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Models of networks of Leaky Integrate-and-Fire (LIF) neurons are a widely used tool

for theoretical investigations of brain function. These models have been used both with

current- and conductance-based synapses. However, the differences in the dynamics

expressed by these two approaches have been so far mainly studied at the single neuron

level. To investigate how these synaptic models affect network activity, we compared the

single neuron and neural population dynamics of conductance-based networks (COBNs)

and current-based networks (CUBNs) of LIF neurons. These networks were endowed

with sparse excitatory and inhibitory recurrent connections, and were tested in conditions

including both low- and high-conductance states. We developed a novel procedure to

obtain comparable networks by properly tuning the synaptic parameters not shared by the

models. The so defined comparable networks displayed an excellent and robust match of

first order statistics (average single neuron firing rates and average frequency spectrum of

network activity). However, these comparable networks showed profound differences in

the second order statistics of neural population interactions and in the modulation of these

properties by external inputs. The correlation between inhibitory and excitatory synaptic

currents and the cross-neuron correlation between synaptic inputs, membrane potentials

and spike trains were stronger and more stimulus-modulated in the COBN. Because of

these properties, the spike train correlation carried more information about the strength of

the input in the COBN, although the firing rates were equally informative in both network

models. Moreover, the network activity of COBN showed stronger synchronization in the

gamma band, and spectral information about the input higher and spread over a broader

range of frequencies. These results suggest that the second order statistics of network

dynamics depend strongly on the choice of synaptic model.

Keywords: recurrent neural network, integrate-and-fire neurons, current based neuron models, conductance based

neuron models, spike correlation, local field potentials, correlation analysis, information encoding

INTRODUCTION

Networks of Leaky Integrate-and-Fire (LIF) neurons are a key tool

for the theoretical investigation of the dynamics of neural cir-

cuits. Models of LIF networks express a wide range of dynamical

behaviors that resemble several of the dynamical states observed

in cortical recordings (see Brunel, 2013 for a recent review). An

advantage of LIF networks over network models that summarize

neural population dynamics with only the density of popula-

tion activity, such as neural mass models (Deco et al., 2008), is

that LIF networks include the dynamics of individual neurons.

Therefore LIF networks can be used to investigate phenomena,

such as the relationships among spikes of different neurons, that

are not directly accessible to simplified mass models of network

dynamics.

A basic choice when designing a LIF network is whether the

synaptic model is voltage-dependent (conductance-based model)

or voltage-independent (current-based model). In the former

case the synaptic current depends on the driving force, while

this does not happen in the current-based model. Current-based

LIF models are popular because of their relative simplicity (see

e.g., Brunel, 2013) and they have the key advantage of facilitating

the derivation of analytical closed-form solutions. Thus current-

based synapses are convenient for developing mean field mod-

els (Grabska-Barwinska and Latham, 2013), event-based models

(Touboul and Faugeras, 2011), or firing rate models (Helias et al.,

2010; Ostojic and Brunel, 2011; Schaffer et al., 2013), as well as

in studies examining the stability of neural states (Babadi and

Abbott, 2010; Mongillo et al., 2012). Moreover, current-based

models are often adopted, because of their simplicity, to inves-

tigate numerically network-scale phenomena (Memmesheimer,

2010; Renart and Van Rossum, 2012; Gutig et al., 2013; Lim

and Goldman, 2013; Zhang et al., 2013). On the other hand,

conductance-based models are also widely used because they

are more biophysically grounded (Kuhn et al., 2004; Meffin
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et al., 2004). In particular, only conductance-based neurons can

reproduce the fact that when the synaptic input is intense, cor-

tical neurons display a three- to fivefold decrease in membrane

input resistance (thus they enter a high-conductance state), as

observed in intracellular recordings in vivo (Destexhe et al., 2003).

However, an added complication of conductance-based models is

that their differential equations can only be evaluated numerically

or approximated analytically (Rudolph-Lilith et al., 2012) rather

than being fully analytically treatable.

Despite the widespread use of both types of models, the differ-

ences in the network dynamics that they generate has not been yet

fully understood. Previous studies comparing conductance- and

current-based LIF models focused mostly on the individual neu-

ron dynamics (Kuhn et al., 2004; Meffin et al., 2004; Richardson,

2004). Here we extended these previous works by investigating

the network level consequences of the synaptic model choice. In

particular, we investigated which aspects of network dynamics

are independent of the choice of the specific synaptic model, and

which are not. Understanding this point is crucial for fully eval-

uating the costs and implications of adopting a specific synaptic

model.

We compared the dynamics of two sparse recurrent excitatory-

inhibitory LIF networks, a conductance-based network (COBN)

with conductance-based synapses, and a current-based network

(CUBN) with current-based synapses. To properly compare the

two networks, we set to equal values all the common parameters

(including the connectivity matrix). Building on previous works

(La Camera et al., 2004; Meffin et al., 2004), we devised a novel

algorithm to obtain two comparable networks by properly tun-

ing the synaptic conductance values of the COBN given the set

of values of synaptic efficacies of the CUBN. Since the differences

between the dynamics of the two synaptic models depend on the

fluctuations of the driving force (i.e., of the membrane poten-

tial), they should be close to zero when the synaptic activity is

low. Thus, when decreasing the background synaptic activity, the

Post-Synaptic Currents (PSCs) of the two models should become

more and more similar. Consequently, our procedure calibrated

the conductances so that PSCs became exactly equal in the limit of

zero synaptic input (see Methods). Then we investigated whether

this procedure could generate COBNs and CUBNs with matching

average single neuron stationary firing rates under a reasonably

wide range of parameters and network stimulation conditions.

We then studied how comparable conductance- and current-

based networks differed in more complex characterizations of

population dynamics, such as the cross-neuron correlations of

membrane potential (MP), input current and spike train, as well

as the spectrum of network fluctuations. The latter was inves-

tigated not only for total average firing rates, but also for the

simulated Local Field Potential (LFP) computed from the massed

synaptic activity of the networks (Mazzoni et al., 2008). To study

the spectrum of network fluctuations it is useful to use a LFP

model (rather than a massed spike rate) mainly because cortical

rhythms are more easily measured in experiments by recording

LFPs rather than the spike rate (Buzsaki et al., 2012; Einevoll

et al., 2013); therefore this quantification makes the models more

directly comparable to experimental observations. We then quan-

tified how the external inputs modulate the firing rate, the LFP

spectrum and the spike train correlation by using information

theory (Quian Quiroga and Panzeri, 2009; Crumiller et al., 2011).

Finally, we discuss the similarities and differences of COBN and

CUBN against recent experimental observations of dynamics

of cortical network correlations (Lampl et al., 1999; Kohn and

Smith, 2005; De La Rocha et al., 2007; Okun and Lampl, 2008;

Ecker et al., 2010; Renart et al., 2010).

METHODS

NETWORK STRUCTURE AND EXTERNAL INPUTS

We considered two networks of LIF neurons with identical archi-

tecture and injected with identical external inputs. The only dif-

ference between the two networks was in the synaptic model: one

was composed by neurons with conductance-based synapses and

the other by neurons with current-based synapses (see subsection

“Single neuron models” in Methods). The network structure was

the same one used in a previous work (Mazzoni et al., 2008), to

which we refer for a full description. Briefly, each network was

composed of 5000 neurons. Eighty percent of the neurons were

excitatory, that is their projections onto other neurons formed

AMPA-like excitatory synapses, while the remaining 20% were

inhibitory, that is their projections formed (A-type) GABA-like

inhibitory synapses. The 4:1 ratio is compatible with anatom-

ical observations (Braitenberg and SchüZ, 1991). The network

had random connectivity with a probability of directed con-

nection between each pair of neurons of 0.2 (Sjostrom et al.,

2001; Holmgren et al., 2003), thus any neuron in the network

received on average 200 synaptic contacts from inhibitory neu-

rons and 800 from excitatory neurons (see Supplementary Figure

1). Both populations received a noisy excitatory external input

taken to represent the activity from thalamocortical afferents,

with inhibitory neurons receiving stronger inputs than excita-

tory neurons. This simulated external input was implemented as

a series of spike times that activated excitatory synapses with the

same kinetics as recurrent AMPA synapses, but different strengths

(see Tables 1, 2).

The input spike trains activating the model thalamocortical

synapses were generated by a Poisson process, with a time-varying

rate, νext(t), identical for all neurons. Note that this implied that

the variance of the inputs across neurons increased with the input

rate. νext(t) was given by the positive part of the superposition of

a “signal,” νsignal(t), and a “noise” component, n(t):

νext(t) = [νsignal(t) + n(t)]+ (1)

The separation of signal and noise in the input spike rate was

to reproduce the classical experimental design in which a given

sensory stimulus is presented many times, with each presenta-

tion (or “trial”) eliciting different responses due to variations in

intrinsic network dynamics from presentation to presentation.

We achieved this by identifying the external stimulus with the

signal term,νsignal(t), (which was thus exactly the same across

all trials of the same stimulus) and by using a noise term, n(t),

generated (as explained below) independently in each trial.

In this study we used three kinds of external signals. For the

majority of the simulations we used constant stimuli, νsignal(t) =

ν0, (with ν0 ranging from 1.5 to 6 spikes/ms). In a second
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set of simulations we used periodic stimuli made by super-

imposing a constant baseline term to a sinusoid: νsignal(t) =

A sin(2π ft) + ν0, where A = 0.6 spikes/ms; f ranged from 2 to

16 Hz in Figure 12 and from 2 to 150 Hz in Figure 13 and ν0

was set to 1.5 (respectively 5) spikes/ms when studying the low-

(respectively high-) conductance state. We also used a time-

varying signal that reproduced the time course of Multi Unit

Activity recorded from the LGN of an anaesthetized macaque dur-

ing binocular presentation of commercially available color movies

(Belitski et al., 2008). This latter dynamical stimulus, called “nat-

uralistic”, is fully described and characterized in (Mazzoni et al.,

2008) to which we refer for further details. For the purposes of

the present work, it is useful to remind that this naturalistic signal

was a slow signal dominated by frequencies below 4 Hz.

The noise component of the stimuli, n(t), was generated by an

Ornstein-Uhlenbeck (OU) process with zero mean:

τn
dn(t)

dt
= −n(t) + σn(

√

2τn)η(t), (2)

where σ
2
n = 0.16 spikes/ms is the variance of the noise, and η(t)

is a Gaussian white noise. The time constant τn was set to 16 ms

to have a cut-off frequency of 10 Hz. Note that the trial-to-trial

differences in the stochastic process generated by Equation 2 were

the first and largest source of trial-to-trial variability in the model,

the second and last being the fact that each neuron received an

independent realization of the Poisson process with rate νext(t).

In a specific set of control stimulations (Supplementary

Figure 4), instead of the OU process described above, we used a

Gaussian white noise with the same variance. Note that, for low

frequencies, the power spectrum of the OU process was higher

than the one of the white noise.

SINGLE NEURON MODELS

Both inhibitory and excitatory neurons were modeled as LIF neu-

rons (Tuckwell, 1988). The leak MP, Vleak, was set to −70 mV,

the spike threshold, Vthreshold, to −52 mV and the reset potential,

Vreset, to −59 mV. The absolute refractory period was set to 2 ms

for excitatory neurons and to 1 ms for inhibitory neurons (Brunel

and Wang, 2003). The equation for the sub-threshold dynamic of

the MP of i-th neuron had the following form:

τm
dV i(t)

dt
= −V i(t) + Vleak −

Ii
tot(t)

gleak
, (3)

where τm is the membrane time constant (20 and 10 ms for exci-

tatory and inhibitory neurons respectively), gleak is the leak mem-

brane conductance (25 nS and 20 nS for excitatory and inhibitory

neurons respectively) (Brunel and Wang, 2003) and Ii
tot (t) is the

total synaptic input current. The latter was given by the sum of all

the synaptic inputs entering the i-th neuron:

Ii
tot(t) =

∑

N(i, AMPArec)

Ii
AMPArec(t) +

∑

N(i, GABA)

Ii
GABA(t) + Ii

AMPAext(t),

(4)

the value of N(i, AMPArec) (respectively N(i, GABA)) being the set

of excitatory (respectively inhibitory) neurons projecting into the

i-th neuron, and Ii
AMPArec(t), Ii

GABA(t), Ii
AMPAext(t) the different

synaptic inputs entering the i-th neuron from: recurrent AMPA,

GABA, and external AMPA synapses respectively.

The difference between current- and conductance-based

synapses lied in the definition of these synaptic input currents

Isyn. For the current-based model:

ICUBN
syn (t) = Jsynssyn(t), (5)

where Jsyn are the synaptic efficacies (see Table 1) and ssyn(t) a

function that models the synaptic kinetics (see below).

In the conductance-based model the synaptic input currents

depended also on the MP, V(t):

ICOBN
syn (t) = gsynssyn(t)(V(t) − Vsyn), (6)

where gsyn and Vsyn are respectively the conductance and the

reversal potential of the synapse; the term (V(t) − Vsyn) is the

driving force of the synaptic current. The values of the parameters

gsyn in Equation 6 were computed as described in the subsection

“Procedure to determine comparable COBN and CUBN models.”

The reference values of reversal potentials and synaptic conduc-

tances are displayed in Table 2. In Figures 6C,D and 7D these

values were varied to test the robustness of our results.
The same function ssyn(t) described the time course of the

synaptic currents in both models; it depended both on the
synapse type and on the kind of neuron receiving the input. Every
time a pre-synaptic spike occurred at time t∗, ssyn(t) of the post-
synaptic neuron was incremented by an amount described by a

Table 1 | Synaptic efficacies of the current-based network.

Current-based network

SYNAPTIC EFFICACIES, Jsyn (pA)

GABA on inhibitory 54

GABA on excitatory 42.5

AMPArecurrent on inhibitory −14

AMPArecurrent on excitatory −10.5

AMPAexternal on inhibitory −19

AMPAexternal on excitatory −13.75

Table 2 | Reference values of the synaptic parameters of the

conductance-based model.

Conductance-based network

SYNAPTIC CONDUCTANCES, gsyn (nS)

GABA on inhibitory 2.70

GABA on excitatory 2.01

AMPArecurrent on inhibitory 0.233

AMPArecurrent on excitatory 0.178

AMPAexternal on inhibitory 0.317

AMPAexternal on excitatory 0.234

SYNAPTIC REVERSAL POTENTIAL, V syn (mV)

VGABA −80

VAMPA 0
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delayed difference of exponentials (Brunel and Wang, 2003):

�ssyn(t) =
τm

τd − τr

[

exp

(

−
t − τl − t∗

τd

)

− exp

(

−
t − τl − t∗

τr

)]

,

(7)

where the latency τl, the rise time τr and the decay time τd are

shown in Table 3.

A useful parameter for conductance-based neuron analysis is

the effective membrane time constant τeff. Following a standard

procedure we computed the total effective membrane conduc-

tance for the i-th neuron as:

gi
tot(t) = gleak +

∑

N(i, AMPArec)

gAMPArec si
AMPArec(t) (8)

+
∑

N(i, GABA)

gGABA si
GABA(t) + gAMPAext si

AMPAext(t),

and we rewrote Equation 3 as follows:

τ
i
eff(t)

dV i(t)

dt
= −V i(t) +

gleakVleak +
∑

N(i, syn) gsyn si
syn(t) Vsyn

gi
tot(t)

(9)

where τ
i
eff(t) =

τm gleak

gi
tot(t)

(10)

is the effective membrane time constant and “syn” indicates:

recurrent AMPA; GABA; external AMPA. In particular, for

the i-th neuron, the effective AMPA conductance is defined

as
∑

N(i, AMPArec) gAMPArec si
AMPArec(t) + gAMPAext si

AMPAext(t) and

the effective GABA conductance as
∑

N(i, GABA) gGABA si
GABA(t)

(see Figure 3).

NUMERICAL METHODS

Network simulations were done using a finite difference integra-

tion scheme based on the second-order Runge Kutta algorithm

(Press et al., 1992), also known as the midpoint method, with time

step �t = 0.05 ms.

The noise, n(t), was obtained from Equation 2 by implement-

ing an exact numerical simulation of the Ornstein-Uhlenbeck

process (Gillespie, 1996). The temporal durations of the simu-

lations varied from 4.5 s to 100.5 s, and they are specified in the

figure captions. The regimes we investigated displayed average fir-

ing rates relatively low (0.4–13 Hz), thus, when computing the

Inter-Spike Interval (ISI) and the pairwise spike train correlation,

we used the longest simulation times (25.5 and 100.5 s) to obtain

larger spike datasets. Since we studied stationary responses, the

first 500 ms of the simulations were never included in any analysis.

Analysis and simulations (the latter implemented using MEX file)

were performed in Matlab. Both COBN and CUBN model source

codes are available as Supplemental Material to this paper and on

Table 3 | Synaptic time constants of both models.

Synaptic time constants (ms) τl τr τd

GABA 1 0.25 5

AMPA on inhibitory 1 0.2 1

AMPA on excitatory 1 0.4 2

the ModelDB sharing repository (http://senselab.med.yale.edu/

ModelDB/ShowModel.asp?model=152539) with accession num-

ber 152539.

SPECTRAL ANALYSIS

To compute the power spectrum we used the Fast Fourier

Transform with the Welch method (pwelch function in Matlab),

dividing the time window under investigation into eight subwin-

dows with 50% overlap.

For the entrainment analysis showed in Figure 13 in case of

periodic inputs with frequency f, we bandpassed the LFP at the

correspondent frequency f with a Kaiser filter with zero phase lag

and 2 Hz bandwidth, very small passband ripple (0.05 dB) and

high stopband attenuation (60 dB). We extracted then the instan-

taneous phase by means of the Hilbert transform of the signal. To

quantify entrainment, we computed the phase coherence between

the phase of the input signal and of the LFP at the correspond-

ing frequency (Mormann et al., 2000). Phase coherence, which

we computed using the CircStat toolbox (Berens, 2009), ranges

from zero (no relationships between phases) to 1 (perfect phase

locking between the two signals).

COMPUTATION OF SIMULATED LOCAL FIELD POTENTIAL

We computed from network activity the LFP by using a proce-

dure that has been proposed in previous works (Mazzoni et al.,

2008, 2010, 2011), to which we refer for full details. The pro-

cedure is summarized and motivated in the following. LFPs are

experimentally obtained by low-pass filtering the extracellularly

recorded neural signal, and are thought to reflect to a first approx-

imation the current flow due to synaptic activity around the tip

of the recording electrode (Buzsaki et al., 2012). Thus, we com-

puted the simulated LFP as the difference between the sum of the

GABA currents and the sum of the AMPA currents (both external

and recurrent) that enter all excitatory neurons. This quantity was

then divided by the leak membrane conductance to obtain units

of mV.

This simple recipe was motivated by two well-known geomet-

rical properties of cortical circuits. First, AMPA synapses tend to

be apical, i.e., they contact the dendrites away from the soma,

while GABA synapses tend to be peri-somatic, i.e., they contact

the soma or the dendrites close to the soma. Because of this spatial

arrangement, the sink and sources resulting from the activation

of both AMPA and GABA synapses will tend to produce in the

extracellular field a dipole oriented from apical dendrites toward

soma; hence we computed the LFP by subtracting the AMPA cur-

rents from the GABA currents (divided by the leak membrane

conductance). Second, pyramidal neurons contribute more than

interneurons to generation of LFPs in cortex because their apical

dendrites are organized in an approximate open field configu-

ration, whereas the organization of dendrites of interneurons is

arranged to a first approximation in a close field configuration

(Lorente De No, 1947; Murakami and Okada, 2006; Linden et al.,

2011). Therefore we computed LFPs by considering only input

currents to excitatory neurons (taken here to correspond to cor-

tical pyramidal neurons). This model, though simple, proved to

be an effective way to generate a realistic LFP signal that match

many characteristics of LFPs in sensory cortex (Mazzoni et al.,

2008, 2010, 2011).

Frontiers in Neural Circuits www.frontiersin.org March 2014 | Volume 8 | Article 12 | 4

http://senselab.med.yale.edu/ModelDB/ShowModel.asp?model=152539
http://senselab.med.yale.edu/ModelDB/ShowModel.asp?model=152539
http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Cavallari et al. Current- vs conductance-based LIF networks

PROCEDURE TO DETERMINE COMPARABLE CURRENT- AND

CONDUCTANCE-BASED NETWORKS

As mentioned above all the parameters that were directly shared

between the two models were set equal; also the connectivity

matrix was the same in the CUBN and in the COBN. The start-

ing point of our comparison was to completely define the CUBN,

by specifying the synaptic efficacies, Jsyn (reported in Table 1),

as well as the values of the common set of parameters. Then,

we computed the synaptic parameters of the COBN that made it

comparable to the given CUBN. To simplify the problem, we first

set the reversal potentials of the COBN to biophysically plausi-

ble values: VAMPA = 0 mV and VGABA = −80 mV (as reference

values, but we also tested other values, see Figures 6C,D, 7D).

The “free” parameters left to set were now only the COBN

conductances (gsyn in Equation 6).

The procedure used to obtain the conductance values lead-

ing to comparable COBN and CUBN is illustrated in Figure 1

and described in the following. Consistent with the fact that the

effective membrane time constant of the COBN is equal to the

membrane time constant of the CUBN only in absence of synaptic

input (see Equation 10), we set the conductances of each synapse

type to obtain the same PSCs as in the corresponding current-

based synapse in the limit of no synaptic activity. Explicitly, for

each synapse type:

gsyn =
Jsyn

(〈V〉pop − Vsyn)
, (11)

where 〈V〉pop was the average (over time and neurons) MP

of excitatory and inhibitory populations obtained from net-

work simulation of 4.5 s with a constant external input of 1.5

(spikes/ms)/cell. This last value was chosen because it was the low-

est stimulus used throughout the paper, i.e., the one that induced

the lowest synaptic activity. Since 〈V〉pop depended on gsyn, we

determined both values numerically and recursively. We used as

first guess the average MP obtained with the CUBN, we computed

the associated conductances with Equation 11, we ran a COBN

simulation with those conductances and then we used the result-

ing 〈V〉pop to compute the updated conductances, until 〈V〉pop

(and consequently the conductances) reached a stable value (see

Figure 1). Note that convergence was very fast: stability within a

tolerance on average MPs of 0.01 mV was achieved usually in less

than 10 steps. By using Equation 11, we rewrote the Equation 6 as

follows:

ICOBN
syn (t) = Jsynssyn(t)

[

1 +
V(t) − 〈V〉pop

〈V〉pop − Vsyn

]

. (12)

Comparing Equation 12 with Equation 5 it is clear that the synap-

tic currents of the two networks are the same only when V(t) =

〈V〉pop, that is in the limit of no synaptic input.

Conductance-based neurons can undergo transitions from

low- to high-conductance states (Destexhe et al., 2001) and

the simulations performed in this work included both states.

However, current-based neurons cannot undergo such transi-

tions and their membrane time constant is close to the effective

membrane time constant of conductance-based neurons in a

FIGURE 1 | Procedure to set the synaptic conductances of the COBN.

The flowchart illustrates the iterative algorithm we used to set the synaptic

conductances, gsyn,such in a way to obtain a COBN comparable with the

given CUBN. The two networks shared all the common parameters, so,

once the CUBN was given, the synaptic conductances depended only on

the synaptic reversal potentials of the COBN, Vsyn.

low-conductance state (see Figure 3A). Therefore, the correspon-

dence between the two models that we defined is consistent with

the physiologically-meaningful requirement that the differences

between the two synaptic models decrease with synaptic activity

(Destexhe et al., 2003).

COMPUTATION OF THE AVERAGE POST-SYNAPTIC POTENTIALS IN THE

CONDUCTANCE-BASED NETWORK

Modeling the synaptic input as conductance transients produces

an activity-dependent increase of membrane conductance (that
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is a reduction of effective membrane time constant, see Equation

10) which attenuates and shortens the Post-Synaptic Potentials

(PSPs) (Destexhe and Pare, 1999). In order to extract the aver-

age (activity-dependent) PSPs of the COBN we used a procedure

similar to the one used in (Kumar et al., 2008): for each synapse

type (see Table 2) we randomly selected 300 neurons from the

network and we made a copy of them. These “cloned” neurons

received the synaptic input of the original ones and had exactly

the same spiking activity. The only difference with respect to the

original is that the cloned neurons received an extra spike, from

the synapse under investigation, each 100 ms (except for the first

500 ms), for a total of 100 PSPs for each cloned neuron (i.e., sim-

ulations lasted 10.5 s). We subtracted then the MP of the original

neurons from the one of the cloned neurons and, by doing a spike

triggered average over time and selected neurons, we obtained the

average effective PSP.

COMPUTATION OF CORRELATIONS AMONG SIGNALS IN THE

NETWORKS

We quantified the effects of the choice of the synaptic model on

the cross-neuron correlation in time. We computed the cross-

neuron pairwise Pearson’s correlation coefficient of the time

course of AMPA currents and of GABA currents entering the

neurons, MPs and spike trains. The spike trains were binned

in non-overlapping time windows of 5 ms and their correlation

coefficients were averaged over all neuron pairs of the net-

work (Figures 10A–C). Time courses of the other variables were

expressed with the original time steps of 0.05 ms and the correla-

tion was estimated averaging the correlation coefficients over all

neurons’ pairs obtained from two randomly selected subpopula-

tions of 200 excitatory and 200 inhibitory neurons (Figure 9).

We measured also the average correlation between the time

course of AMPA and GABA currents entering each single neu-

ron. In particular, we computed the normalized cross-correlation

between AMPA and GABA currents entering each neuron belong-

ing to the two subpopulations of 200 neurons above mentioned.

Then we averaged (over the neurons) the peak value and the peak

position, i.e., the time lag for which the correlation was strongest

(Figure 8).

COMPUTATION OF INFORMATION ABOUT THE EXTERNAL INPUTS

We studied how networks encoded external stimuli by means

of mutual information between stimulus and response (that we

will simply call information in the manuscript) (Shannon, 1948).

The information that a set of responses, R, carries about a set of

stimuli, S, is given by:

I(S; R) =
∑

s∈S

P(s)
∑

r∈R

P(r|s) log2

P(r|s)

P(r)
, (13)

where P(s) is the probability of presentation of the stimulus s,

P(r) the probability of observing the response r, and P(r|s) the

probability of observing r when s is presented.

As explained above, we used three kinds of external

input signals: constant input (Figures 2–11), periodic input

(Figures 12, 13) and a naturalistic input (Figure 14). In the con-

stant input case, each input rate, ν0, was considered a different

stimulus (with simulations lasting 25.5 s), while, for the periodic

stimuli, each stimulus corresponds to a frequency f (with simu-

lations lasting 10.5 s). In the naturalistic case, the stimulus pre-

sentation time (80 s) was divided into 2 s long non-overlapping

windows and each window was considered as a different “stim-

ulus” for the information calculation, following the procedure

described in (Belitski et al., 2008). We discarded an interval at

the beginning of the simulations (500 ms both for constant and

periodic case and 2 s for the naturalistic case) to avoid artifacts

due to initial conditions. When computing information we con-

sidered three different response sets R: the average network firing

rate, the average cross-neuron spike train correlation, and the

LFP power of each single frequency (Belitski et al., 2008) in the

(1–150) Hz range. To facilitate the sampling of response proba-

bilities, the whole range of response values was divided into six

consecutive intervals. Each of these intervals contained the same

number of responses (i.e., they were equi-populated). All the

responses belonging to a given interval assumed then the same

interval-specific discrete value. In summary, we discretized the

responses into six equi-populated bins. Then conditional prob-

abilities P(r|s) were evaluated empirically by using the results

from 50 trials per each stimulus s. We corrected information

estimations for the limited sampling bias (Panzeri et al., 2007)

by using the “quadratic extrapolation procedure” described in

Strong et al. (1998) implemented in the Information Breakdown

Toolbox (Magri et al., 2009).

RESULTS

We investigated the differences in the dynamics of neural popu-

lations between conductance-based LIF networks (COBNs) and

current-based LIF networks (CUBNs), with particular empha-

sis in understanding how the neural population activity of these

two types of network is modulated by external inputs. We first

introduced an iterative procedure to determine synaptic param-

eter values so that the CUBN and the COBN were placed on a

fair common ground, and could therefore be legitimately com-

pared. We then analyzed similarities and differences of single

neuron dynamics and of interactions among neurons in the two

networks as a function of strength and nature of the external

stimuli.

DETERMINING SYNAPTIC PARAMETER VALUES TO BUILD

COMPARABLE CURRENT- AND CONDUCTANCE-BASED NETWORKS

A necessary requirement to compare the activity of two different

network models is to define a meaningful and sound correspon-

dence between them. Our first step was thus to define a procedure

to achieve comparable networks (see Methods for details). In

brief, we set all the common parameters to exactly equal—and

biologically plausible—values in both models. In this way the

two models differed only because of the different synaptic model

adopted: voltage-independent for CUBN (see Equation 5) and

voltage-dependent for COBN (see Equation 6). In particular, the

expression of the Post-Synaptic Currents (PSCs) in the COBN

depended on conductances gsyn and on reversal potentials (VAMPA

and VGABA), while in the CUBN the PSCs depended only on

synaptic efficacies Jsyn. We set VAMPA and VGABA at 0 and −80 mV

respectively (but importantly our results were robust to changes
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FIGURE 2 | Individual synaptic events. Dynamics of single synaptic events

on excitatory neurons (see Methods). Results were qualitatively very similar

when considering synaptic inputs impinging on inhibitory neurons (see “PSP

peak amplitude” in Supplementary Table 1). (A,B) Shape of Post-synaptic

Currents (PSCs, top) for individual synaptic events in case of recurrent AMPA

(A) and GABA (B) connection (thalamic AMPA case is not shown because it

is qualitatively very similar to the recurrent AMPA case). The origin of the

time axis corresponds to the arriving time of the spike. Green lines represent

the kinetics in current-based neurons, which is independent from background

synaptic activity. Dashed blue lines indicate the kinetics of an isolated

conductance-based neuron (thus without background activity), having starting

membrane potential equal to
〈

V
〉

exc
= −58.8 mV, that is the average potential

of the excitatory neurons of the network when the external input signal is

1.5 (spikes/ms)/cell. Red lines indicate the average PSCs in

conductance-based neurons embedded in the network (thus with

background activity) when the external input signal is 1.5 (spikes/ms)/cell (see

Methods for details). Blue and green lines are superimposed in (A). (C)

Absolute average values of the PSC peaks as a function of the external input

rate for neurons embedded in the network. Results are relative to recurrent

AMPA (red) external AMPA (green), and GABA (blue) synapses for current-

(thick lines) and conductance-based (thin lines with markers) neurons.

Shaded areas for the conductance-based neurons correspond to the standard

deviation across neurons (for AMPA connections the shaded areas are not

visible because they are too small). (D–F) Same as (A–C) for Post-Synaptic

Potentials (PSPs). PSPs are more relatively affected by the choice of the

synaptic model with respect to the PSCs, because, in the COBN, the PSCs

depend on the driving force, while the PSPs both on the driving force and on

the effective membrane time constant.

in these parameters, see Figures 6C,D, 7D). We then used an iter-

ative algorithm (detailed in Methods and illustrated in Figure 1)

to set the values of the conductances gsyn of the COBN in such a

way to obtain a COBN comparable to the CUBN with the given

synaptic efficacies Jsyn.

The PSCs and the Post-Synaptic Potentials (PSPs) of recur-

rent AMPA and GABA synapses in the comparable net-

works are shown in Figures 2A,B,D,E for three different cases:

current-based synapse, conductance-based synapse of a single

neuron without background synaptic activity and conductance-

based synapse of neurons embedded in the COBN network (that

thus received background synaptic activity). The post-synaptic

kinetics of conductance-based neurons is activity dependent.

The terms that mediate this dependency are: the driving force

(see Equation 6) and the increase of the total effective mem-

brane conductance (see Equation 8). Both these terms tend to

reduce the post-synaptic stimulus, but the PSCs are affected only

by the driving force, while the PSPs by both the driving force

and the effective membrane conductance. To understand how

these two terms shape the post-synaptic stimulus, it is impor-

tant to compare post-synaptic responses of conductance-based

neurons, with and without background activity. Firstly, we com-

pared PSCs and PSPs of the current-based synapse with those

of the conductance-based synapse in the absence of background

activity. In this condition the shape of excitatory PSCs and PSPs

was almost identical for the two models when considering AMPA

synapses (Figures 2A,D), while, for GABA synapses, differences

between the two models were visible (Figures 2B,E). This asym-

metry was due to the fact that the value of the average MP

(see figure caption) was much closer to the reversal potential of

GABA synapses than to the one of AMPA synapses (see Equation

12). Consequently the relative reduction of driving force during

the post-synaptic event was higher for GABA synapses, provok-

ing a stronger reduction of both PSCs and PSPs, with respect

to the AMPA synapses (Figures 2B,E). Moreover, the PSPs of

fast synapses (that is synapses with short τdecay) are less affected

by synaptic bombardment (Koch, 1999; Kuhn et al., 2004), so,

being the AMPA τdecay shorter than the GABA ones (see Table 3),

the asymmetry was even stronger when looking at the PSPs

(Figures 2D,E). Secondly, we considered the conductance-based

neurons embedded in the COBN and we found that in this case

both AMPA and GABA synapses displayed a reduction in the

amplitude and in the timescale, because the background network

activity affected the time course of the MP (thus of the driving

force) and increased the total effective membrane conductance.

As stated above, differences between the two synaptic mod-

els were expected to increase with input strength because the

background synaptic activity increases. We measured this effect
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FIGURE 3 | Effective parameters in conductance-based networks. Input

rate modulations of COBN-specific parameters. (A) Average effective

membrane time constant for conductance-based excitatory neurons (red

markers) and inhibitory neurons (blue markers) as a function of the

external input rate. Membrane time constants of the current-based

neurons are shown for reference as thick lines. Results show that

conductance-based membrane timescale is much faster than current-based

one and that it decreases with input strength. (B) Average effective AMPA

(red) and GABA (blue) conductances on excitatory neurons as a function of

the external input rate. Results show that the COBN goes from low- to

high-conductance states in the range of external stimuli considered. Same

color code as (A). Shaded areas represent standard deviation across

neurons [in (A) for inhibitory time constant and in (B) for AMPA

conductances they are not visible because too small]. Values are

computed from a simulation of 10.5 s per stimulus and are averaged over

time and neurons.

by injecting in the network constant inputs ranging from 1.5 to

6 (spikes/ms)/cell. Figures 2C,F show the amplitude of the dif-

ferent PCSs and PSPs as a function of the external input rate.

Note that the PSCs (Figure 2C) and PSPs (Figure 2F) in the

CUBN were activity-independent by construction, while, in the

COBN, both PSCs and PSPs decreased substantially when input

rate was increased; furthermore the relative reduction was the

strongest for the slowest PSPs of GABA synapses (as stated above).

Supplementary Table 1 reports average PSP amplitude values on

both inhibitory and excitatory neurons.

Figure 2 shows that, in the COBN, PSPs were not only smaller

but also faster than in the CUBN, consistently with previous

results (Kuhn et al., 2004; Meffin et al., 2004). This reflected the

decrease of the effective membrane time constant, τeff, of the

COBN, whose average value is shown in Figure 3A as a func-

tion of the input rate. When injecting stimuli with high input

rates, we found that for both neuron populations the effective

time constant, τeff, was in the 1–5 ms range, matching experimen-

tal observations relative to the high-conductance states (Destexhe

et al., 2003).

We then asked how the effective conductances associated with

the AMPA and GABA currents varied in the COBN as a func-

tion of the input rate. We found (Figure 3B) that the average

conductances grew linearly with input rate, as observed in single

neuron case (Kuhn et al., 2004). Crucially, for high input rates,

the relative conductances gAMPA/gleak and gGABA/gleak displayed

values respectively close to 1 and 3.5, in the range of those

found experimentally in high-conductance states (Destexhe et al.,

2003). This suggested that our input range was suited to investi-

gate the whole continuum going from low- to high-conductance

states.

AVERAGE SINGLE NEURON PROPERTIES

After having examined the properties of PSPs and conductances

in the two comparable networks, we began investigating how

these properties affect the dynamics of neural activity in the

networks. To gain some visual intuition about this, we plot-

ted (Figure 4) example traces of how variables reflecting single

neuron and network activity evolve over time for the two types

of network both in the low- and high-conductance state. The

overall spike rate of individual neurons was similar for the two

networks in both low- and high-conductance state (compare

Figures 4A with 4C and Figures 4B with 4D) suggesting that the

level of network firing was only mildly dependent on the synap-

tic model adopted. On the other hand, single neuron MP traces

were similar in the two networks in the low-conductance regime

(compare Figures 4E with 4G), but different in many aspects in

the high-conductance regime (compare Figures 4F with 4H). In

particular, in the high-conductance state, the COBN MPs had

rapid gamma-range variations which were correlated across neu-

rons and whose amplitude was more prominent than that of the

gamma oscillations in the CUBN MPs, suggesting that the oscil-

lation regime in the high-conductance state was tighter in the

COBN than in the CUBN. Finally, we considered the traces of

the LFP (which can potentially capture both supra- and sub-

threshold massed neural dynamics). LFP traces were relatively

similar across networks in the low-conductance state (Figure 4I).

However, there was an interesting qualitative difference in the LFP

traces in the high-conductance state: the COBN LFP had tran-

sient peaks of very high amplitude, which were not observed in

the CUBN. At fixed level of overall firing rate, the amplitude

of the LFP is modulated by the relative timing of the synaptic

events contributing to it. Therefore this observation suggests that
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FIGURE 4 | Example traces. Examples of 5 s (A–D) and 500 ms (E–J) of data

traces generated by the two networks when using constant stimuli. The left

column shows the activity in response to an input rate ν0 set to 1.5 spikes/ms

generating a low-conductance state. The right column shows the activity in

response to an input rate ν0 set to 5 spikes/ms generating a

high-conductance state. (A–D) Raster plot of 10 excitatory and 10 inhibitory

neurons taken from the COBN (A,B) and from the CUBN (C,D). The selected

neurons and the color code are the same across panels (A–D). (E–H)

Membrane potential of two neurons taken from the COBN (C,D) and from

the CUBN (G,H). The neurons displayed and the color code are the same

across the panels (E–H). (I,J) Simulated LFP obtained from the COBN (thin

line) and from the CUBN (thick line).

the COBN may undergo larger fluctuations in synchronization

than the CUBN. The visual inspection of example traces sug-

gests that, while some network properties such as overall firing

rate are consistently close in the two networks, other more subtle

aspects of network dynamics (such as the ability of the network

to transiently synchronize its activity) may not be entirely equiv-

alent in the two networks, especially in the high-conductance

state. In the following we will systematically quantify this

intuition.

An important feature of the models is the dynamics of the

average (over time and neurons) of the total synaptic input cur-

rent Itot (Equation 4). We observed in both networks (Figure 5A)

an increase of 〈Itot〉 with the input rate (Pearson correlation test,

p < 10−5). However, 〈Itot〉 was significantly higher for the CUBN

over all inspected inputs (t-test p << 10−10). The net input cur-

rent 〈Itot〉 was also less modulated by the input rate in the COBN:

the difference between the current (divided by the leak mem-

brane conductance) at maximum and minimum input was 1 mV

for COBN and 15 mV for CUBN. Even if the firing rate was very

similar in the two networks (see Figure 6A), average GABA cur-

rents were weaker in COBN, while average AMPA currents were

very similar (see Figure 5B). This discrepancy in the dynamics of

the net input current was due to the fact that individual PSCs of

GABA currents were more affected (i.e., reduced) by the change

from CUBN to COBN with respect to the AMPA PSCs, as pointed

out in Figure 2. Note also that in the case of external AMPA

current, the spike trains that activated the synapses (more pre-

cisely the function s(t) in Equations 5 and 6) are exactly the same

in the two models, while they were different for the other currents.

Consistent with the sample traces shown in Figures 4G,H, the

average MP of the CUBN decreased steeply when we increased

the input (−15 mV between maximum and minimum input,

Figure 5D). This is due to the fact that, in the CUBN, the net

input current strongly increased when increasing the external

inputs (Figure 5A). Conversely, and consistently with the sam-

ple traces in Figures 4E,F, the decrease in COBN MP was smaller

(−2 mV between maximum and minimum input, Figure 5D),

consistent with previous results (Meffin et al., 2004). It is

important to note that an increase of the input current led to an

increase the voltage fluctuations in both models. However in the

COBN, it caused also a concomitant increase of the membrane

conductance, which in turn decreased the membrane voltage fluc-

tuations. The dynamics of MP in COBN thus resulted from the

competition between these two effects, which overall produced

a suppression of both fluctuations and mean of the MP (Kuhn

et al., 2004; Meffin et al., 2004; Richardson, 2004). We found

that, for external inputs higher than 2 (spikes/ms)/cell, there was

a linear relation (R2 = 0.98, p << 10−10) between the ratio of

the average MP changes induced by the external inputs in the

two networks and the effective membrane time constant of the

COBN (see Figure 5E). This result confirmed and extended what

found for a single neuron model in a high-conductance state in
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FIGURE 5 | Membrane potential and synaptic input currents as a

function of the external input rate. Effects of external input rate modulation

on the net synaptic input currents and the membrane potential of excitatory

neurons. The synaptic currents in panels (A–C) are divided by the leak

membrane conductance to obtain units of mV. Results are qualitatively very

similar when considering inhibitory neurons [see “MP” and “σtime (MP)” in

Supplementary Table 1]. We studied separately the average over time and

the standard deviation over time of the variables by using a simulation of

10.5 s per stimulus. Shaded areas correspond to standard deviation across

neurons. (A) Average total synaptic input current in CUBN (thick line) and

COBN (thin line with markers) as a function of the external input rate. (B)

Different input currents in the two networks. Blue/red/green lines represent

respectively the average GABA/recurrent AMPA/external AMPA currents in

CUBN (thick lines) and in COBN (thin lines with markers). (C) Average (over

neurons) standard deviation in time of the total input current in the two

networks as a function of the input rate. (D) Average membrane potential in

the two networks as a function of the external input rate. For reference, the

panel shows also threshold potential (cyan), reset potential (green) and leak

membrane potential (black). (E) Ratio of the decrease of the average MP

observed in the two networks when increasing the external inputs as a

function of the effective membrane time constant (see Figure 3A). The

decrease in MP is computed for external inputs greater than 2

(spikes/ms)/cell with respect to the average MP obtained with an external

input of 2 (spikes/ms)/cell. (F) Average (across neurons) standard deviation

over time of the membrane potential in the two networks as a function of the

input rate. Shaded area for COBN is not visible because it is too small.

Results show that for the COBN both average total input current and

membrane potential are almost constant across stimuli, while in the CUBN

both quantities change dramatically for different input strengths.

Cross-neuron variability of both variables is much higher in the CUBN. In both

networks net input current fluctuations become larger when input rate is

increased. This is reflected in larger fluctuations in the membrane potential in

the CUBN, but not in the COBN. In panels (A,B,D,E) the average values of

MP and input currents are computed over time and neurons.

Richardson (2004). Shaded areas in Figures 5A,D indicate stan-

dard deviation across neurons, and show that the cross-neuron

variability in both net input currents and MP was much larger in

the CUBN than in the COBN, suggesting a more coherent activity

for the latter (see subsection “Correlations among neurons”).

When we looked at the variability over time of the input cur-

rents, we found that it grew almost linearly and with very similar

values for both COBN and CUBN (Figure 5C), while the increase

of the variability over time of the MP was much more pronounced

in the CUBN than in the COBN (Figure 5F). This result is still

consistent with the suppression of voltage fluctuations typical of

conductance-based model with respect to the current-based one.

In sum, our findings so far confirmed that dynamics previ-

ously observed in simpler conditions were valid also over a more

extended range of conditions, proved that the range of input

rates considered encompassed both low- and high-conductance

regimes, and highlighted some of the differences between the

dynamics of COBNs and CUBNs.
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FIGURE 6 | Firing rates comparison. (A) Comparison between average

firing rate (FR) of inhibitory (blue) and excitatory neurons (red) for COBN (thin

lines with markers) and CUBN (thick lines) as a function of the external input

rate. (B) Average Coefficient of Variation of the Inter-Spike Interval in the two

networks. Same color code as (A). (C) Relative difference between the

average FR of excitatory neurons in COBN and CUBN computed for different

AMPA and GABA reversal potentials. The relative difference is averaged over

the whole stimuli set ranging from 1.5 to 6 (spikes/ms)/cell. Green arrow

indicates reference value of reversal potentials that were used in all the

analysis (see Table 2). (D) Same as (C) for inhibitory neurons. In (A,C,D) the

results are obtained from 50 trials of 4.5 s per stimulus, while for the panel

(B) we used a single trial of 100.5 s per stimulus (see Methods). Results

show that the two models have similar firing rates over the whole input

range. This agreement is stable over a wide range of network parameters.

On the other hand, the CV of the ISI increases with the input rate in the

CUBN, while it does not in the COBN.

FIRING RATE MODULATIONS

Having established a procedure that computes comparable CUBN

and COBN parameters, and having investigated the synaptic

responses in these comparable networks, we next compared the

average firing rates of single neurons in the two networks, and

studied how they are modulated by the strength of the input to

the networks.

We considered individually the excitatory and inhibitory

neural populations since they fired at very different rates

(Brunel and Wang, 2003). Figure 6A shows the way inhibitory

and excitatory firing rates increase with the input rate in

the two networks. Consistently with the qualitatively intu-

ition gained form the visual inspection of the raster plots in

Figures 4A–D, we found that the discrepancies between COBN

and CUBN firing rates were extremely small (average differ-

ence over external inputs of 10%), though significant (t-test

p < 0.05 except for excitatory neurons with external input rates

greater than 4 spikes/ms). This shows that the algorithm used

to set comparable networks produces networks whose neu-

rons have similar average firing rates with a similar depen-

dence on the input strength, both in low- and high-conductance

states.

To verify if the agreement of the firing rate in the two compa-

rable networks was robustly achieved over a wide range of param-

eters, we computed the COBN synaptic conductances for a set of

20 different COBN networks (obtained by using the setting proce-

dure illustrated in Figure 1 with 20 different combinations of the

synaptic reversal potentials, VAMPA, ranging from 0 to −20 mV,

and VGABA, ranging from −75 to −90 mV). We then computed

the average firing rates for each resulting network. We found that

even when VAMPA was −20 mV and VGABA −75 mV, and hence

the discrepancies between the two models were stronger, the exci-

tatory neurons firing rate differed between COBN and CUBN at

most by 25%, but usually the difference was much smaller, on the

order of 10% (Figure 6C). Note that, given the very low firing rate

of excitatory neurons, the relative difference corresponded always

to small values of absolute difference (<0.4 spikes/ms). The dif-

ference in the firing rate of the inhibitory neurons between COBN

and CUBN were of the order of 10% for all reversal potentials

combinations inspected (Figure 6D).

These results show that our procedure determines COBNs

with firing rates similar to the compared CUBN for a wide range

of parameters. In current-based neurons the firing rate is mod-

ulated only by the increase in the MP fluctuations (Figure 5F),
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FIGURE 7 | Spectral dynamics of LFP and firing rate. Input rate-dependent

modulations of the LFP, studied focusing on position and amplitude of the

gamma frequency peak. (A) LFP power spectra in COBN as a function of the

external input rate. Data are averaged over trials. (B) Same as (A) for CUBN.

(C) Difference in the position of the gamma band [(30–100 Hz)] peak of the

power between the two networks. The analysis was performed for the LFP

signal (black), and for the total firing rate of excitatory (red) and inhibitory

neurons (blue). (D) Difference in the position of the LFP gamma peak

averaged over the constant external inputs used (ranging from 1.5 to

6 (spikes/ms)/cell with steps of 0.5 (spikes/ms)/cell) as a function of AMPA

and GABA reversal potentials. Green arrow indicates reference values (see

Table 2). (E) Modulation of the LFP gamma peak power for the two

networks. Power modulation is defined as the difference of the power of a

frequency at a given input signal and its power at the input signal of

1.5 (spikes/ms)/cell, normalized to the latter power. (F) Average (over trials)

amplitude of the fluctuations of the sum of the currents entering the

excitatory neurons for the two networks as a function of the input rate. The

currents are divided by the leak membrane conductance to obtain units of

mV. Blue, red, and green lines represent GABA, recurrent AMPA and external

AMPA respectively. These are the currents we used to compute LFP. Note

that the external AMPA currents are almost identical between the two

networks because their synapses are activated by the same spike trains in

COBN and CUBN (see Methods). Results are computed by using 50 trials of

4.5 s per stimulus and show that (i) the gamma peak position across stimuli is

similar for the two networks and this agreement is robust to change in the

network parameters, (ii) the amplitude of the peak power is more modulated

in the COBN because of the stronger fluctuations of the synaptic currents at

the network level.

while in conductance-based neurons, the firing rate activity is the

result of two different competing effects: the shortening of the

timescales (Figure 3A) and the increase of the membrane fluctua-

tions (Figure 5F), that tend to facilitate the firing activity, and the

increase of the effective membrane conductance, that acts in the

opposite direction (Figure 3B) (Kuhn et al., 2004; Meffin et al.,

2004; Richardson, 2004). It is therefore quite interesting that these

underlying different dynamics compensate to produce, in the two

corresponding network models, very similar firing rates over a

wide range of inputs and parameters.

We then considered how the coefficient of variation (CV) of

the inter-spike interval (ISI) changed with the strength of the

input rate. We found (Figure 6B) that the two networks showed

a very different dependence of CV on input rates. The ISI CV of

neurons of the COBN was close to one for all considered input

rates (indicating near-Poisson firing statistics). In contrast, in

CUBN, the ISI CV was higher than 1 (i.e., the firing was more

variable than that of a Poisson process) and increased with the

input rate, reaching values up to 1.33 and 1.16 for inhibitory neu-

rons and excitatory neurons respectively, confirming results of
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FIGURE 8 | Cross-correlation between AMPA and GABA inputs.

Cross-correlation between the time course of recurrent AMPA and GABA

currents entering excitatory neuron. (A) Average peak value of

cross-correlation between AMPA and GABA input currents into excitatory

neurons (see Methods for details) for CUBN (thick line) and COBN (thin line

with markers). Note that, AMPA and GABA currents having opposite sign, the

correlation is negative. Shaded areas correspond to standard deviation across

neurons. (B) Cross correlation average peak position. This measure quantify

how much AMPA inputs lags behind GABA ones. Same color code as (A).

Results are computed by using a simulation of 10.5 s per stimulus and show

that (i) correlation between recurrent AMPA and GABA input currents is

stronger in the COBN than in the CUBN, (ii) input correlation decreases

monotonously with input rate in COBN, while it does not in CUBN, (iii) GABA

inputs lags behind AMPA inputs by few milliseconds in both networks.

(Meffin et al., 2004). The difference between the CVs of neurons

in COBN and CUBN was highly significant (t-test, p < 10−7) for

all input rates above 1.5 spikes/ms. The larger ISI CV of neurons

in COBN was consistent with our finding of larger MP fluctua-

tions in time in the COBN (Figure 5F). ISI CV values were within

the experimentally observed range 0.5–1.5 (Maimon and Assad,

2009) for both networks, but only the COBN reproduced the

experimental result that the ISI CV of cortical neurons is not

affected by the firing rate (Maimon and Assad, 2009).

The discrepancy between the similarity of the firing rates and

the dissimilarity of the ISI CVs suggests that the first-order statis-

tics of the two networks were close to match, but the second order

statistics differed significantly.

SPECTRAL MODULATIONS IN SIMULATED LOCAL FIELD POTENTIALS

We investigated then the differences in the spectral modulations

of network activity, as measured by the simulated LFP and by

the total excitatory and inhibitory firing rate generated by the

two networks. LFP models can offer interesting insights into the

dynamics of cortical networks (Einevoll et al., 2013) because they

offer an insight in both supra- and sub-threshold dynamics that

can be compared with experimental recordings; however the dif-

ferences in LFPs computed from networks with either current-

or conductance-based synapses have not been investigated yet.

We expected significant differences to arise because, as detailed

above, the sub-threshold dynamics of COBNs and CUBNs were

quite different.

The dependence of LFP spectrum on the input rate

(Figures 7A,B) shows that, consistent with previous results

(Brunel and Wang, 2003; Mazzoni et al., 2008, 2011), both

networks develops gamma range (30–100 Hz) oscillations that

become stronger and faster as the input is increased. Figures 4I,J

illustrate this effect in the time domain. Figures 7A,B show the

LFP input rate-driven modulation in COBN and CUBN. The

dependence of response to variations in input rate in the two

networks was qualitatively similar. There was no modulation for

frequencies below 5 Hz (Pearson correlation test, p > 0.1); there

was strong modulation in the gamma band and above (Pearson

correlation test, p < 0.01). The difference between the position

of the COBN and CUBN gamma peak was always below 5 Hz

(Figure 7C). For comparison, we also computed the power spec-

trum of the total firing rate of excitatory or inhibitory neurons

(Figure 7C). The spectral peaks of COBN and CUBN were very

close also in this case.

We tested the robustness of the agreement between spectral

peaks of CUBNs and COBNs by measuring the average (over

stimuli) gamma-peak distance between the two networks for dif-

ferent AMPA and GABA reversal potentials (similarly to what was

done in the analysis represented in Figures 6C,D), and we found

that the two networks always displayed almost identical positions

of the gamma frequency peaks (Figure 7D).

Note that we did not build the comparable networks to obtain

robustly similar firing rates and similar dominant frequencies in

the gamma band, as we used other constraints to select compa-

rable parameters. The equivalence and robustness of rates and

gamma peaks arose from network dynamics, and, in particular,

the robustness corroborates the notion that our procedure indeed

produces a meaningful comparison. We also tested other kinds of

procedures to set the COBN synaptic conductances, gsyn, given

the CUBN synaptic efficacies, Jsyn. In particular we define gsyn

such in a way to maximize the similarity of PSCs (in one case)

or PSPs (in another case) between the two networks at the sin-

gle neuron level, to compensate for the post-synaptic stimulus

reduction that is peculiar of the COBN with respect to the CUBN
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FIGURE 9 | Synaptic input and membrane potential correlation across

neurons. (A) Average cross-neuron correlation coefficient between the time

course of recurrent AMPA currents (red lines) and GABA currents (blue lines)

on excitatory neurons, for CUBN (thick lines) and COBN (thin line with

markers), as a function of the external input rate. Similar results hold for

inhibitory neurons (see “Rec. AMPA-Rec. AMPA” and “GABA-GABA” in

Supplementary Table 1). (B) Average correlation coefficient between the

membrane potential (MP) time courses of pairs of excitatory neurons as a

function of the external input rate. While in the COBN the MP correlation

increases with input rate, the opposite occurs in the CUBN. Shaded areas

correspond to standard deviation across neuron pairs. Results are computed

by using a simulation of 10.5 s per stimulus and show that in COBN the

cross-neuron correlations between membrane potentials and between input

currents are stronger than in CUBN.

(Figure 2). When using these procedures the results were both

less robust to change in the synaptic reversal potentials and less

similar between CUBN and COBN (data not shown).

On the other hand, differences between the LFP spectra of the

two networks are also apparent in Figures 7A,B. First, the COBN

gamma peak was larger and was modulated by the input rate in

a much stronger way than the CUBN gamma peak (Figure 7E).

Given the fact that the net input current in the COBN was smaller

(Figure 5A) and also fluctuated slightly less than in CUBN

(Figure 5C), at first we found this result surprising. However, the

phenomenon can be understood after measuring the AMPA and

GABA fluctuations. As reported in Figure 7F, the size of recur-

rent AMPA and GABA current fluctuations was larger in COBN

than in CUBN, and the difference increased with the input rate.

Indeed, while the simultaneous increases of AMPA and GABA

fluctuations compensated each other in the COBN net input cur-

rent (Figures 5A,B), the contributions of these two currents to the

computed LFP have the same sign (see Methods), and this led to a

stronger spectral peak in the COBN. Second, the CUBN displayed

a broad LFP spectral peak in the high gamma region (>60 Hz),

and small fluctuations in the low gamma region (<60 Hz), while,

in the COBN, for inputs greater than 3 (spikes/ms)/cell there was

a sharp peak in the high gamma band and also a pronounced

plateau in the low gamma. Third, since the power associated with

this plateau was modulated by the input rate, for the COBN all

frequencies above 20 Hz were significantly modulated, while in

the CUBN significant modulation occurred only for frequencies

above 60 Hz. As we will see in the next section, the narrower

gamma peak indicates a stronger synchronization in the COBN

than in the CUBN, while the stronger modulation in the gamma

power makes the amount of information conveyed by the COBN

larger than in the CUBN (see “Information about external inputs”

subsection).

For both networks, the spectra of the total firing rate were

qualitatively very similar to the spectra of the LFP for all input

rates considered (data not shown). Therefore all the aforemen-

tioned differences were present also when comparing the COBN

and CUBN total firing rate power spectra.

CORRELATION BETWEEN AMPA AND GABA CURRENTS

The correlation between AMPA and GABA synaptic currents is

known to play a very important role in determining the network

dynamics and in particular the spike train variability (Isaacson

and Scanziani, 2011). A negative correlation of AMPA and GABA

input currents leads to sparse and uncorrelated firing events,

while positive values lead to strong bursty synchronized events

(Renart et al., 2010). We thus compared the cross correlation

between recurrent AMPA and GABA currents impinging on sin-

gle neurons in COBN and CUBN. We found that the correlation

between GABA and AMPA inputs was stronger (i.e., more neg-

ative) in the COBN for all external input rates (Figure 8A).

Moreover, in both networks, AMPA currents led GABA cur-

rents with lags shorter than 5 ms, of the order of those observed

in (Okun and Lampl, 2008). However, for all external input

rates, AMPA-GABA lags were smaller in the COBN (Figure 8B).

Although Figure 8 shows results only for excitatory neurons,

similar results held for inhibitory neurons (Supplementary Figure

2). Finally, these results held also when using as external noise

a white noise process instead of an Ornstein-Uhlenbeck process

(see Supplementary Figure 4C).

CROSS-NEURON CORRELATIONS

The fact that the cross-neuron variability in average cur-

rent inputs and MPs was much smaller (Figures 5A,D) and

high gamma frequency peaks were narrower in the COBN

(Figures 7A,B) suggested that the activity was more coherent
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FIGURE 10 | Spike train correlation. Spike train pairwise coefficient of

correlation between neurons belonging to the same (A,B) or to different (C)

populations. (A) Average spike train correlation between pairs of excitatory

neurons as a function of the external input rate for CUBN (thick line) and

COBN (thin line with markers). (B) Same as (A) for correlation between pairs

of inhibitory neurons. (C) Same as (A) for correlations between pairs

composed by an inhibitory and an excitatory neuron. (D) Distribution of the

correlation coefficient across inhibitory neurons pairs for an input of 1.5

(spikes/ms)/cell for the two networks. (E) Same as (D) for an input of

6 (spikes/ms)/cell. Note that panels (A–C) do not have error bars for clarity,

but the range of correlation values is similar to the one displayed in panels

(D,E). Results are computed by using a simulation of 100.5 s per stimulus and

show that firing rate correlation is very low for both networks, and it

increases with input rate in the COBN, but not in the CUBN.

in the COBN than in the CUBN. This view was further cor-

roborated by the finding that the sum of the recurrent cur-

rents was larger in the COBN (Figure 7F) and suggested that,

in this network, input currents may be more correlated across

different neurons.

We verified this hypothesis by measuring the average Pearson

correlation coefficient between the time evolution of the recurrent

AMPA and of the GABA input currents over neuron pairs (see

Methods), Figure 9A shows that for both AMPA and GABA cur-

rents the average cross-neuron correlation coefficient was indeed

significantly stronger (t-test, p << 10−10) in the COBN for all

external input rates. Figure 9A shows also that, in the COBN,

the cross-neuron correlation grew with the external input rate

for both currents (Pearson correlation test, p < 10−5). In the

CUBN the AMPA currents were linearly correlated to the input

rate (Pearson correlation test, p < 0.05), while GABA currents

varied with the input rate in a non-monotonic way. However, if

we used white noise, instead of the Ornstein-Uhlenbeck noise (see

Methods), the cross-neuron current correlation was again higher

in the COBN (t-test, p << 10−10), but grew monotonously with

the input rate for both networks (Pearson correlation test, p <

10−5), as shown in Supplementary Figure 4A. The increase in

the difference between the cross-neuron current correlation in

COBN and CUBN with the input rate (Figure 9A) led to the

increase of the difference in AMPA and GABA total fluctuations

in the two networks, shown in Figure 7F. To fully appreciate

the key role played by correlations note that, if the correla-

tions were similar in COBN and CUBN, fluctuations would be

expected to be larger in CUBN since the firing rate was similar

for the two networks (Figure 6A) and the single PSC amplitude

was larger for the CUBN (Figure 2). Cross-neuron correlation

of the input currents should be reflected in cross-neuron MP

correlation. The previously shown sample traces of the MP of

neuron pairs (Figures 4E,H) suggested that the correlation was

indeed similar for COBN and CUBN in the low-conductance

state, but much stronger for the COBN in the high-conductance

state. We thus analyzed the average correlation of the MP time

courses of pairs of excitatory neurons (Figure 9B). Over the

whole external input range considered, MP correlation in the

COBN was significantly stronger than in the CUBN (t-test, p <<

10−10). Cross-neuron MP correlation in the COBN increased

with external input rate (Pearson correlation test, p < 10−8),

while it was only mildly affected in the CUBN (Pearson corre-

lation test, p < 0.02). These results held for all considered neuron
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FIGURE 11 | Spectral information relative to the input rate. Information

carried by LFP power spectrum (left column) and population firing rates

power spectra (right column) about constant inputs ranging from 1.5 to

3 (spikes/ms)/cell with steps of 0.1 (spikes/ms)/cell. Data are obtained by

using 50 trials of 4.5 s per stimulus. (A) Average power spectrum of LFP over

the entire stimulus range for the COBN and the CUBN (thin line with markers

and tick line respectively). (B) Average power spectrum of the total firing rate

of excitatory and inhibitory neurons (red and blue respectively) for the two

networks [same line code as (A)]. (C) Spectral information carried by LFP

about the input rate (see Methods for details). Same color code as (A). (D)

Spectral information carried by total excitatory and inhibitory firing rate about

the input rate. Same color code as (B). Results show that the COBN carries

more information about constant stimuli for all considered frequencies, both

in LFP and in firing rates.

pairs (Supplementary Figure 3) and also when considering white

noise, instead of Ornstein-Uhlenbeck noise (Supplementary

Figure 4B).

We finally computed the cross-neuron spike train correlation.

We expected it to be related to the MP correlation displayed in

Figure 9B, even if, since both networks were in a fluctuation-

driven state, the spike train correlation should be close to zero

(Brunel and Wang, 2003; Renart et al., 2010). We found indeed

a very low average spike train correlation (Figures 10A–C) such

that, for low input rates, a significant fraction of pairs displayed

negative correlation (Figure 10D). However, in the CUBN, the

spike train correlation was weaker and less sensitive to input

rate changes than in the COBN (see Figures 10A–C and com-

pare Figures 10D,E). These results did not change if we injected

white noise, instead of Ornstein-Uhlenbeck noise, in the network

(Supplementary Figure 4D).

INFORMATION ABOUT EXTERNAL INPUTS

In the previous subsections we investigated how the average

level of spike rate, LFP and spike train correlation depends on

the external input to the network, finding a more pronounced

stimulus modulation of LFP gamma power and of cross-neural

correlation in COBN. To quantify these stimulus modulations of

network activity, we computed the mutual information between

the stimuli to the network and various aspects of network activity

(see Methods for details).

We first measured the information carried by the average

firing rate, both of excitatory and inhibitory neurons, in the

two networks by using constant stimuli in the range 1.5–3

(spikes/ms)/cell with steps of 0.1 (spikes/ms)/cell. We found that,

consistently with the results shown in Figure 6A, the information

carried by the average firing rate had the same value of 2.3 bits

for both neural populations in both network models. Given that

the modulation of spike train correlation with external input is

greater in the COBN than in the CUBN, we expected that also the

mutual information between the spike train correlation and the

input rate was greater in the COBN than in the CUBN. Indeed

this was the case: information in spike train correlation was much

larger in the COBN (1.6 and 2.0 bits for excitatory and inhibitory

neurons respectively) than in the CUBN (1.4 and 0.9 bits for

excitatory and inhibitory neurons respectively).

We measured then the information content of the LFP power

spectrum. The LFP power spectrum averaged over all the pre-

sented constant stimuli was higher for the COBN than for the

CUBN for all frequencies above 15 Hz (Figure 11A). We found

that, at all frequencies above 20 Hz, the COBN LFP spectrum car-

ried more information about input rate than the CUBN LFP spec-

trum (Figure 11C). Most notably, the peak information increased

by about 20%, and the (20–45) Hz frequency range was informa-

tive in the COBN, but not in the CUBN. We repeated the analysis

considering the power spectra of the total inhibitory and excita-

tory firing rate in the two networks. Excitatory neurons in the

Frontiers in Neural Circuits www.frontiersin.org March 2014 | Volume 8 | Article 12 | 16

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Cavallari et al. Current- vs conductance-based LIF networks

FIGURE 12 | Spectral information relative to periodic low frequency

inputs. Dynamics of the COBN and CUBN when injected with slowly

oscillating inputs. The input signals are sine curves with amplitude A =

0.6 spikes/ms and frequency f, from 2 to 16 Hz, superimposed to a baseline

of ν0 = 1.5 spikes/ms in the left column and ν0 = 5 spikes/ms in the right

column. The first baseline value produces a low-conductance state, while the

second originates a high-conductance state. Data are obtained from 50 trials

of 10.5 s per stimulus. (A,B) LFP power spectrum in the COBN as a function

of the external signal frequency. The power spectrum is averaged over trials.

(B) Same color code as in (A). (C,D) Same as (A,B) for the CUBN. The inset

in (B) shows a detail of the panel in the frequency range where beats are

displayed. (E,F) Spectral information carried by the LFP about the frequency

of the stimulus presented (see Methods for details) for COBN (blue line) and

CUBN (red line). Results show that the information due to the entrainment of

the LFP to the slow input oscillations is almost the same in COBN and

CUBN. The only difference is due to the beats that appear in the

high-conductance state of the COBN [inset in (B)], which result in a peak of

information around 100 Hz (F).

COBN had stronger power than excitatory neurons in the CUBN

for all frequencies (Figure 11B, note that here the y-scale is lin-

ear, while in 11A is logarithmic) and showed a secondary peak at

about 20 Hz. For inhibitory neurons, instead, the COBN power

spectrum was higher only for frequencies above 15 Hz, as in the

LFP.

So far we have investigated only the information carried about

the strength of a time-independent input to the network. In a pre-

vious work on CUBN (Mazzoni et al., 2008) it has been shown

that when the input to the CUBN is dominated by low fre-

quency fluctuation, the network oscillations (captured by both

LFP and massed firing rate measures) form two largely indepen-

dent frequency information channels. A gamma-range informa-

tion channel is generated by recurrent interactions of inhibitory

and excitatory neurons and conveys information about the mean

input rate. A low-frequency information channel is generated by

entrainment of the low frequency network activity to the slow

fluctuations of the input stimulus and carries information about

the stimulus time course on such slow time scales. We wanted to

test how these two information channels, developed when pre-

senting the network with time-varying stimuli, depended on the

choice of the synaptic model.

To investigate this point, we injected into the two networks

periodic stimuli with fixed amplitude and frequency varying

between 2 and 16 Hz. These input frequencies below 16 Hz were

taken to represent the slow naturalistic fluctuations present in

natural input signals (Luo and Poeppel, 2007; Chandrasekaran

et al., 2010; Gross et al., 2013). Since we wanted to investigate

potential differences between models separately in low- and high-

conductance states, we generated two kinds of input signals: a

low-input regime (corresponding to a low-conductance state)

and a high-input regime (corresponding to a high-conductance

state). Thus the periodic input was made of a sinusoidal signal at

a given frequency superimposed to a constant baseline that was set

to a low value (ν0 = 1.5 spikes/ms) to induce a low-conductance

state and to a high value (ν0 = 5 spikes/ms) to induce a high-

conductance state. The amplitude of the sinusoidal component

of the input was 0.6 spikes/ms across all simulations. Results are

reported in Figure 12.

We examined first the low-conductance state (left column of

Figure 12). We considered the LFP power spectra of the two net-

works in response to periodic stimuli of different frequencies

(Figures 12A,C). With respect to the previously examined con-

stant input case (Figures 7A,B), the LFP power spectrum of both
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FIGURE 13 | Entrainment of LFP to input oscillations. Entrainment of the

network oscillations to the frequencies of the periodic input in COBN and

CUBN. The input signals are periodic curves as in Figure 12, but with

frequency f from 2 to 150 Hz. (A,B) Average (over trials) coherence between

the phase of the input signal, with frequency f, and the phase of the LFP

bandpassed in the corresponding frequency range (f − 1, f + 1) Hz (see

Methods for details). Note that the phase coherence lies in the interval (0, 1).

Data are obtained from 50 trials of 10.5 s per stimulus; shaded areas

represent standard deviations across trials. Blue lines display results from

COBN and red lines from CUBN. (C,D) LFP power spectrum in the COBN as

a function of some selected external signal frequencies. The power spectrum

is averaged over 50 trials. (D) Same color code as in (C). (E,F) Same as (C,D)

for the CUBN. In the low-conductance state both networks entrain very well

to the external stimulus, whereas in the high-conductance regime the COBN

entrains less well than the CUBN in the middle and in the highest frequency

regimes.

networks had an additional high narrow peak exactly at the same

frequency of the periodic input. This peak signaled the entrain-

ment of the network to the periodic input (Mazzoni et al., 2008).

The ability of the two networks to entrain their dynamics to the

low-frequency stimuli suggested that the power of the LFP at such

low frequencies could discriminate which of these periodic inputs

was being presented. We tested this suggestion quantitatively by

using mutual information, and we found that the slow LFP fre-

quencies conveyed indeed information about the stimuli, approx-

imately in the same amount in both networks (Figure 12E). Note

that, in the low-conductance state, there was also a slight modu-

lation with the input frequencies of the power in the gamma band

(40–70) Hz, with slightly lower gamma power for stimuli of faster

frequency (Figures 12A,C). These modulations of gamma-range

power resulted in moderate amounts of stimulus information in

the same range, (40–70) Hz, (Figure 12E), and were likely due to

the time taken by the networks to develop gamma oscillations fol-

lowing the very low input values occurring at the trough of the

sinusoidal input.

We then investigated the high-conductance state (right column

of Figure 12). Figures 12B,D shows that entrainment of both

networks to low frequencies (signaled by the high narrow peak

of LFP spectrum at the same frequency as the input) occurred

strongly in the high-conductance state. The information about

which of these periodic inputs was being presented, carried by the

low frequency LFP power, was still identical in the two networks

(Figure 12F). Moreover, and consistently with the above results

obtained with constant inputs (Figures 7A,B), the gamma peak in

the high-conductance states was much stronger and narrower in

the COBN than in the CUBN. Probably because of this, the COBN

(but not the CUBN) developed beats of the low-frequency peaks

into the frequency range around 100 Hz (inset Figure 12B). Since

the low-frequency peak varied with the input, these beats led to an

amount of information in the COBN LFP power around 100 Hz.

The moderate gamma-range information peak, observed in the

(40–70) Hz range for the low-conductance state (Figure 12E),

was absent in both networks for the high-conductance regime

(Figure 12F), because the input rate was always high at any time

point. Thus gamma oscillations in the range (80–94) Hz were

always strong, with relatively small fluctuations over time, leading

to not discernable modulation across the set of input frequencies

considered (Figures 12B,D).

We then investigated the ability of the network to entrain

to a wider range of input frequencies, in particular including

frequencies as fast as or faster than the gamma oscillations intrin-

sically generated by the network. We did so by testing the network
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FIGURE 14 | Spectral information relative to naturalistic stimuli.

Information carried by LFP power spectrum (left column) and population

firing rates power spectra (right column) about intervals of naturalistic

stimulation based on LGN recordings in monkeys watching a movie.

Recording time (80 s) is divided into 40 intervals, considered as different

stimuli and the information is computed over 50 trials (see Methods for

details). (A) Average power spectrum of LFP over the entire naturalistic

input for COBN and CUBN (thin line with markers and thick line

respectively). (B) Average power spectrum for the total firing rate of

excitatory and inhibitory neurons (red and blue respectively) for the two

networks. Same line code as in (A). (C) Spectral information carried by

LFP (see Methods for details). Same color code as in (A). In the inset, it is

shown the difference between COBN and CUBN information in the low

frequency band. (D) Spectral information carried by total excitatory and

inhibitory firing rates. Same color code as (B). In the inset, it is shown the

difference between COBN and CUBN information in the low frequency

band. Results show that, also considering complex stimuli, the information

relative to the mean value of the input [that here is the information carried

by the frequencies above the delta band, (1–4) Hz] is higher and carried on

a broader range of frequencies in the COBN, both in LFP and in firing

rates. The information conveyed by delta band frequencies is instead

almost identical in the two networks.

with periodic stimuli over the 2–150 Hz range of input frequen-

cies (Figure 13). Again, to investigate differences between models

separately in low- and high-conductance regimes, we generated

two kinds of input signals that only differed for the value of the

baseline, as described above. We quantified entrainment by com-

puting the coherence between the phase of the input signal and

the phase of the LFP bandpassed in a narrow band (with 2 Hz

bandwidth) centered at the frequency of the periodic input. In the

low-conductance state both networks were strongly entrained to

the input over the whole range of frequencies examined, as indi-

cated by the high phase coherence (Figure 13A). However, when

injecting the same input frequencies with the highest baseline

(i.e., making the network operate in a high-conductance state),

the behavior of the two networks was very different. The CUBN

could still entrain extremely well over the entire input frequency

range tested. The COBN entrained extremely well to inputs in

the (80–94) Hz input frequency range, but less well to inputs

with frequency between 16 Hz and 80 Hz, and above 94 Hz. The

reason for the presence in the COBN of frequency regions with

lower phase coherence (and thus less accurate entrainment to the

periodic input) may be because, in the high-conductance state,

the COBN had stronger internally generated recurrent oscilla-

tions (of higher power than the CUBN, see Figures 13D,F) whose

dynamics likely did not interfere constructively with the dynamics

of the entrainment to the input. This resulted in peaks of less high

amplitude in the COBN LFP spectrum at the exact frequency of

the periodic input (Figures 13D,F). It is interesting to note that

the COBN still entrained very well in the (80–94) Hz input fre-

quency range (Figure 13B), despite this was also the frequency

range exhibiting the strongest recurrent oscillations. Indeed, this

range coincided with the peak amplitude of the internally gener-

ated gamma oscillations (Figure 12B). The ability of the network

to entrain well in this gamma range can be understood by observ-

ing that this was also the range more strongly modulated by

the input rate (Figure 7A). Thus, due to their particularly strong

responsiveness to the input, external and internal oscillation in

this range could interfere constructively, resulting in large peaks

of the network LFP at the input frequency (Figure 13D).

To study the differences in the responses of the two networks

to stimuli more complex and more biologically relevant than
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periodic functions, we finally compared the information carried

by the LFP and firing rate spectra in COBN and CUBN when

using the naturalistic time-varying inputs. We injected then in

the networks naturalistic stimuli based on MUA recordings from

the LGN of an anaesthetized macaque presented with a commer-

cial 80 s color movie clip. The average LFP and total firing rate

power spectra for both networks with this set of stimuli are dis-

played respectively in Figures 14A and B. All these spectra had

higher power at low frequencies (as the input signal had), and the

gamma peaks were low because the average stimulus rates were

in the range 1.2–2 spikes/ms. We computed information about

which part of the time-varying naturalistic signal was being pre-

sented (see Methods for details). We found that both LFP and

firing rates spectra carried more information in the COBN than

in the CUBN, for all frequencies (Figures 14C,D). The difference

in spectral information between COBN and CUBN for frequen-

cies below 5 Hz was almost zero for the LFP and very low for the

firing rates (see insets of Figures 14C,D).

Our findings therefore confirm that the two independent

information channels (one in the low frequencies due to the

entrainment to the input, and one in the gamma band due to

internally generated oscillations), which were previously reported

for the CUBN (Mazzoni et al., 2008), also exist in the COBN.

Moreover, our results show that the information about the input

conveyed by low frequencies, both in low- and high-conductance

states, does not depend on the details of the synaptic model

adopted, while the information encoded in the gamma range is

larger in the COBN than in the CUBN.

DISCUSSION

Here we compared in detail the neural population dynamics of

LIF networks with either current-based or conductance-based

neuron models. The comparison of network dynamics was made

on networks with all shared parameters set to an equal com-

mon value, and with model-specific synaptic parameters set by a

novel recursive procedure that makes COBN and CUBN directly

comparable. Our main result was that, although average firing

rates and peak frequency of gamma oscillations in such compa-

rable networks were very similar over a wide range of parameters,

other aspects of neural population dynamics (such as shape of

oscillation spectra or cross-neuron correlation) were significantly

different between CUBN and COBN. In particular, oscillation

spectra, gamma synchronization and cross-neuron correlation

were more markedly modulated by the external input in COBN

than in CUBN. The significance of these findings, and their

relationship with both theoretical and experimental literature, is

discussed in the following.

ESTABLISHING COMPARABLE NETWORKS

The first contribution of the work presented here was to provide

a new recursive algorithm to determine the COBN conductance

values that correspond to a given set of CUBN synaptic effi-

cacies in networks that have identical values for all the shared

parameters. We found that this procedure was able to build

two networks displaying relatively small differences, both in the

average firing rates and in the gamma frequency peak position,

for an input range sufficiently large to encompass both low- and

high-conductance states (Destexhe et al., 2003). The relationship

of our new procedure with the previous work we built on is

discussed in the following.

In a previous work addressing the issue of building equiv-

alent CUBN and COBN models (La Camera et al., 2004), the

authors discarded the approach of setting synaptic conductances

at fixed average MP (i.e., the one we used in this work) stat-

ing that “Although this might work for a single input, it does

not work for all inputs in a large pool (results not shown).” La

Camera and colleagues proposed instead to build equivalent net-

works by making both inhibitory and excitatory connectivity free

parameters, so that the optimal equivalence was obtained when

the CUBN had twice the excitatory and half the inhibitory con-

nectivity of the COBN. Differently from this procedure, in our

work all the common parameters of the two networks were iden-

tical, including the connectivity matrix. This, in our view, has

the advantage that differences in network dynamics can be more

directly imputed to changes in model synaptic dynamics. Meffin

et al. (2004) determined the value of the conductances start-

ing from a “fixed rough estimate of the average MP” set as the

midpoint between threshold and reset potential. The difference

with our work is that we used directly the actual average value

of the MP of the neurons of each population. Note that there

is a discrepancy between the two values since the true average

MP was equal or slightly below the reset potential (Figure 5D).

In extensive initial simulations, we found that using the aver-

age MP, rather than the midpoint between threshold and reset

potential, made it much easier for the comparable networks to

exhibit very close firing rates and gamma spectral peaks (results

not shown).

In summary, the comparable networks established with our

procedure exhibited average firing rate and position of the peak

of the LFP power spectrum that were both similar across net-

work models and were relatively robust to changes in the synaptic

reversal potentials. In our view this strengthens the value and

usefulness of the setting procedure introduced.

COMPARISON BETWEEN SYNAPTIC MODELS

Previous seminal papers (Kuhn et al., 2004; Meffin et al.,

2004; Richardson, 2004) compared the firing rate and MP of

conductance- and current-based LIF neurons. Our findings, sum-

marized in Supplementary Table 1, confirmed the main results of

these previous works, and extended them in several ways. Our

main contribution was to extend the comparison to include other

aspects of neural population dynamics. In particular, we consid-

ered the effect of the synaptic models on the spectrum of network

activity, on the cross-neuron correlations and on the stimulus

modulation of these different network features. The significance

of these advances is discussed in more detail below.

CORRELATION IN THE NETWORKS

Spike trains of different neurons were more correlated in the

COBN than in the CUBN, with the correlation difference increas-

ing with the external input rate. The fact that the COBN spike

train correlation was more strongly modulated by the input rate

led to the fact that spike train correlation carried more informa-

tion in the COBN.
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In our networks, the neurons received inputs from the same

simulated external pool and this led to values of shared input

that were likely higher than those shared by pairs of cortical neu-

rons recorded from different electrodes. However, in the COBN,

the dependence of correlation on the network stimuli resembled

qualitatively the one observed in real experiments, more than

in the CUBN. First, the positive correlation between firing rate

intensity and spike train correlation is often observed in neu-

rophysiological experiments, (Kohn and Smith, 2005), and this

behavior is only reproduced by the COBN. Further, MP of cor-

tical neurons (Lampl et al., 1999) (but see also Yu and Ferster,

2010) are more correlated when they receive an input triggering

a stronger response (i.e., having an higher contrast/the correct

orientation). This resembles the dynamics displayed here by the

COBN, but not by the CUBN. Moreover, in several experiments

(see Isaacson and Scanziani, 2011 and references therein), the cor-

relation between AMPA and GABA synaptic inputs is stronger the

more intense is the stimulus, consistent with the COBN dynamics

shown in Figure 8A.

The high values of correlation that we found in the COBN

might, at first sight, look different from those of Renart et al.

(2010) in which a conductance-based LIF network, with a struc-

ture similar to the one considered here, displayed a much smaller

MP correlation thanks to the decorrelation due to a precise bal-

ance between excitation and inhibition. In other words, in that

work, AMPA-GABA correlation and cross-neuron MP correlation

were described as mutually exclusive. We think that the reason

for the difference between their results and those obtained in our

work is the crucial assumption of Renart et al. (2010) that AMPA

and GABA timescales are identical. In a supplemental analysis the

authors showed indeed that, when AMPA synapses were made

progressively faster than GABA, the negative feedback was not

fast enough to compensate for excitation and hence to decorre-

late the neurons; the network became then more synchronized.

When in Renart et al. (2010) the authors considered the case

in which τrE = 2 ms and τrI = 5 ms (very close to our values,

see Table 3), the correlation between GABA and AMPA currents

reached values above 0.5, coherent with our results (Figure 8A).

FREQUENCY SPECTRA OF NETWORK ACTIVITY

We also compared the frequency spectra of the network activity

in COBN and in CUBN. A marked difference was in the larger

amount of information and stronger stimulus modulation of the

gamma range for COBN. This, in our view, may be explained as

follows. When increasing the external input rate, we observed an

increase of the cross-neuron spike train correlation in the COBN,

which was associated with an increase of the cross-neuron cor-

relation of the synaptic currents (both AMPA and GABA). This

caused a stronger modulation of the COBN currents and con-

sequently of the LFP gamma peak. The stronger modulation of

the gamma band in turn contributed to the fact that, both when

time-constant and time-varying inputs were injected, the COBN

carried more information than the CUBN in the gamma band.

Neurophysiological recordings of LFP spectra modulation in

visual cortex during stimulation with various kinds of visual stim-

uli (Henrie and Shapley, 2005; Belitski et al., 2008) reported much

broader gamma peaks than the ones we found for COBNs. The

width of gamma peaks reported in cortical data was more similar

to the broad gamma peak generated by CUBN rather than to

the sharp peak generated by the COBN. We hypothesize that the

sharpness of the COBN gamma peak may be over-emphasized by

the lack of neuron-to-neuron heterogeneity in the specific net-

work models implemented here. Introducing a small degree of

variability in neuronal parameters could decrease the correlation

in COBN while keeping it stimulus-dependent. An important

point for future research is to understand how heterogeneities

in network parameters differentially affect COBN and CUBN

dynamics.

A final point worth discussing is that the COBN, unlike

the CUBN, showed considerable amounts of information about

input strength in the LFP power in the frequency range 15–

25 Hz. Notably, the power of real visual cortical LFPs (Belitski

et al., 2008) also did not carry information in this frequency

range. Belitski and coworkers hypothesized that the 15–25 Hz

LFP frequency region related mainly to stimulus-independent

neuromodulation. The additive contribution to the LFP of fluc-

tuations generated by a stimulus-unrelated system would poten-

tially cancel out the information generated by the network in this

frequency range.
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