieved quality level [19]. As defined, the software metric is

a quantitative measurement of the degree to which an evaluated entity possesses a spe-

cific attribute [17]. Many different object-oriented software metrics have been introduced

[18,29,6,3,24]. However, their use in practice, especially within software quality evalua-

tion, is limited, since reliable threshold values have not been proposed, [19,10,1].

Evaluating software quality with software metrics thresholds is a known approach

[29]. When software metric values of the assessed software entity exceed the threshold

values of the evaluated software metrics, this indicates potential problems in the form of

code deficiencies or smells, non-optimal source code, or different structural problems. In

the study by Beranič et al. [5], identification of deficient code was done using the com-

bination of software metrics and corresponding threshold values. The performed expert
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judgment confirmed the efficiency of identification based on derived thresholds, since,

by using the highest threshold, the proposed evaluation resulted in the detection of truly

deficient software classes.

Since efficient software quality evaluation can be done only with reliable threshold

values, the process of threshold derivation is very important. Different approaches for

deriving threshold values are proposed in the literature [4], including approaches based

on benchmark data, like [19,10,1,30,13,21]. They use software metric values as an input,

and provide concrete threshold values for selected software metrics. Resulting thresholds

vary between studies, and besides, generally applicable and accepted threshold values

cannot be found within related work. This may be due to the different challenges which

exist in the domain of software metrics threshold derivation.

When deriving threshold values, it is crucial that the input data sets are transparent,

and that they are gathered in a systematic and uniform way. With this, the reliability

of the results is increased and repeatability of calculations is achieved. Different soft-

ware metric tools are available that enable the collection of software metric values. How-

ever, the implementation of the same software metric often varies within different tools

[31,10,13,44,22,14,33], resulting in different values for the same software metric using

the same input data. In various software metric tools, a set of supported metrics differs

and, additionally, new tool-specific software metrics can be detected. Available software

metric tools rarely enable the collection of software metric values for more than one pro-

gramming language, wherein the broadest support is available in the Java programming

language [4]. The above-mentioned challenges affect the derivation of software metric

threshold values directly, especially when using benchmark-based approaches, where the

gathered metric values present an input data set into the threshold calculation step.

Also, different approaches for software metric threshold derivation based on bench-

mark data are available in existing literature. Each has its own characteristics, that are

reflected in differing threshold values, though the input data set is the same. In our pre-

liminary research, we compared threshold values derived by using approaches by Ferreira

et al. [10], Oliveira et al. [30] and Alves et al. [1], and confirmed that the derived thresh-

olds vary. This was also confirmed by Yamashita et al. [44], where they observed that the

derived thresholds would differ if a different derivation approach were to be used. Hence,

to provide comparable results, it is important that only a single derivation approach is

used.

The prevalence of the Java programming language within software metric tools is also

detectable between existing threshold derivation approaches, where most of the threshold

values are derived for Java, while other object-oriented programming languages are not

covered. The only exceptions, using the benchmark based threshold derivation approach,

are the studies by Alves et al. [1], which derived threshold values for C#, and by Lanza

and Marinescu [19], who derived threshold values for the C++ programming language.

Though some individual examples of derived thresholds exist, the systematic analysis of

threshold values between programming languages was not detected.

Based on the presented background, our research pursued the following research

question: Do software metric threshold values differ between different object-oriented

programming languages? We analyzed if the programming language has an influence

on the derived threshold values. The presented research work describes a systematic

threshold derivation, which enables a reliable analysis and comparison of software met-
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ric threshold values. In the paper, software metric threshold values are derived for four

object-oriented programming languages, namely Java, C++, C# and Python. Considering

the above-mentioned challenges, the derivation was conducted using a single threshold

derivation approach within all of the selected programming languages. Thresholds were

derived for nine class level software metrics. Metric CountLineCode, that counts the num-

ber of lines of code in a class, AvgLineCode, expressing the average size of methods in

a class, metric SumCyclomatic, presenting the sum of cyclomatic complexities of all the

methods in a class, AvgCyclomatic, expressing the average value of cyclomatic complex-

ity in the methods of a class, metric MaxNesting, measuring the maximal nesting level

in a class, CountClassCoupled, counting the classes to which a class is coupled, soft-

ware metric PercentLackOfCohesion, expressing the lack of cohesion in a class, metric

CountDeclMethodAll, counting the number of methods in a class, and metric MaxInher-

itanceTree, expressing the maximum depth of a class in the inheritance tree. Benchmark

data was collected systematically, and input values were collected using a single software

metric tool. With this, the comparison of derived software metric threshold values be-

tween programming languages was enabled, and a replication of the performed derivation

approach was provided.

The structure of the paper consists of the following parts. Chapter 2 presents related

work, followed by Chapter 3, presenting a threshold derivation approach that is based on

a statistical distribution of benchmark data. In Chapter 3, adjustments to the approach

are proposed, and the tools and data sets used within the empirical study are presented.

Chapter 3.3 describes the calculation of thresholds, covering the distribution analysis of

input values, resulting in concrete threshold values. Later, an analysis and comparison of

derived threshold values are presented in Chapter 4. Limitations and threats to validity are

presented at the end.

2. Related work

Software quality evaluation with software metrics can be done only when reliable thresh-

old values are defined. Different approaches for deriving threshold values are available in

the literature [4]. Fontana et al. [13] categorizes derivation approaches into (1) approaches

based on observations, (2) error-based approaches, (3) approaches using machine learn-

ing and, (4) approaches that derive thresholds based on a statistical analysis of benchmark

data. In the presented research, we focus on the latter.

Table 1 lists derivation approaches based on benchmark data. The approach proposed

by Lanza and Marinescu [19] derives threshold values using the mean and standard de-

viation, but the distribution of input data sets is not considered. On the other hand, the

majority of studies consider the assumption that software metrics values usually follow

a power law distribution [10,30,38,1,7], since distribution has a significant impact on

software metric interpretation [38]. The distribution is also considered by Lavazza and

Morasca [20]. Although they use the mean and the standard deviation, an improvement

is proposed that enables the use of data that does not follow a normal distribution. Ap-

proaches by Ferreira et al. [10], Oliveira et al. [30], Alves et al. [1], Lima et al. [21],

Vale and Figueiredo [41] and Vale et al. [42] consider the fact that software metric values

usually do not follow a normal distribution, leading to the inapplicability of methods con-

nected to normal distribution [1,38]. Ferreira et al. [10] identify threshold values for six
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Study Programming language(s)

Alves et al. [1] Java, C#

Ferreira et al. [10] Java

Filo et al. [12] Java

Fontana et al. [13] Java

Lanza and Marinescu [19] Java, C++

Lavazza and Morasca [20] Java

Lima et al. [21] Java

Oliveira et al. [30] Java

Vale and Figueiredo [41] SPL benchmark (FH-Java, AHEAD, FH-JML)

Vale et al. [42] SPL benchmark (FH-Java, AHEAD, FH-JML), Java

Table 1. Literature proposing software metric threshold derivation approaches

object-oriented software metrics reflecting a common practice. Filo et al. [12] introduced

two improvements to the approach presented by Ferreira et al. [10], the modification of

the ranges names, and the use of two percentiles, dividing the values into three areas.

Alves et al. [1] propose an approach using weighting according to the size of the entities,

wherein the approach was an inspiration for the work by Fontana et al. [13]. Fontana et

al. [13] define thresholds for the metrics used in the code smell detection rules. Lima et

al. [21] addressed the area of threshold derivation for annotations in the Java program-

ming language, and Vale and Figueiredo [41] present a threshold derivation approach in

the software product lines context. In the study [42], Vale et al. generalize the approach

by using a benchmark composed of 103 Java open source projects. The major difference

according to other available studies is that Vale et al. [42] also extract the lower bond

thresholds, namely the 3rd and 15th percentiles. Oliveira et al. [30] introduce the concept

of the relative threshold, implemented in an RTTool [31]. Another threshold derivation

tool, a TDTool, is presented by Veado et al. [43].

As seen in Table 1, the threshold values are mainly derived for the Java programming

language. In rare cases, thresholds are derived for two or more languages, as in [1,19,42].

However, the empirical comparison of threshold values between programming languages

was not found within the related work.

The studies were done in order to define the impact of different contextual factors on

derived threshold values, or on the distribution of software metric values. Ferreira et al.

[10], in an experiment, analyzed the impact of thematic domains in gathered benchmark

data. As they observed, there is only a slight difference between the thresholds derived

using a full data set and thresholds derived within each of the thematic domains [10]. Even

more, the results show that software metric values follow the same probability distribution

regardless of the application domain. Mori et al. [28] also analyzed the impact of domains

on derived thresholds. In contrast to the study described above, they found evidence that

software metrics thresholds are sensitive to the software domain, but we can still find

domains that have similar thresholds for some of the analyzed software metrics [28].

On the other hand, Dósea et al. [8] conducted an empirical study regarding design

decisions influencing the distribution of software metrics. As they conclude, the design

roles affect the distribution of metric values, wherein design roles include architectural

roles and classes with application-specific responsibility that are not connected to any

specific reference architecture [8]. The impact of programming language on the distri-

bution of software metrics values was included in the study by Zhang et al. [45] and a
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study by Gil and Lalouche [15]. Zhang et al. [45] present a study about the impact of

different contextual factors on maintainability metrics. They found out that application

domain, programming language, and the number of changes, are the most influential fac-

tors regarding the distribution of software metric values [45]. They use the data from 320

software projects, selected randomly from SourceForge, but they were not represented

equally for each of the used programming languages, which can have a great impact on

the validity of results. A similar study was done by Gil and Lalouche [15], where they

found out that every project is different, therefore, measurement in one project could not

be used for making predictions in another software project.

Namely, the challenges connected to benchmark data present one of the biggest chal-

lenges when using benchmark based threshold derivation approaches. Considering the

above-mentioned challenges, we collected the data in a systematic way, where each pro-

gramming language is represented equally and selected software projects correspond to

the whole population of open-source software available on the chosen online repository.

Moreover, to avoid the impact of a specific software project on a final result, we gathered a

large set of benchmark projects, since Lochmann [23] found out that, with large numbers

of data, the diversity of areas and the variance of results decreases correspondingly.

Our research work aims at providing a comparison of the software metrics threshold

values for the object-oriented programming languages, namely Java, C++, C# and Python,

considering known challenges. The comparison is based on the performed analysis of sys-

tematically derived threshold values for nine software metrics. By adopting and adjusting

the existing derivation approach based on benchmark data and considering the distribu-

tion of software metric values, thresholds are calculated based on systematically collected

benchmark data and uniformly collected input values.

3. Threshold derivation approach

As presented in the related work, software metric values are used as an input in different

threshold derivation approaches. Lanza and Marinescu [19] do not consider data distribu-

tion, and Lavazza and Morasca [20], despite the presented changes, do not consider fully

the distribution of software metric values. Vale and Figueiredo [41] and Vale et al. [42]

present a method that also derives the lower thresholds that are not a priority when identi-

fying deficient source code, and Lima et al. [21] present an approach targeting annotation

for Java programming languages. Therefore, only papers by Alves et al. [1], Oliveira et al.

[30] and Ferreira et al. [10], with improvements presented by Filo et al. [12], that present

derivation approaches and resulting in concrete threshold values used for the evaluation of

software projects, were selected for a detailed analysis. Approaches are similar, wherein

Alves et al. [1] weigh the program entities based on their size expressed with lines of code

software metric, Ferreira et al. [10] consider the frequency of a specific software metric

value, and Oliveira et al. [30] introduce the concept of a relative threshold. As shown by

the performed comparison, weighing by size results in very high threshold values, and

the approach presented by Oliveira et al. [30], with the exception of the newly presented

concept, resulted in threshold values consistent with thresholds provided by the approach

proposed by Ferreira et al. [10].

We decided to adopt the approach presented by Ferreira et al. [10]. The approach

focuses on the statistical properties of analyzed data and object-oriented programming
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languages. Thresholds are defined according to the frequency concept within the bench-

mark data. The proposed approach can be summarized with the following steps [10]:

1. The software metrics values of selected benchmark projects are gathered, forming an

input data set.

2. The distribution of software metrics values is determined for each metric, using a

visual analysis, and by using a distribution fitting tool.

3. The thresholds are derived based on the best-fitted distribution. If representative val-

ues exist for a best-fitted distribution, it is defined as the threshold. Otherwise, three

areas are determined using a visual examination:

– The Good area joins the values of software metrics with a high frequency of

occurrence. Those values are used most commonly in practice.

– The Regular area represents an intermediate zone, joining the values that are not

commonly used, and, on the other hand, are also not very rare.

– The Bad area joins values with a very low frequency of occurrence.

In the performed experiment, Ferreira et al. [10], with the use of derived thresholds,

identify software classes with structural problems, wherein a bad value indicates the ex-

istence of design problems, and a good value indicates the absence of structural problems

in a class.

The approach was repeated and upgraded by Filo et al.[12]. They introduced two main

improvements. The first is connected to the identification of thresholds. Instead of using

the visual identification, Filo et al. [12] introduced the use of two percentiles that di-

vide the values into three areas. The percentiles are points dividing values into 100 equal

parts [11]. The use of percentiles was adopted from Alves et al. [1]. The second improve-

ment is connected to threshold naming. They complement existing names to achieve a

better understanding of each defined threshold. The names of the ranges are as follows:

good/common, regular/casual and bad/uncommon, but the use of derived software met-

rics’ thresholds for identification of the anomalous values indicating a potential problem

in source code, remains unchanged [12].

3.1. Adjustments of the adopted approach

Based on the analysis of the replicated approach presented by Ferreira et al. [10] and im-

provements introduced by Filo et al. [12], we propose some additional adjustments for the

adopted threshold derivation approach. When software metric thresholds are fied using the

presented steps, a few challenges arise. The first one is related to the fication of threshold

values that limit the mentioned areas. A visual examination was already replaced by the

use of two percentiles in the study presented by Filo et al. [12]. Adapted from Alves et al.

[1], they use the 70th and 90th percentiles to form three risk areas, although the primary

study by Alves et al. [1] proposed the use of three percentiles, i.e. 70th, 80th and 90th to

form four risk areas.

We propose an adjustment of the replicated approach by using two or three percentiles,

depending on the input data range and suitability of values. If the software metric values

occupy a wide range of data, thresholds can be determined with three percentiles: 70th,

80th and 90th. If the values occupy a limited range of data, thresholds should be fied with

two percentiles: 70th and 90th, and the very high risk area should not be included. Also, to
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exclude any subjectivity and to gain accuracy, we propose that the fication of percentiles

is done based on raw data sets instead of the visual examinations used by Ferreira et al.

[10] and Filo et al. [12].The detailed steps of the used threshold derivation approach are

presented within algorithm 1.

Algorithm 1 Threshold derivation process

1: collect and prepare input data set for each software metrics SM1...i

2: for each software metric SM1...i do

3: collect descriptive statistics

4: obtain kurtosis and skewness

5: analyze collected data set

6: verify normal distribution

7: end for

8: for each software metric SM1...i do

9: find best fitted distribution

10: verify heavy tail distribution

11: end for

12: for each software metric SM1...i do

13: derive threshold value T1...i

14: if distribution equals power law then

15: determine thresholds value T1...i regarding the distribution

16: using 70th percentile determine low risk area

17: using 70th and 80th percentile determine moderate risk area

18: using 80th and 90th percentile determine high risk area

19: using 90th percentile determine very high risk area

20: else

21: determine thresholds value T1...i regarding the distribution

22: using threshold values determine risk area

23: end if

24: end for

Filo et al. [12] complemented the naming of areas proposed by Ferreira et al. [10]

to increase the understanding of the derived thresholds. The proposed names reveal the

frequency of use of values within each area, whereas we propose renaming the areas to

express the risk each area represents within the context of quality evaluation. The naming

was suggested by Alves et al. [1] and is based on the risk perspective. We propose the

following naming of the fied areas:

– low risk, ≤70th,

– moderate risk, >70th and ≤80th,

– high risk, >80th and ≤90th and

– very high risk, >90th.

The formed areas express the risk that an evaluated program entity includes irregu-

larities in the context of different smells, specific structural problems, or potential defi-

ciencies. The low risk area is determined with the 70th percentile, therefore, coinciding

with the good/common area, as proposed by Filo et al. [12], indicating the absence of

structural problems in a class. On the other hand, if a very high risk area coincide with

a bad/uncommon area, this indicates the existence of design problems within the chosen

software entity. The described risk areas were used in the study by Beranič et al. [5] for

the detection of deficient source code. The study detects deficient software entities based

on the combination of quality aspects, increasing the reliability of the identification. Since

the use of only one software metric covers a single quality dimension, the use of a combi-

nation is crucial for reliable results. The expert judgment performed within the evaluation
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of the proposed approach confirmed that software entities that have the majority of metric

values in the area of very high risk, are evaluated accurately as deficient.

3.2. Selection of tools and data set for the empirical study

Within threshold derivation, one of the well-known challenges is how to provide com-

parable results between selected programming languages, and this constitutes precisely

the key driver of our research. We aimed at providing threshold values for the same soft-

ware metrics in four different programming languages. To overcome the distinctive def-

initions of software metrics within various software metric tools, the input data set into

the derivation process should be gathered using a single software metric tool. Based on

the performed analysis, we chose an Understand tool [35], that supports the collection of

software metric values for multiple programming languages [36]. With this, the risk was

addressed and eliminated of providing varying, tool dependent values for the same met-

ric. Besides, collecting values with a single software metric tool enables a more objective

comparison among different programming languages.

In the threshold derivation approach, the statistical properties of the input data set

were assessed with an SPSS tool [16], and by using R [32]. The best fitted distribution

according to the input data set was found with the EasyFit tool [26], and the fication of

thresholds was obtained from software metric values using the SPSS tool [16].

The second major challenge that has to be addressed when calculating thresholds us-

ing a benchmark data approach is the input data set. To provide reliable thresholds, the

input data has to be diverse, extensive and transparent. As Lochmann [23] found out, when

the input data set is larger, the diversity of areas and the variance of results decreases cor-

respondingly. Therefore, a large benchmark base reduces the impact of randomly selected

software products [34,23]. To determine the optimal size of input data set, we reviewed

studies deriving threshold values from benchmark data. The number of software projects

used by each study is presented in Table 2.

Study Number of software projects

Alves et al. [1] 100

Arar and Ayan [2] 10

Ferreira et al. [10] 40

Filo et al. [12] 111 (from Qualitas Corpus [40])

Fontana et al. [13] 74 (from Qualitas Corpus [40])

Mori et al. [28] 3,107

Oliveira et al. [30] 106 (from Qualitas Corpus [40])

Yamashita et al. [44] 4,780

Vale et al. [42] 103 (from Qualitas Corpus [40])

Table 2. Number of projects used as benchmark data within the threshold derivation

process

Oliveira et al. [30], Fontana et al. [13], Filo et al. [12] and Vale et al. [42] used projects

from Qualitas Corpus [40], whereas Alves et al. [1] used 100 software products, including

open source and proprietary solutions. Yamashita et al. [44] also used the combination

of open source and industrial software solutions, wherein 205 projects were proprietary
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and 4,757 projects were open source projects. Mori et al. [28] included 3,107 software

systems divided into 15 domains, since their focus was to analyze the impact of domains

on derived threshold values. On the other hand, Ferreira et al. [10] and Arar and Ayan [2]

used a smaller benchmark, including 40 and 10 projects, respectively.

Summarizing the collected numbers, we decided to use 100 software projects and use

the obtained values of software metrics as an input data set for threshold derivation. Since

we derived thresholds for the programming languages Java, C++, C# and Python, the use

of Qualitas Corpus collection [40] was not possible. The collection combines software

developed in the Java programming language, and, not knowing the conditions by which

the software projects were chosen, a comparable suite for the other three programming

languages could not be gathered.

We formed a reusable suite of software products that enables repeatability, and con-

tributes to the objectivity of the presented empirical research. The suite includes 400 soft-

ware projects, 100 in each of the selected programming languages. The list of used soft-

ware products is available at: https://bit.ly/2RIQhle. Since software projects were chosen

and gathered systematically, it allows a reliable comparison of derived thresholds.

In the implemented study, only open source software was used. We collected the input

software solution from SourceForge [39], that allows categorization of software projects

using different criteria, e.g., programming language, operating system, license, user inter-

face and others. Also, software projects are categorized into different thematic domains,

where each domain includes a different number of projects. Therefore, the ratio within

every programming language was transferred to the selected sample of 100 projects to

keep a ratio of the population. The impact of application domains on benchmark data set

values was studied by Ferreira et al. [10]. Thresholds were derived using the benchmark

data from 11 application domains. The results show that software metric values follow the

same probability distribution, regardless of the application domain, and that there is only

a slight difference between the thresholds derived for the used domains and the thresh-

olds derived using a full data set [10]. As they conclude, regardless of the observed minor

differences, the general results can be used for all application domains [10].

Within the scope of our experimental study, the selection of software projects was

performed in several steps. In the first step, we applied the programming language filter,

therefore, four lists were formed, a list of Java, C++, C# and Python projects. In the second

step, we applied different filters to the project lists to fy only those projects that are reg-

ularly maintained and stable, which suggests that they follow best software development

and maintenance practices. We considered criteria related to status and freshness, which

were chosen by using the following filters: (1) status - production/stable, (2) freshness -

recently updated. The third step sorted the filtered software projects by their popularity in

descending order, forming another filter for fication of stable projects. In the fourth step,

ordered and filtered lists were divided into different thematic domains using a category

filter, and producing a final input list into the software selection step. In the fifth step, the

corresponding number of software projects were chosen from each category, considering

the ratio accessible in the population. The data about each project were documented, and

the actual version of source code was downloaded. Each project got a unique fication key

that allows for traceability across a derivation approach.

The descriptive statistic of the established reusable suite is presented in Table 3. It

presents the statistics for selected software projects for each of four programming lan-
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# files # classes # lines # code lines

Java

Min 12 12 1,511 957

Max 18,469 22,837 4,897,144 2,823,916

Avg 1,436.1 2,266.3 314,915.9 184,994.5

C++

Min 6 1 1,236 687

Max 26,517 34,718 10,032,886 5,996,402

Avg 1,644.8 987.4 542,526.0 312,326.8

C#

Min 5 4 570 378

Max 7,656 10,422 1,311,745 857,729

Avg 529.3 686.4 124,241.2 80,875.4

Python

Min 6 1 2,139 1,114

Max 4,167 10,085 915,078 583,278

Avg 287.8 587.9 82,126.5 54,830.1

Table 3. Descriptive statistics of selected software projects in a reusable suite

guages, presenting the minimum, maximum and average values of the number of files,

classes, the total number of lines, and number of lines of code.

Since the methodology of the selection of software products is presented and doc-

umented systematically, it can be repeated, and, with this, the formed suite of software

projects can be extended to other programming languages.

3.3. Calculation of threshold values

The focus of our research was on deriving threshold values for class level software met-

rics. As presented in Chapter 3.2, a reusable suite of software products was established,

including 400 software products, 100 for each of the selected programming languages. For

every software project in the suite, software metrics were collected with the Understand

tool [35]. Input files were prepared according to guidelines presented by the replicated ap-

proach [10], wherein the input file for the Java programming language included 206,730

records, the file for C++ 98,762 records, the file for C# had 81,293 records and the input

file for Python included 60,462 records.

The Understand tool [35] allows for the collection of 102 software metrics, evaluating

different levels. Our study is limited to Java, C++, C# and Python. Since all software

metrics are not supported in all programming languages, meaning that the support for

Python is limited, we decided to calculate thresholds for nine software metrics:

– CountLineCode - number of lines of code in a class,

– AvgLineCode - average size of methods in a class in lines of code,

– SumCyclomatic - the sum of cyclomatic complexities for all the methods in a class,

– AvgCyclomatic - the average value of cyclomatic complexity in the methods in a class,

– MaxNesting - the maximal nesting level in a class,

– CountClassCoupled - number of classes to which a class is coupled,

– PercentLackOfCohesion - the lack of cohesion in a class,

– CountDeclMethodAll - number of methods in a class, including inherited ones, and

– MaxInheritanceTree - the maximum depth of a class in the inheritance hierarchy.
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Metrics evaluating size and complexity are probably the most widely used software

measurements [19]. Size-related software metrics are aimed to quantify the size of a

software [37], for example, the metric CountLineCode expresses the number of lines of

source code in a chosen software class, excluding blank lines and comment lines, and

AvgLineCode expresses the average method size in a class, expressed with the number

of lines of code. Related to the latter, is also the metric CountDeclMethodAll, counting

all the methods within a class, taking into account inherited methods [36]. McCabe [27],

in 1976, introduced a complexity measure known as Cyclomatic Complexity. SumCyclo-

matic and AvgCyclomatic are measuring complexity, wherein SumCyclomatic expresses

the sum of cyclomatic complexities of all the methods in a class, and metric AvgCyclo-

matic gives an overview, expressing the average value of cyclomatic complexity of all the

methods in a class. Another aspect affecting the complexity of a program entity is covered

by metric MaxNesting [46], expressing the maximal nesting level in a class.

In addition to the above-mentioned software metrics, thresholds were also derived

for different object-oriented software metrics. Chidamber and Kemerer [6] proposed a

metrics suite aimed at measuring specific object-oriented properties. Among others, they

define a metric measuring coupling between object classes, a metric expressing lack of

cohesion in methods, and a metric expressing depth of the inheritance tree. The latter

are implemented in Understand tool [35] as CountClassCoupled, PercentLackOfCohesion

and MaxInheritanceTree, respectively. The software metric CountClassCoupled measures

the coupling of a class to other classes. Two classes are coupled if one class uses the meth-

ods and variables defined in another class [6]. High coupling is not desirable, since the

reuse is difficult because of decreased modularity [37]. On the other hand, the software

metric PercentLackOfCohesion expresses the lack of cohesion in a class. High cohesion

means that methods and attributes cooperate with each other and form a logical whole

[25]. The lack of cohesion may suggest that a class should be divided [37]. One of the

advantages of object-oriented design is the reuse of program entities. We can form classes

that inherit functionalities from their parent class [19]. Software metric MaxInheritance-

Tree expresses the maximum depth of a class in an inheritance hierarchy. The MaxIn-

heritanceTree of the root node is 0 [36]. In a case of multiple inheritances, the metric

expresses only the maximum length from the class node to the root of the inheritance tree

[6]. The deeper the class is in a hierarchy, the more methods could be inherited, which,

consequently, increases the complexity in the design [37].

For Java, C++ and C#, thresholds were derived for nine different software metrics,

and for Python, thresholds were derived for seven software metrics, since the metrics

CountClassCoupled and PercentLackOfCohesion are not supported by the used software

metric collection tool. Following the approach presented by Ferreira et al. [10], the thresh-

old derivation approach starts by checking the distribution of the input data set, which is

to say, by finding the best-fitted distribution. First, it was checked to see if data are dis-

tributed normally with the use of descriptive statistics. The latter was used to confirm the

power law distribution in the data set by Shatnawi and Althebyan [38]. Within normal dis-

tributions, the values are centralized strongly around the arithmetic mean, meaning that

the latter presents a representative value that a random variable can occupy [38]. For each

software metric in each of the selected programming languages, we gathered values for

the arithmetic mean, median, standard deviation and maximal value. Also, the values of

kurtosis and skewness were obtained, that enable an insight into data distribution and in-
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CountLineCode AvgLineCode

Java C++ C# Python Java C++ C# Python

kurtosis 2,439.1 5,911.9 15,921.9 834.9 17,284.6 310.7 6,056.9 5,966.7

skewness 32.1 60.2 113.7 19.6 91.2 10.7 64.7 59.3

arithmetic mean 88.3 114.9 136.9 58.6 9.4 7.8 9.5 7.6

median 27 29 41 17 6 4 5 4

standard deviation 283.4 568.8 995.8 166.6 18.9 12.3 28.9 19.0

maximum 36,273 74,278 156,163 11,798 4,312 666 3,414 2,159

kurtosis leptokurtic leptokurtic

skewness positive positive

SumCyclomatic AvgCyclomatic

Java C++ C# Python Java C++ C# Python

kurtosis 4,182.6 11,670.1 24,038.2 677.3 1,297.9 783.2 7,018.4 348.8

skewness 45.7 84.3 148.8 17.8 21.8 18.5 68.3 12.9

arithmetic mean 14.8 22.5 18.2 13.7 1.7 1.9 1.6 1.7

median 4 6 5 4 1 1 1 1

standard deviation 52.1 125.9 208.5 40.1 2.2 3.5 4.3 2.7

maximum 7,026 21,581 34,702 2,430 206 228 524 150

kurtosis leptokurtic leptokurtic

skewness positive positive

MaxNesting CountClassCoupled

Java C++ C# Python Java C++ C# Python

kurtosis 5.3 3.2 3.5 3.3 522.4 140.1 58.3 n/a

skewness 1.9 1.6 1.7 1.6 12.0 10.1 4.9 n/a

arithmetic mean 1.1 1.2 1.3 1.2 4.8 6.6 9.9 n/a

median 1 1 1 1 2 3 6 n/a

standard deviation 1.4 1.6 1.6 1.5 8.4 14.2 12.7 n/a

maximum 21 16 18 16 704 328 403 n/a

kurtosis leptokurtic leptokurtic

skewness positive positive

PercentLackOfCohesion CountDeclMethodAll

Java C++ C# Python Java C++ C# Python

kurtosis -1.4 -1.6 -1.6 n/a 2,699.3 248.7 11,728.9 7.8

skewness 0.5 -0.1 0.2 n/a 22.8 13.3 82.7 2.6

arithmetic mean 32.8 48.9 37.2 n/a 20.21 43.9 30.8 27.24

median 0 52 33 n/a 5 16 16 11

standard deviation 38.1 40.8 37.2 n/a 46.8 128.1 90.5 41.3

maximum 100 100 100 n/a 7,113 3,776 14,246 464

kurtosis mesokurtic leptokurtic

skewness symmetric positive

MaxInheritanceTree

Java C++ C# Python

kurtosis 655.5 2.7 422.1 1.1

skewness 8.4 1.4 14.5 1.0

arithmetic mean 1.7 1.2 0.9 1.8

median 1 1 1 1

standard deviation 1.1 1.2 1.5 1.8

maximum 118 11 58 10

leptokurtic

positive

Table 4. Descriptive statistics of analyzed software metrics values
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dicate a deviation from the normal distribution. Kurtosis expresses the size of peaks and

skewness measures the symmetry of the used data set. Data that are normally distributed

have a value of kurtosis and skewness of approximately zero [11]. When the values move

away from zero it proves that they are not following a normal distribution and values are

gathered on one end of the scale, and values are distributed in a peak or are flattened.

Data that follow heavy tailed distributions have a positive skew. For the positive skew,

also apply [38]:

standard deviation ≫ arithmetic mean

standard deviation ≫ median
(1)

maximum ≫ arithmetic mean (2)

Besides the mentioned, the positive skew is indicated by:

arithmetic mean ≥ median ≥ mode (3)

Descriptive statistics for the evaluated metrics are presented in Table 4. Software met-

ric values are limited to the left, with a value 0, and unlimited to the right, since the

maximum value is usually not defined [13]. Among the gathered values, data describing

the metric PercentLackOfCohesion that expresses a lack of cohesion in a class, stand out.

The metric can occupy a value from 0 to 100, since the result is expressed in percentages.

Based on the numbers, it is the only metric for which descriptive statistics do not discard

normal distribution. Other software metrics, without a doubt, do not follow a normal dis-

tribution, as reflected by their positive skew and leptokurtic distribution. Namely, when

the values of skewness are more than 0, a positive skew is present, which is reflected with

values gathered on the left, and individual values on the right that form a tail [11,38]. On

the other hand, the positive value of kurtosis is shown in a bigger peak of distribution, and

indicates that the values are forming a heavy tail [11].

After the descriptive statistics were analyzed, the best fitted distribution for data was

determined using an EasyFit tool [26]. More than 55 distributions are available, and the

tool checks how well a chosen distribution fits an input data set, and arranges them ac-

cording to performance. Table 5 presents the best-fitted distributions for selected software

metrics values in four programming languages.

The threshold values were determined after the data distribution was determined for

each software metric in all of the four programming languages. All software metrics,

except PercentLackOfCohesion, correspond to a heavy tail distribution. Because of this,

the derivation could be done as proposed by Ferreira et al. [10], by using percentiles, and

considering the proposed adjustments related to risk areas. As suggested in 3.1, thresholds

were determined using two or three percentiles using an SPSS tool [16].

The values of software metrics AvgCyclomatic, MaxNesting and MaxInheritanceTree

are presented within a small range of data. For example, the metric MaxNesting has the

same value for the 70th and 80th percentile for C++ and C#. Because forming the area

with such small differences between the borders is not feasible, the 80th percentiles was

excluded and only the 70th and 90th percentiles were used for forming the threshold risk

areas. The metric PercentLackOfCohesion follows a Uniform distribution, and thresholds

cannot be determined using percentiles. For this purpose, the threshold value was deter-

mined using the arithmetic mean and standard deviation.
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Software metric Programming language Distribution

CountLineCode

Java Inverse Gaussian

C++ Dagum

C# Pareto 2

Python Wakeby

AvgLineCode

Java Generalized Pareto

C++ Generalized Pareto

C# Generalized Logistic

Python Generalized Logistic

SumCyclomatic

Java Phased Bi-Weibull

C++ Generalized Pareto

C# Generalized Pareto

Python Generalized Pareto

AvgCyclomatic

Java Generalized Logistic

C++ Wakeby

C# Phased Bi-Exponential

Python Phased Bi-Exponential

MaxNesting

Java Gumber Max

C++ Gumber Max

C# Gumber Max

Python Gumber Max

CountClassCoupled

Java Phased Bi-Weibull

C++ Generalized Logistic

C# Wakeby

Python n/a

PercentLackOfCohesion

Java Uniform

C++ Uniform

C# Uniform

Python n/a

CountDeclMethodAll

Java Wakeby

C++ Wakeby

C# Generealized Pareto

Python Johnson SB

MaxInheritanceTree

Java Gamma

C++ Gumber Max

C# Logistic

Python Johnson SB

Table 5. Best fitted distributions

4. Empirical analysis of derived threshold values

Based on derived threshold values, calculated points were used to set three or four risk

areas. Thresholds are presented in the form of areas.

Areas, as determined in Chapter 3.1, are formed according to the risk that an evaluated

program entity includes irregularities. For example, if a class has 300 lines of code, a very

high risk (VHR) exists that something within the entity is not optimal. This does not

mean that defects are present, but that there may be some irregularities in the context of

different smells or specific technical debts. However, we have to be aware, that combining

different software metrics when evaluating software quality could improve the reliability

of provided results significantly. Values lower than the 70th percentile belong to a low

risk (LR) area, values between the 70th and 80th percentiles form a moderate risk (MR)

area, and values bigger than the 80th percentile and smaller, or equal to the 90th percentile
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Java C++ C# Python

CountLineCode

LR x661 x666 x690 x643

MR 61<x6100 66<x6112 90<x6144 43<x671

HR 100<x6197 112<x6235 144<x6278 71<x6135

VHR x>197 x>235 x>278 x>135

AvgLineCode

LR x69 x68 x610 x68

MR 9<x613 8<x611 10<x614 8<x611

HR 13<x619 11<x618 14<x620 11<x617

VHR x>19 x>18 x>20 x>17

SumCyclomatic

LR x610 x613 x611 x69

MR 10<x617 13<x622 11<x618 9<x616

HR 17<x633 22<x645 18<x636 16<x633

VHR x>33 x>45 x>36 x>33

AvgCyclomatic

LR x62 x62 x61 x62

MR 2<x63 2<x64 1<x63 2<x64

HR x>3 x>4 x>3 x>4

MaxNesting

LR x61 x62 x62 x62

MR 1<x63 2<x63 2<x64 2<x63

HR x>3 x>3 x>4 x>3

CountClassCoupled

LR x65 x66 x611 n/a

MR 5<x67 6<x69 11<x615 n/a

HR 7<x611 9<x614 15<x623 n/a

VHR x>11 x>14 x>23 n/a

PercentLackOfCohesion
LR x671 x690 x674 n/a

HR x>71 x>90 x>74 n/a

CountDeclMethodAll

LR x614 x642 x626 x624

MR 14<x624 42<x649 26<x634 24<x651

HR 24<x651 49<x690 34<x660 51<x670

VHR x>51 x>90 x>60 x>70

MaxInheritanceTree

LR x62 x62 x61 x62

MR 2<x63 2<x63 1<x62 2<x64

HR x>3 x>3 x>2 x>4

Table 6. Risk areas (low risk (LH), moderate risk (MR), high risk (HR) and very high

risk (VHR)) based on threshold values

constitute high risk (HR) area, and values that are bigger than determined with the 90th

percentile are considered to be in the area of very high risk (VHR). Table 6 presents the

defined risk areas and corresponding threshold values. The values are shown for nine

software metrics in four programming languages. Where areas are determined with only

two percentiles, i.e. in the case of AvgCyclomatic, MaxNesting and MaxInheritanceTree,

only three areas are given. Values lower than those determined with the 70th percentile are

in the area of low risk (LR), between the 70th and 90th percentile there is a moderate risk

(MR) area, and values in a high risk (HR) area are values bigger than determined with

the 90th percentile. A special case is the metric PercentLackOfCohesion, where only one

area is defined, based on the calculated threshold value. Values that are bigger than the

threshold are in the area of high risk.

As presented within the related work in section 2, different threshold derivation ap-

proaches exist. To allow the comparison, the threshold values have to be derived using

the same benchmark data, the software metric tools with coincidental definitions of im-

plemented software metrics, and, finally, using the same threshold derivation approach.

Therefore, comparison of our results with threshold values provided by Ferreira et al. [10]
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or Filo et al. [12] in a meaningful way is not possible, due primarily to use of different

software metrics’ definitions, followed by varying input data.

4.1. Comparison of derived threshold values

Figures 1, 2, 3 and 4 present threshold values for the 70th, 80th and 90th percentiles of

the same software metrics for different programming languages. A visual comparison of

threshold values for Java, C++, C# and Python is enabled with this. Furthermore, since

the approach for the threshold derivation is based on the frequency of values within the

software, the results also indicate the structure of software written in the four selected

programming languages.
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Fig. 1. Threshold values of the software metrics CountLineCode and AvgLineCode

Figure 1 illustrates risk areas and threshold values of the 70th, 80th and 90th percentiles

for software metrics CountLineCode and AvgLineCode measuring lines of code in a soft-

ware class. Axis x shows programming languages, and axis y threshold values. In every

figure, there are three lines: green, representing the 70th percentile, orange, representing

the 80th percentile, and red, representing the 90th percentile. Three lines form four risk ar-

eas, while connecting values of the same percentile value among programming languages.

The green color presents a low risk area (LR), orange presents a moderate risk area (MR),

light red color stands for a high risk area (HR), and red presents a very high risk area

(VHR).

As indicated in Figure 1a, the threshold determining very high risk is the highest in

the C# programming language, whereas the smallest is within Python. The same ratio

is also between thresholds formed using the 80th and 70th percentiles. Figure 1b plots

the threshold values for the average size of methods in a class. The values are closer in

comparison to the metric measuring lines of code in a class, but still, values vary. The 90th

percentile is again the highest for C# and the lowest for Python, whereas the values for
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Java and C++ are in between. The derived values show that the most extensive software

classes can be found in the C# programming language, followed by C++, Java and Python

classes. Given the small difference in the average size of methods within a class, we can

conclude that software classes written in C# possess more methods than classes developed

in the Python programming language.
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Fig. 2. Threshold values of the software metrics SumCyclomatic and AvgCyclomatic

Figure 2 presents the threshold values of the software metrics SumCyclomatic and

AvgCyclomatic. Figure 2a visualizes the thresholds for the sum of cyclomatic complexi-

ties for all the methods in a class. The highest threshold value is derived for the program-

ming language C++, followed by C#, Java and Python. A noticeable leap can be detected

in C++, whereas in other programming languages, the threshold values are rising more

gradually. If we consider a number of methods in classes expressed with software met-

rics CountLineCode and AvgLineCode, we can conclude that methods written in Python

have the highest cyclomatic complexity, whereas the smallest complexity is present in

methods developed in C#. This is also confirmed with threshold values for the metric

AvgCyclomatic in Figure 2b, presenting the average value of the methods in a class. The

AvgCyclomatic is also one of the metrics where derived threshold values are very close.

Because of this, the 80th percentile was excluded, and only three risk areas were formed.

Figure 3 presents threshold values for the software metrics MaxNesting and Max-

InheritanceTree. Figure 3a illustrate the thresholds of a software metric measuring the

maximum nesting level in a class which affects class complexity. The 70th and 90th per-

centiles were included, forming three risk areas. As can be seen, the 90th percentile is the

highest in C# and the lowest, but coinciding, for Java, C++ and Python. Another software

metric that has a thresholds value that is only defined for three areas is MaxInheritance-

Tree, presented in Figure 3b. Based on statistical properties, it is very similar to the metric
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MaxNesting. The 90th percentile is the highest within Python and the lowest in C#, mean-

ing that inheritance hierarchy is the deepest in software projects developed in Python.
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Fig. 3. Threshold values of the software metrics MaxNesting and MaxInheritanceTree

Closely connected to the mentioned metric is also the metric CountDeclMethodAll,

counting methods in the classes, including inherited ones. The threshold values are pre-

sented in Figure 4a. With a 90th percentile value, the C++ threshold set is the biggest,

followed by values derived for Python, C# and the Java programming language. If we

connect the findings to the determined number of methods based on software metrics

CountLineCode and AvgLineCode, we can see that the ranking by values is different,

since the metric CountDeclMethodAll also considers inherited methods. As presented in

Figure 4a, the highest number of methods can be detected in C++, which is due to a bigger

inheritance hierarchy, as presented in Figure 3b. A high number of methods, according to

the metric CountDeclMethodAll, can also be found with Python classes, though they have

the smallest metric value, based on lines of code. Again, this is due to a deeper inheritance

hierarchy. On the other hand, Java classes have fewer methods than classes developed in

Python, according to CountDeclMethodAll, but based on the number of lines of code, the

case is different. Since the inheritance hierarchy for Java is smaller, this is the logical

conclusion.

The threshold values for the software metric CountClassCoupled are presented in

Figure 4. The mentioned metrics were not calculated for Python, since the Understand

tool [35] does not support that calculation. Therefore, the results are only presented for

Java, C++ and C#. Figure 4b presents threshold values for metric measuring coupling

with other classes. The threshold defining the area of the very high risk is the biggest for

C# classes. The lowest is the threshold value for Java, whereas the programming language

C++ is in between. Thresholds indicate that C# classes are the most coupled with others,

which can be related to a large number of lines of code, as seen in Figure 1. On the other
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Fig. 4. Threshold values of the software metrics CountClassCoupled and

PercentLackOfCohesion

hand, the coupling is lowest for Java classes. Another aspect that can impact the use of

coupling is also the age of the projects. Since the C# programming language is much

younger that C++, the age could influence the threshold values.

The PercentLackOfCohesion metric measures the lack of cohesion in classes, and is

presented with percentages. The threshold is presented only with one value, that divides

the area into low and high risk, since the threshold was not derived based on percentiles.

The values can be seen in Table 6. The defined threshold values again vary between pro-

gramming languages, and are the highest for C++, where classes that exceed the value

90 present the high risk of containing irregularities. Within C#, the threshold value is the

highest, while the values indicate that the C++ classes are least cohesive, which could be

connected to the high cyclomatic complexity of classes and methods with a large number

of lines. On the other hand, classes in C# are also large, but with a lower cyclomatic com-

plexity, which is reflected in class cohesion. The connection to cyclomatic complexity

can also be confirmed for the Java programming language, where cohesion is better and

complexity lower.

As can be concluded based on the presented analysis, the threshold values of soft-

ware metrics vary between different programming languages. Therefore, they have to be

calculated for each programming language separately.

5. Limitations

In this research, some limitations and potential threats to validity arise. They are presented

here.

We limited ourselves to object-oriented programming languages and software metrics

supported by the used tool. The results may be affected by the tool used for collecting met-

ric values and the corresponding implementation of software metrics. To reduce the threat,
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a single tool was used throughout the entire research, and for all four of the programming

languages. In this way, software metrics were calculated in the same way, regardless of

the programming language.

The results can also be affected by the approach used for deriving the threshold values

of software metrics. With the use of only a single approach for all the metrics and all the

programming languages, the risk of providing inconsistent results was limited. Another

threat surrounds the benchmark data used for derivations. To limit the impact, the data

set was collected in a transparent and systematic way, covering a broad scope of different

properties. Also, the size of the benchmark data was determined based on related work

and good practices.

The definitions of software metrics present a limitation within the research. The vali-

dation of software metrics was not a part of the presented study.

6. Conclusion

Quantification with software metrics is important, especially when we make decisions

related to software quality [1,9], thereby knowing that the reliable thresholds are cru-

cial. Within the presented empirical study, threshold values were derived for nine soft-

ware metrics for four object-oriented programming languages, namely Java, C++, C# and

Python. Using the replicated threshold derivation approach and proposed adjustments,

threshold values were derived considering challenges arising in the software metrics do-

main. Since the approach uses benchmark data, the latter were collected systematically

and transparently, allowing repeatability and supplementation. For each programming lan-

guage, a suite of 100 software projects was selected, which is, according to related work,

an optimal number. Input values were gathered using a single software metric tool, and

threshold values were provided using a single threshold derivation approach by following

well-defined steps.

The main research question driving the presented study was if software metric thresh-

old values vary between different object-oriented programming languages. By this, we

could provide information about whether thresholds have to be derived for each program-

ming language separately, or if a single threshold can be applied to all programming

languages. Thresholds derived for a particular software metric were analyzed and com-

pared to provide the answer. Based on the findings, we can conclude that threshold values

for the same software metric vary among different programming languages. This can be

attributed to different structural properties for programming languages, and established

practices used in a specific community. Therefore, the derivation for each programming

language has to be done separately.

In future work, we plan to use the threshold derivation process to provide threshold

values for other programming languages, and expect to derive threshold values for soft-

ware metrics on different levels, i.e. the method and file levels. Also, we will analyze the

rules and properties of the different programming languages, in order to explain the rea-

sons for the differences. In addition, we plan to study different factors impacting derived

thresholds within each programming language.
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