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Abstract. In fluid-structure interaction simulations the meshes at the fluid-structure

interface usually do not match, because of the different mesh requirements for the flow

and structure. The exchange of data over the discrete interface becomes then far from

trivial. In this paper we investigate the difference in accuracy and efficiency between a

conservative and a consistent coupling approach. This is done for an analytical test prob-

lem as well as a quasi-1D FSI problem, for different coupling methods found in literature.

It is found that when the coupling method is based on a weak formulation of the coupling

conditions the conservative approach is the best choice. For other coupling methods the

consistent approach provides the best accuracy and efficiency, because the conservative

approach results in unphysical oscillations in the pressure received by the structure and is

therefore not consistent.

1 INTRODUCTION

Many engineering applications involve fluid-structure interaction (FSI) phenomena and
FSI simulations are crucial for an efficient and safe design. For instance light-weight
airplanes, long span suspension bridges and modern wind turbines are susceptible to
dynamic instability due to aeroelastic effects. Computers and numerical algorithms have
significantly advanced over the last decade, such that the simulation of these problems
has become feasible.

In FSI computations it is required that pressure loads are transmitted from the fluid
side of the fluid-structure interface to the structural nodes on that interface. Also, once
the motion of the structure has been determined, the motion of the fluid mesh points on
the interface has to be imposed. In FSI simulations generating matching meshes at the
fluid-structure interface is usually not desirable, because the flow generally requires a much
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finer mesh than the structure. In additition, also different teams may take care of the
different physical domains. This means that the discrete interface between the domains
may not only be non-conforming, but there may also be gaps and/or overlaps between the
meshes. The exchange of data over the discrete interface becomes then far from trivial. In
Figure 1 a 2D example of a non-matching discrete interface between a flow and structure
domain is shown. When the meshes are non-matching, an interpolation/projection step
has to be carried out to enable transfer of information between the two domains. In
literature different methods can be found to transfer data between non-matching meshes,
such as nearest neighbour interpolation1, projection methods2,3,4 and methods based on
interpolation by splines5,6,7.

Figure 1: Non-matching meshes in
2D.

The general opinion is that energy should be con-
served over the interface leading to a conservative cou-
pling approach8. This approach is based on the global
conservation of virtual work over the interface, where one
transformation matrix performs both the transfer of dis-
placements and pressure loads between the two discrete
interfaces. However, for a general coupling method this
can lead to unphysical oscillations in the pressure forces
received by the structure as is briefly mentioned by Ahrem

et al9. Especially for flexible structures this can have a
large negative influence on the accuracy of the solution.

Instead of using the same transformation matrix for
both transferring the displacement and pressure loads over
the interface, two different transformation matrices can be
defined. This leads to a consistent coupling approach without unphysical oscillations in the
pressure forces. However, conservation of energy over the interface is not guaranteed. For
partitioned coupling techniques this does not have to be a problem, because in unsteady
computations energy is generally not conserved due to errors caused by the coupling in
the time integration. In general, when the error introduced by the information transfer is
smaller than the discretization error, this error does not affect the stability and accuracy
of the computation.

In this paper we investigate the difference in accuracy and efficiency between the con-
servative and consistent approach for the coupling methods described in de Boer et al10.
First the consistent and conservative approach are presented followed by a short discrip-
tion of the different coupling methods. The difference in the interpolation properties
between the two approaches is investigated using an analytical test problem. A sim-
ple quasi-1D FSI problem is used to investigate the performance of the methods in FSI
computations.
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2 CONSISTENT AND CONSERVATIVE COUPLING APPROACH

The fluid and structure equations are usually coupled by the kinematic and dynamic
boundary conditions at the interface which are given by

uf = us on Γ, (1a)

psns = pfnf on Γ, (1b)

with uf,s the displacement, pf,s the pressure or stress tensor and nf,s the outward normal
of the flow and structure interface, respectively. The continuous inteface between the flow
and structure is represented by Γ. The first of these two boundary equations expresses
the compatibility between the displacement fields of the structure and the fluid at the
fluid-structure interface. The second equation states that the tractions of the wet surface
of the structure are in equilibrium with those on the fluid side.

Whichever coupling method is chosen to define the discrete form of these conditions,
its outcome can be formulated as

Uf = HsfUs (2a)

Ps = HfsPf , (2b)

with Hsf and Hfs transformation matrices between the flow and structure interface and
U and P are defined by the approximations

u(x) =
nu∑

i=1

N i(x)Ui, pn(x) =
np∑

j=1

Dj(x)Pj, (3)

where nu,p is the number of unknowns on the interface for the displacement and pres-
sure, respectively, N(x) a function depending on the discretization method used for the
displacement (for example, a step function in the finite volume formulation or the basis
function in the finite element formulation) and D(x) a function depending on the dis-
cretization method used for the pressure. When the row-sum of H is equal to one, the
interpolation is consistent, which means that constant values are interpolated exactly.

The general opinion is that energy should be conserved over the interface leading to a
conservative coupling approach8. The conservation properties depend both on the time
and the spatial coupling used, which cannot be looked at separately if the system is solved
in a partitioned way. However, in this paper we focus only on the spatial coupling. In the
limit of very small time steps (virtual displacements, or steady state solution) or when a
monolitic solution procedure is used with the same time integration method applied for
both the flow and the structure, energy is globally conserved over the interface when

∫

Γf

uf · pfnf ds =

∫

Γs

us · psns ds, (4)
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with u the displacement of the interface. This allows us to anlyse the coupling in space
separately.

Writing out the left hand side of (4) using (3) gives

∫

Γf

uf · pfnf ds =

n
p
f∑

i=1




nu
f∑

j=1

∫

Γf

Di
fN

j
f dsUfj


Pfi

= [MffUf ]
T Pf .

In a similar way we find for the right hand side of (4)

∫

Γs

us · psns ds = [MssUs]
T Ps, (5)

where matrices Mff and Mss are defined as follows

M ij
ff =

∫

Γf

Di
fN

j
f ds, M ij

ss =

∫

Γs

Di
sN

j
s ds. (6)

Energy is then globally conserved when

[MffUf ]
T Pf = [MssUs]

T Ps ⇒ UT
s HT

sfM
T
ffPf = UT

s MT
ssPs ⇒

HT
sfM

T
ffPf = MT

ssPs ⇒ Ps =
[
MffHsfM

−1
ss

]T
Pf . (7)

So choosing

Hfs =
[
MffHsfM

−1
ss

]T
(8)

for the transformation of pressure over the interface results in global conservation of energy
over the interface.

To obtain a consistent interpolation, a constant displacement and constant pressure
should be exactly interpolated over the interface (similar to the patch test criterion in
Lagrange Multiplier methods). This means that in the conservative approach both the

row-sum of Hsf and the row-sum of Hfs = [MffHsfM
−1
ss ]

T
should be equal to one. For

a general transformation matrix Hsf this is not the case as we will see in the following
section where different setups of the transformation matrices are outlined. The main
question is whether global conservation of energy or a consistent interpolation is preferred
in fluid-structure interaction computations.

3 COUPLING METHODS

In this section three different coupling techniques are outlined which are commonly
found in literature to couple non-matching meshes in FSI computations. All methods
create a transformation matrix HAB to be able to transfer known values at the interface
of mesh A to the interface of mesh B.
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3.1 Nearest neighbour interpolation

Figure 2: Simple 1D con-
figuration.

Nearest neighbour interpolation (NN) is a very simple method
of transferring data from mesh A to mesh B1. A search algorithm
determines the point xA in mesh A that is closest to a given point
xB in mesh B. The variable in xB is then assigned to have the
same value as in xA. In this way the transformation matrix HAB

becomes a Boolean matrix, with a single one in each row which
implies that the transformation is consistent.

However, when the conservative approach is used, the interpo-
lation is not consistent for the pressure. This can be shown for a
very simple example. The configuration consists of two structure points and three flow
points and is depicted in Figure 2 resulting in the following transformation matrix for the
displacements

Hsf =




1 0
1 0
0 1


 . (9)

Constant basis functions are used in both the flow and the structure resulting in the
following discretization matrices

Mf =
1

2




∆xf 0 0
0 2∆xf 0
0 0 ∆xf


 , Ms =

1

2

[
∆xs 0
0 ∆xs

]
. (10)

The conservative transformation matrix for the pressure given in (8) then becomes

Hfs =
∆xf

∆xs

[
1 2 0
0 0 1

]
. (11)

It can easily be seen that the row-sum of matrix Hfs is not equal to one, and the inter-
polation is therefore not consistent.

3.2 Weighted residual method

The method described in this section is based on the weak formulation of the conser-
vation of loads or displacements over the interface2,3. The starting point is the kinematic
(1a) or dynamic boundary condition (1b) at the fluid-structure interface Γ in the contin-
uous form

wB(x) = wA(x) on Γ w = {u, pn}. (12)

This equality can be approximately satisfied by a weighted residual method. Both sides
are multiplied by a set of weighting functions φk and integrated over the fluid structure
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interface resulting in

∫

Γ

φk(x)wB(x) dx =

∫

Γ

φk(x)wA(x) dx. (13)

Also the following approximation for the quantities is used

wB(x) =

nB∑

i=1

N i
B(x)WBi

, wA(x) =

nA∑

j=1

N j
A(x)WAj

, (14)

with WA,B containing the values of wA,B in the points on the interface of mesh A and B,
respectively, NA,B the basis function of mesh A or B and nA,B the number of unknowns
at the interface of mesh A or B. Together this yields

∫

Γ

φk(x)

nB∑

i=1

N i
B(x)WBi

dx =

∫

Γ

φk(x)

nA∑

j=1

N j
A(x)WAj

dx. (15)

For the displacement this is equal to the compatibility equation obtained by a Lagrange
Multiplier method. When a Galerkin method is used there are two possibilities for φ, the
basis function of the flow or the structure, so we can write

nB∑

i=1

[∫

Γ

Nk
αN i

B dx

]

︸ ︷︷ ︸
Cki

αB

WBi
=

nA∑

j=1

[∫

Γ

Nk
αN j

A dx

]

︸ ︷︷ ︸
C

kj
αA

WAj
for k = 1, ..., nα, (16)

with α ∈ {A, B}. This can be written in matrix form as

CαBWB = CαAWA, (17)

with CαB an nα × nB matrix and AαA an nα × nA matrix.
Since we transfer data from mesh A to mesh B we need to solve for the side of mesh

B, because the value of w on mesh A is assumed to be known. This means that we have
to choose α = B to be able to invert matrix CαB, so we obtain

WB = C−1
BBCBAWA. (18)

As a consequence the transformation matrix is defined as HAB = C−1
BBCBA.

Consistent approach To interpolate constant values exactly to obtain a consistent
interpolation we need

CBBβB = CBAβA, (19)
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with βA,B a vector of length nA or nB respectively with constant value β. Using (16) this
becomes

nB∑

i=1

[∫

Γ

Nk
BN i

B dx

]
β =

nA∑

j=1

[∫

Γ

Nk
BN j

A dx

]
β for k = 1, ..., nB. (20)

Using the fact that

nα∑

k=1

Nk
α = 1 and

∫

Γα

Nk
α dx = 1, (21)

we can derive for the left hand side

nB∑

i=1

[∫

Γ

Nk
BN i

B dx

]
β = β

∫

Γ

Nk
B

[
nB∑

i=1

N i
B

]
dx = β

∫

Γ

Nk
B dx = β, (22)

and for the right hand side

nA∑

j=1

[∫

Γ

Nk
BN j

A dx

]
β = β

∫

Γ

Nk
B

[
nA∑

j=1

N j
A

]
dx = β

∫

Γ

Nk
B dx = β. (23)

Therefore the transformation is consistent.
All that remains is the selection of the discrete interface over which the integrals are

integrated in (16), because generally ΓA 6= ΓB 6= Γ. For the matrix CBB it is most
practical to integrate over ΓB because both the values of Nk

B and N i
B are known at that

discretised interface. To obtain a consistent interpolation the integrals in matrix CBA

then also have to be integrated over ΓB, otherwise (23) is unequal to (22).

Conservative approach We now investigate the consistency of the pressure when the
conservative coupling approach is used. We start again with the discretized kinematic
boundary condition (2a), where the weighted residual method gives us

Hsf = C−1
ff Cfs. (24)

Substituting this in (7) gives

Ps =
[
MffC

−1
ff CfsM

−1
ss

]T
Pf . (25)

When the discretisation of the pressure and displacement in the flow are equal, so Nf = Df

and nu
f = np

f , then Mff = Cff and (25) becomes

Ps =
[
CfsM

−1
ss

]T
Pf or MssPs = CsfPf . (26)
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To be consistent we need

Mssβs = Csfβf , (27)

with βs,f a vector of length ns or nf respectively with constant value β. We can derive
in a similar way as in (22) and (23) that this is equal to

∫

Γs

Nk
s dx =

∫

Γf

Nk
s dx. (28)

So only when the meshes are matching, Γf = Γs, equation (27) is satisfied and the method
is both conservative and consistent for the pressure values.

Gauss integration For the evaluation of CBA some kind of projection between the two
meshes is needed, because NA is only defined on mesh A. The integrals appearing in
CBA can be computed using Gauss integration (GI) 2,4. However, an overlay mesh has to
be created to ensure that the basis functions on both sides of the discrete interface are
continuous within a cell, to assure an exact evaluation of the integral. The overlay mesh
is obtained by projecting the cells of mesh A on mesh B and taking the intersection of
both meshes. This results in the following evaluation

Ckj
BA =

∫

ΓB

Nk
B(x)N j

A(x) dx ≈

nover∑

i=1

ngp,i∑

g=1

wgN
k
B(xg,i)N

j
A(ΠA(xg,i)), (29)

where nover is the number of overlay cells, ngp,i is the number of Gauss quadrature points
xg in overlay cell i; wg the weight of the gth quadrature point and ΠA(xg,i) the projection
of xg,i from mesh B on mesh A. The number of Gauss points to be used should be
chosen equal to the underlying order of the discretisation. The Gauss points need to
be orthogonally projected onto mesh B. This projection has to be accurate and take
into account the normals of the used basis functions, otherwise the order of the total
interpolation decreases.

3.3 Radial basis function interpolation (RBFI)

The third class of coupling methods is based on the use of spline functions5,6,7. The
quantity to be transferred from mesh A to mesh B is approximated by a sum of basis
functions both at the interface of mesh A and mesh B

wi(x) =

nA∑

j=1

γjφ(||x − xAj
||) + q(x) i = {A, B}, w = {u, pn} (30)

where xAj
are the centres in which the values are known, in this case the nodes at the

interface of mesh A, q a polynomial, and φ a given radial basis function with respect to the
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Euclidean distance ||x||. Different suitable radial basis functions available in liturature are
presented in the next paragraph. The coefficients γj and the polynomial q are determined
by the interpolation conditions

wA(xAj
) = WAj

, (31)

with WA containing the discrete values of wA at the interface of mesh A, and the addi-
tional requirements

nA∑

j=1

γjs(xAj
) = 0, (32)

for all polynomials s with a degree less than or equal to that of polynomial q. The
minimal degree of polynomial q depends on the choice of the basis function φ. A unique
interpolant is given if the basis function is a conditionally positive definite function. If
the basis functions are conditionally positive definite of order m ≤ 2, as is the case for the
functions used in this paper, a linear polynomial can be used5. A consequence of using a
linear polynomial is that constant values are exactly interpolated leading to a consistent
interpolation.

For the known quantity at the interface of mesh A (30) and (32) can be written in
matrix form as follows

[
WA

0

]
=

[
ΦAA QA

QT
A 0

] [
γ

β

]
, (33)

with γ containing the coefficients γj, β the coefficients of the linear polynomial q, ΦAA

an nA ×nA matrix containing the evaluation of the basisfunction φAiAj
= φ(||xAi

−xAj
||)

and QA a nA × 4 matrix with row j given by [ 1 xAj
yAj

zAj
].

For the unknown quantity at the interface of mesh B we can write in a similar notation

WB =
[

ΦBA QB

] [
γ

β

]
. (34)

Combining (33) and (34) gives the relation

WB =
[

ΦAB QB

] [
ΦAA QA

QT
A 0

]−1

︸ ︷︷ ︸
H̃

[
WA

0

]
(35)

and we can define the transformation matrix HAB as the first nB rows and nA columns
of matrix H̃ to obtain WB = HABWA. In this way no orthogonal projection and search
algorithm is needed, but the computation involves the inversion of a relatively small
matrix. The number of rows and columns of this matrix is equal to the number of flow
or structure points on the fluid-structure interface, which is usually very small compared
to the total number of structure and flow points.
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Radial basis functions Interpolation with RBF’s has become a very powerful tool in
multivariate approximation theory through scattered data, because of its excellent ap-
proximation properties11. RBF’s can be divided into two groups, functions with compact
support and functions with global support. Beckert and Wendland5 use compact sup-
ported radial basis functions based on polynomials where a C2 radial basis function gives
the best result. This function is defined as

φ(||x||) = (1 − ||x||/r)4
+ (4||x||/r + 1) , (36)

where the subscript + means that only positive values are taken into account and is in
the remainder of the paper abreviated by RBF. The radius r defines the support of the
radial basis function. A large support radius yields a good approximation order, but then
a full matrix system has to be solved. What is more, too large radia lead to singular
matrices, because then all the entries of ΦAA are approximately equal to one. A small
support radius leads to a stable system with a band matrix that can be easily solved,
but the interpolation is less accurate than with a large support radius. For an accurate
computation the support radius for a fluid-structure interaction problem should be chosen
at least as large as the maximum distance of all centres with their nearest neighbours in
both meshes.

Several global radial basis functions have been tested and evaluated for analytical
interpolation tests as well as real fluid-structure interaction computations by Smith et
al6,7. From this work the following two functions are shown to be the most robust, cost
effective and accurate of the methods tested:

• Multi-quadric Biharmonic splines (MQ)

φ(||x||) =
√
‖x‖2 + a2. (37)

• Thin-plate splines (TPS)

φ(||x||) = ||x||2 log10 ||x||. (38)

The MQ-method uses a parameter a that controls the shape of the basis functions. A
large value of a gives a flat sheetlike function, while a small value of a gives a narrow
conelike function. The value of a is typically chosen to be in the range 10−5 − 10−3. In
this paper we use the value a = 10−3. In contrast with the radial basis functions used by
Beckert and Wendland, these two functions are defined on the entire domain. As a result,
always a full matrix system has to be solved.

Because constant values are exactly recovered, the interpolation is consistent. However,
when the conservative coupling approach is used, the interpolation is not consistent for
the transformation of pressure values. The reason for this is similar to the one showed for
nearest neighbour interpolation.
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4 ANALYTICAL TEST PROBLEM

In this section the different coupling methods are compared for a smooth analytical
problem, to be able to investigate their general interpolation properties separately. Both
the consistent and conservative approach are applied for all the methods. The ’flow’
and ’structure’ points are located on the same analytical boundary in the form of a sine,
qe = 0.2 sin(2πx), with x ∈ [−0.5, 0.5]. The flow and structure interface are non-matching
in the sense that they differ by the discretization of this common boundary. Both the
number of flow and structure cells is varied. We use nf = 21 · 2k flow cells and ns = 7 · 2k

structure cells, with k ∈ {0, 1, 2, 3, 4, 5}, leading to a ratio of 33%. A third order finite
element method is used for the discretization. We will investigate both the error in the
displacement of the flow boundary and the error in the pressure received by the structure
obtained with the conservative and consistent approach.

Displacement of flow boundary In the structure points a displacement is assigned
in the form of a cosine, q = 0.01 cos(2πx). The displacement in the flow points is then
interpolated from the structure points, using one of the coupling methods, and compared
with the exact values of the cosine. The L2-error of the displacement in the flow points
versus the number of structure points after one interpolation step is depicted in Figure 3.
It can be seen that NN is only first order accurate. The MQ and TPS method are second

Figure 3: Error in displacement. Figure 4: Error in pressure (−: conservative, −−:
consistent).

order accurate where the accuracy of the TPS method is higher. The RBF method has
an order of about 2.5, but the accuracy depends on the value of the radius: the larger
the non-dimensional radius r, the more accurate the method. With r = 5, RBF is more
accurate than TPS and with r = 0.25 it is comparable to MQ. The order of the GI method
is the same as the order of the discretization. For a discretization order higher than two
it is the most accurate method. In this paper we only show the results for a third order
discretization.
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Pressure received by structure Also a pressure in the form of a cosine, p = 0.01 cos(2πx),
is assigned to the flow points and interpolated to the structure points either using the
conservative or consistent approach. The L2-error of the pressure in the structure points
versus the number of structure points after one interpolation step is depicted in Figure 4.
The solid line is obtained with the conservative and the dotted line with the consistent ap-
proach. It can be seen that only the GI method converges when the conservative approach
is used. The order of conservative GI is one lower than expected from the discretization
order. When the consistent approach is used, for all methods the interpolation error is
smaller than the discretization error leading to a third order convergence. This is due to
the fact that the pressure is transferred from the finer flow grid to the coarser structure
grid.

Figure 5: Pressure received by the structure ob-
tained with the GI method for nf = 441 and
ns = 49.

Figure 6: Pressure received by the structure ob-
tained with the RBF method with r = 5 for
nf = 441 and ns = 49.

The reason for the lower convergence for the conservative approach can be seen in
Figures 5 and 6, where the exact pressure obtained by the structure and the ones obtained
with the conservative and consistent approach are shown for the GI and RBF method
with r = 5, respectively. The difference between the exact solution and the one obtained
with the consistent approach is barely visible. However, the solution obtained with the
conservative approach shows large oscillations. Except for the GI method, the amplitude
of these wiggles does not reduce for finer meshes, leading to the zeroth order convergence.

In Figure 7 the difference in work between the flow and structure interface is depicted.
When the conservative approach is used, this difference is zero, as expected. With the
consistent approach the difference decreases with approximately one order higher than the
order of the coupling method. So even as the consistent approach is not strictly globally
conservative for the energy over the interface, the error decreases consistently.

Efficiency The efficiency is not the most important issue, because the computation
time needed for the coupling is usually much smaller than, for example, the time needed
for the flow solve. However, we want to investigate if the difference in efficiency between
the methods is considerable. To obtain an estimation of the efficiency of the methods,
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Figure 7: Difference in work of the different methods (−: conservative, −−: consistent).

Figure 8: Efficiency of the displacement (−: con-
servative, −−: consistent).

Figure 9: Efficiency of the pressure (−: conserva-
tive, −−: consistent).

the computation time needed to obtain a certain accuracy using Matlab version 7.0.1 on
a 3 GHz computer is shown for the displacement and pressure in Figures 8 and 9, respec-
tively. The closer the line is to the lower left corner, the more efficient the method. For
the displacement the conservative approach is most efficient for all methods, where the
highest efficiency is obtained with the RBF method with r = 5. The GI and NN method
are the least efficient because they need a projection and search algorithm. For this test
case a simple algorithm is used which performs a loop over the two closest elements in
both directions. For the pressure the consistent approach is most efficient, because the
conservative approach converges with a lower order (if it converges at all). This time NN
is most efficient, closely followed by the radial basis function methods. The main conclu-
sion is that the GI method, although it is more accurate for higher order discretizations,
does need much more computation time than the methods based on radial basis function
interpolation. The computational costs of the GI method also increase when a higher
discretization order is used, because the projection algorithm becomes more complicated.
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Also other analytic problems are investigated with different configurations of the dis-
placement and pressure to be interpolated, different configurations of the interface and
various ratios between flow and structure cells. The conclusions that can be drawn from
the results of these test cases are similar to the ones described above. Overall it can
be concluded that for this simple analytic problem the consistent approach is preferred
over the conservative approach. NN is only first order accurate and therefore the least
accurate method. When the discretization order of the total system is higher than two,
the GI method is the best choice. However, its implementation is more difficult and the
computation time is higher than for the RBFI methods. Therefore, when the discretiza-
tion of the total system is of order two or lower, or less important, the RBFI methods are
preferred where the RBF with r = 5 is the best choice.

5 QUASI-1D FSI PROBLEM

Figure 10: Configuration of the quasi-
1D FSI problem.

For the investigation of the behaviour of the meth-
ods in FSI simulations a quasi-1D problem is used. It
is chosen such that it allows the investigation of the
problems arising with non-matching meshes. We con-
sider a quasi-1D channel with a flexible curved wall.
The main velocity of the compressible flow is in the x-
direction and the structure is modelled as a membrane.
The diameter of the channel may vary due to a pres-
sure difference between the pressure in the flow and
the pressure in the wall. Considering only the static
case allows to analyze the coupling in space separately,
excluding errors based on time-coupling. To obtain the
steady state solution an iterative approach is used. The existence of a numerical steady
state solution is determined by computation of a numerically ’exact’ solution on a very
fine mesh by directly solving the steady state problem on matching meshes.

5.1 Flow equations

A simple flow model is used which is valid for supersonic flow over a panel:

pf = −ρ0c0V0∂xz, (39)

with ρ0, c0 and V0 the density, speed of sound and velocity, respectively, assumed to be
constant, pf the pressure and z = z0 + ∆z the location of the panel which is equal to the
initial location of the panel, z0, plus the displacement from this initial position, ∆z.

For convenience the variables are scaled as follows

x̄ =
x

L
, V̄0 =

V0

c0

, p̄f =
pf

ρ0c2
0

, z̄ =
z

L
, (40)
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with L the length of the channel. This results in the following non-dimensional equation:

p̄f = −V̄0∂xz̄. (41)

For notation purposes the bars are dropped in the remainder of the paper. To discretize
the equations, a third order finite element discretization is used.

5.2 Structure equations

The equation that describes the behaviour of the flexible wall is given by

κq − T∂xxq = ps − pe, (42)

where q is the displacement from the ’dry’ equilibrium position, qe(x), when ps = pe; ps

is the pressure acting on the wall, pe is the pressure at the wall, assumed to be constant,
κ the elasticity per unit length and T the longitudinal tension per unit length. Again
the variables are scaled using the non-dimensional variables of (40) and the additional
variables

q̄ =
q

L
, p̄s =

ps

ρ0c2
0

, p̄e =
pe

ρ0c2
0

, κ̄ =
κL

ρ0c2
0

, T̄ =
T

Lρ0c2
0

. (43)

This results in an equation which has two non-dimensional physical parameters κ̄ and T̄
and has the same form as (42). In the remainder of the paper the bars are dropped. Again
a third order finite element discretization is used to discretize the equations in space.

5.3 Coupling procedure

Coupling between the fluid and the structure equations is obtained through the dy-
namic (1a) and kinematic (1b) boundary conditions at the fluid-structure interface. A
simple iterative coupling procedure is implemented to obtain the steady state solution.
This iterative approach proceeds as follows

1. Calculate ps = Hfspf .

2. Calculate the new displacement of the structure, q from (42).

3. Obtain ∆z = Hsfq and update the location of the wall z = z0 + ∆z.

4. Calculate pf from (41).

Repeat until the change in q is smaller than a certain threshold. To obtain a numerically
’exact’ solution the steady state problem is solved at once on very fine matching meshes.
This is equivalent to solving the following equations on a fine mesh

κq + V0∂xq − T∂xxq = −V0∂xqe − pe, (44a)

p = −V0∂xq. (44b)

For obtaining the ’exact’ solution a fourth order finite element discretization is used to
discretize the equations in space.
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5.4 Results

For the test cases the following configuration is used. The boundaries of the domain
are xmin = −0.5 and xmax = 0.5 and the initial shape of the tube wall is given by

z0(x) = a0 − a1e
−a2x2

, (45)

where the parameters have the values a0 = 0.5, a1 = 0.25 and a2 = 80. This means
that we have a smooth converging/diverging channel. The ’dry’ equilibrium position of
the membrane, qe, is equal to this initial shape. The values used for the non-dimensional
structure parameters are: κ = 50 and T = 0.04, which results in a rather flexible mem-
brane. For the flow velocity yields V0 = 3, corresponding to a supersonic flow of Mach 3.
Initially the pressure in the flow, pf , the pressure in the wall, pe, and the displacement
q are all equal to zero. We use nf = 21 · 2k flow cells and ns = 6 · 2k structure cells, with
k ∈ {0, 1, 2, 3, 4, 5}, leading to a ratio of approximately 30%.

The L2-error of the displacement in the flow points versus the number of structure
points is depicted in Figure 11. The solid line is obtained with the conservative and
the dotted line with the consistent approach. The gray lines are added to indicate the
discretization error and are generated with matching meshes: the solid gray line with
ns = nf = 21 · 2k and the dotted line with nf = ns = 6 · 2k. Above these lines the
coupling error of a method is higher than the discretization error. NN is again the least

Figure 11: Error in displacement (−: conserva-
tive, −−: consistent).

Figure 12: Error in pressure (−: conservative,
−−: consistent).

accurate method. The methods based on radial basis function interpolation are second
order accurate with the consistent approach giving the most accurate results where only
for higher values of ns the coupling error is higher than the third order discretization
error. When the discretization error of the total system is second order or lower, the
coupling error is always smaller than the discretization error. The coupling error for the
GI method is always smaller than the discretization error for both the conservative and
consistent approach.
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The L2-error of the pressure in the structure points versus the number of structure
points is depicted in Figure 4. Because the value for the pressure is obtained from the space
derivative of z, the order of convergence should be one lower than for the displacement.
It can be seen that the conservative approach leads again to a zeroth order error for all
methods, except GI. The coupling error for the GI method is always smaller than the
discretization error for both the conservative and consistent approach. The reduction in
order for the conservative GI as can be seen in the analytical test case in Figure 4 is not
visible, because of the order reduction caused by the space derivative.

Figure 13: Pressure received by the structure ob-
tained with the RBF method with r = 5 for
nf = 441 and ns = 36.

Figure 14: Displacement obtained with the RBF
method with r = 5 for nf = 441 and ns = 36.

In Figures 13 and 14, the exact solution obtained by the structure and the ones obtained
with the conservative and consistent approach for the RBF method with r = 5 are shown
for the pressure obtained by the structure, ps, and the displacement q, respectively. It
can be seen that the large oscillations felt by the structure also result in small deviations
in the displacement. The more flexible the structure, the larger these deviations become.

For this simple test problem, the computation time needed by the coupling algorithm
is still considerable compared to the overall computation time. From Figures 15 and 16 it
can be seen that the consistent RBF method with a large radius is the most efficient. The
GI method is again the least efficient, because of the projection algorithm. The results
for the difference in work are similar to the ones obtained by the analytical test case.

The main conclusion is that the NN method is not suitable for the coupling of non-
matching meshes, because it is only first order accurate. The conservative approach
should be used with the GI method, because it gives the highest accuracy and efficiency.
However, the methods based on radial basis function interpolation show large oscillations
in the pressure obtained by the structure, when the conservative approach is used. For
these coupling methods the consistent approach provides the best accuracy and efficiency.
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Figure 15: Efficiency for the displacement (−:
conservative, −−: consistent).

Figure 16: Efficiency for the pressure (−: conser-
vative, −−: consistent).

6 CONCLUSIONS

In this paper we investigate the difference in accuracy and efficiency between the con-
servative and consistent approach for different coupling methods. The performance is in-
vestigated for an analytical test problem as well as a simple quasi-1D FSI problem. When
the coupling method is based on a weighted residual formulation of the coupling condi-
tions, the highest accuracy and efficiency are obtained with the conservative approach.
For other coupling methods the conservative approach results in unphysical oscillations
in the pressure received by the structure. When the structure is flexible enough these
oscillations can result in deviations in the displacement. For these methods the consistent
approach provides the best accuracy and efficiency.

Overall, when the discretization order of the total system higher than two, the con-
servative GI method is the best choice.. However, its implementation is more difficult
and the computation time is higher than for the methods based on radial basis function
interpolation. This is because the higher order of the GI method is only obtained when
all the projection steps are accurately performed. Therefore, when the discretization of
the total system is of order two or lower, or less important, the methods based on radial
basis function interpolation are preferred where the compact RBF with a high support
radius is the best choice.

Up to now only a simple steady quasi-1D fluid-structure interaction problem has been
considered. Future research will focus on the investigation of time-dependent and more
realistic multi-dimensional problems by coupling existing fluid and structure solvers.
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