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Abstract

Piecewise continuous reconstruction of real-valued data
can be formulated in terms of non-convex optimisation
problems. Both stochastic and deterministic algorithms
have been devised to solve them. The simplest such re

construction process is the "weak string". Exact solutions
can be obtained for it , and are used to determine the
success or failure of the algorithms under precisely con
trolled conditions. It is concluded that the deterministic
algorithm (Graduated Non-Convexity) outstrips stochas
tic (Simulated Annealing) algorithms both in computa
tional efficiency and in problem-solving power . Piecewise
continuous reconstruction of real-valued data can be for
mulated in terms of non-convex optimisation problems.
Both stochastic and deterministic algorithms have been
devised to solve them. The simplest such reconstruction
process is the "weak string". Exact solutions can be ob
tained for it, and are used to determine the success or
failure of the algorithms under precisely controlled con
ditions. It is concluded that the deterministic algorithm
(Graduated Non-Convexity) outstrips stochastic (Simu
lated Annealing) algorithms both in computational effi
ciency and in problem-solving power.

1 Introduction

Visual Reconstruction is the reduction of noisy visual
data to stable descriptions. An early stage in this pro

cess involves approximating data by continuous or piece
wise continuous functions . In particular this paper is
concerned with optimisation formulations for such tasks .
Work in this area has included analysis of shading [29,
15, 13, 4], stereo [11, 27] and optic flow [14, 24]. More
recently such methods have been extended to deal with

discontinuities [3, 10, 22, 5, 6, 28, 23, 2, 8, 9, 18].

Both deterministic (relaxation) algorithms and stochas
tic ones (simulated annealing) have been used for visual
reconstruction with discontinuities. Intuitively it might

seemthat stochastic algorithms, using random perturba-
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tions, should be less efficient than deterministic ones. We
will show in carefully controlled comparisons that this is
indeed the case.

The problem chosen for study is the "weak string" which
is a 1D reconstruction process susceptible both to de
terministic and stochastic algorithms. It is a means of
approximating a noisy function d(x) by a piecewise con
tinuous function u(z}. It admits of an exact solution 
an important property for benchmarking purposes. Note
that u( x) is real-valued, not restricted to a few levels or
colours. This is an important point, as in many visual
applications real-valued quantities are involved and must
be estimated by a reconstruction process. Moreover the
deterministic algorithm to be tested (GNC [3, 8]) does
not lend itself to discrete valued problems.

Evaluation of Simulated Annealing in one particular prob
lem [12] showed that it succeeds only if the characteristic
"scale" or "smoothing parameter" of reconstruction is not
too great. Another study [16] shows that the determin
istic GNCalgorithm requires about the same computa
tional effort to solve the real-valued "weak membrane"
problem as does Simulated Annealing to perform a simi
lar but boolean-valued reconstruction. However the state

space for a real-valued problem is so much larger (i.e. un

countable) that it is reasonable to expect that more com
putational effort might be required than in the boolean
case. This also accords with experience of deterministic

algorithms [27, 8] in which increasing precision of recon
struction results in increased computational load. Those
studies also reveal other important factors in the compu
tational load . Computation time is strongly dependent
both on scale of reconstruction and on the noise content
of the data. Both factors will be examined in this paper.

Benchmarks used in the paper are for 1D reconstruction,
using the weak string. Although results are for 1D data,
there is some justification for the conjecture that they will
apply to 2D - for example to the weak membrane whose
computational structure is a direct 2D analogue of the
weak string. Of course there exist phenomena in certain
interaction models (e.g . phase transitions in Ising mod
els) that occur only in 2D, not in 1D. However, relevant
properties for piecewise continuous reconstruction (scale
and sensitivity properties, resistance to noise, "gradient



Figure 1: An isola.ted a.ntisymmetric step (a.) in random, un

correla.ted gaussian noise of standard devia.tion 16 units (b)

reconstructed by a. wea.k string at small scale (c) and large

scale (d).
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and

u = {tli i =1, ..,N}, I = {Ii i = 1, ..,N -I}

is obtained from data d = {di' i = 1, .., N} by minimising

the energy E :

As with cont inuous reconstruction [11, 27] the weak string

is defined in terms of functions and functionals . Given

data d(x) a reconstruction u(x) is obtained by minimis

ing an energy E(u, d). This can be converted by means

of "finite elements" [26, 30] to a discrete problem. A re

construction
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2.1 The weak string
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A2t2 if ItI< va/A

g(t) = a otherwise. (5)

Optimal values of l, can be obtained explicitly from the

optimal 1.1, as follows:

The constant A, the elasticity of the string, controls the

scale of reconstruction. Constant a is a penalty levied

for the inclusion of a breakpoint (discontinuity) and con

trols resistance to noise. Sensitivity is determined by the

ratio JalA. As it stands , the optimisation problem is

"mixed" in volving both boolean (I;) and real (Ui) vari

ables. It has been shown [8] that the mixed optimisation

can be reduced to the following problem involving only

real variables:

limit") are common both to 1D and to 2D [8] . More

over, performance of classical optimisation (i.e. with fixed

rather than variable discontinuities) is known to be quali

tatively similar in ID and in 2D. And in the non-classical

case, convergence of the GNC algorithm has been ob

served to be qualitatively similar both in ID and in 2D.

The organisation of the paper is as follows. Section 2.

defines the weak string problem and the algorithms to

solve it, both deterministic and stochastic. Section 3. de

scribes a new, exact dynamic programming solution for

the weak string, to be used as an "assay" for benchmarks.

Section 4. sets out results , using the benchmarks , of mea

surements of computational effort for deterministic and
stochastic algorithms.

where

and

minF
"i

N-1

F = D+ L g(Ui -1.1,+1)
1

(3)

(4)

2 The weak string: problem and

algorithms

Ii = {O if lUi -. Ui+11 < .,;a/A
1 otherwise ,

(6)

In this section the weak string reconstruction problem is

briefly described; a more detailed description is given in

[8] . It is also more or less the simplest form of recon

struction for ID signals that is capable of detecting and

localising discontinuities. It is sufficiently simple that ex

a.ctsolutions can be computed (see next section) but suffi

ciently complex to be genuinely representative of a family

of ID and 2D reconstruction problems. An example of re

constru ction by the weak string is given in figure 1.

The system can be understood by a mechanical analogy,

in terms of coupled springs as in figure 2. It can also be

understood in probabilistic terms as a "Markov Random

Field" (MRF) whose prior probability density for a given

state is simply exp(-(5+P)ITo), where To is a constant.

A sample from the MRF is observed with additive gaus

sian noise whose probability density is exp(-D/To). The

joint posterior probability of a particular set d of observed

data is therefore proportional to

exp( -(5 + P)ITo)exp(-DITo) =exp(-EITo). (7)

J
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Figure 2: The weak string is like a system of conventional
vertical springswith "breakable" lateral springs as shown. The
states (a) and (b) are both stable, but the intermediate state
(c) has higher energy than either (a) or (b). Suppose the
lowest state is (b). A myopic fly with vertigo, crawling along
the energy transition diagram (d), thinks state (a) is best. He
has no way of seeing that, over the hump, he could get to a
lower state (b). This is the "non-convexity" problem.
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Minimising the energy E is therefore equivalent to max
imising this posterior probability.

The energy E( u ,1) is convex with respect to variables Ui,

for fixed li, so that if line-variables Ii are fixed, classical
optimisation procedures can be used to determine opti
mal Ui as in [11, 27]. But it is non-convex with respect
to the variables 1;, so that when line-variables are treated
as alterable classical optimisation is no longer adequate.
(This is because non-convex functions may have many lo

cal minima; classical optimisation may lead to anyone of
them, which will not necessarily be a global minimimum.)
Similarly, in the alternative form of the problem, F(u) is
non-convex with respect to the Ui - classical optimisation
is no use there either. The purpose of this paper is to
quantify the performance of algorithms which are capable
of minimising some non-convex energies, including vari
ous stochastic algorithms and the deterministic "GNC"
algorithm.

2.2 Stochastic optimisation

Stochastic algorithms for optimising non-convex energies
have been described by various authors [25, 17, 10]. They
use simulated annealing techniques in which the magni
tude of successively applied random disturbances is con

trolled by a temperature parameter. Temperature (T)
is lowered gradually according to a fixed "schedule" . At
high temperatures the system is able to jump out of local

minima in the energy function and, as it cools, should
settle into the system's ground state - its global energy
minimum. The ground state can be achieved, in theory,
[10] if a schedule is followed in which T ex 1/10g(n) (at
the nth iteration or time-step of the system). Such a
schedule takes an entirely unrealistic length of time. In

practice a truncated logarithmic schedule is usually used
but of course it can no longer be guaranteed that the
ground state will be reached.

In this paper three variants of the simulated annealing

algorithm for mixed variable problems are considered.

• The "Heatbath" (as described by Geman and Geman
[10]) in which the thermal system is maintained in
equilibrium as temperature decreases .

• What we will call the "Metropolis-Heatbath" algo
rithm in which the Ui are updated in the same way
as in the Heatbath but the Ii are modified according
to the Metropolis procedure [21].

• "Mixed annealing" [20] in which the Ui are updated
according to a deterministic formula , but the Ii follow
the Metropolis rule .

The first and last of these are included because they

have been studied by other authors , and the Metropolis
Heatbath algorithm is interesting because it turns out to
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be the most efficient of the three, at least for the weak
string problem. The three algorithms will now be de
scribed briefly.

Then do the following:

Heatbath

if
but if

!i.E < 0

!i.E 2: 0

then
then

l, --+ 1 - l,

Ii --+ 1 - Ii
with probability

exp( -!i.EIT) .

Each iteration consists of N visits made to randomly
picked sites i, to update Ui and then Ii. Successive new
values of su.l, are generated by a "Gibbs Sampler" [10]
- the values are chosen randomly from their conditional

distibutions . Updating l, is done by setting Ii = I where
I is picked randomly from the distribution

That is, if energy would be decreased the change is invari
ably accepted. Otherwise the decision whether to make

the change is made according to the toss of a (biassed)

coin.

Pd/) =
P(li=/lui, j=l, ..,Nj Ii, j=I, ..,N-l, j#i),

for I E {O, I}. For the weak string, this distribution is

easily shown from (1) , (2) and (7) to be

PI, (I) ()( exp ( al + (1 - I)~i - Ui+l)2>.2). (8)

Similarly Ui is updated to a value U chosen randomly from

the distribution

Pu.(U)=
P(ui=uluj, j=I, ..,N, j::j:.i; Ii, j=l, ..,N-l).

Mixed annealing

Line variables I; are updated as in the Metropolis
Heatbath, but the Ui are updated deterministically as
follows:

Ui --+ (1- W)Ui + uitu , (14)

where Jli is as defined previously. Marroquin [20] uses W =
1 with sequential site visitation. Random site visitation
with "optimal" W (a value dependent on >. and in the
interval (1,2) - see below under discussion of the GNC
algorithm) will also be tried.

For the weak string this is
2.3 The GNC algorithm

which , for the weak string,

!i.E= E(UI, ..,UN; 11 , •. , I;- I , 1 - /i , li+l , ..,IN_ l)

E(Ul, .., UNj Il, ..,li_I,I;, I;+l, ..,IN-I)

These formulae are of course modified for sites near the

ends i = 1, N. Temperature T is lowered according to a
truncated logarithmic schedule

The Graduated Non-convexity (GNC) algorithm is a de
terministic procedure for optimising certain non-convex
energies associated with piecewise continuous reconstruc

tion problems [3, 5, 8]. It is based on a convex approx
imation p(l) to the energy P in (4). A family of func
tions r», p E [0,1] is defined such that p(l) is convex,
p(o) == P, and p(p) varies continuously, in a particu

lar prescribed manner, as p decreases from 1 to O. For
o ~ p < 1 the p(p) are non-convex" of the whole family,
only p(l) is convex. The p(p) are obtained quite sim

ply by replacing the local interaction energy terms g(..)
in (4) by new energy terms g(p)( .. ) (figure 3). The GNC

algorithm for the weak string is given in table 1. Detailed
explanation of the algorithm will be found in [8], including
such issues as how successive values of p should be chosen
and norms for measurement of convergence. The GNC al
gorithm is distinguished in that it has been proved, for the

weak string problem, to converge to the global minimum
energy for a significant class of inputs d [8]. The proof
applies more or less for the practical computer implemen
tation of the algorithm. This is in sharp contradistinction
with stochastic algorithms for which only asymptotic re

sults have been obtained [19, 10]. The algorithm used in
this paper applies to ID dense data only. However the

algorithm extends very naturally for 2D data, and also
(but not quite so naturally) for sparse data.

(9)

(12)

(11)

T =To ICg
(2) ) , n 2: o.

log 2 + n

(
(U-Jli)2)

pu.(u) ()( exp - (Tr
T

2 ( 2 )-1(J"i = (2 - 1;-1 -Ii)>' + 1

Metropolis-Heatbath

and

where

This algorithm works as the Heatbath except that line
variables Ii are updated according to the Metropolis pro
cedure as follows. First calculate the energy change

(13) Because the GNC algorithm is deterministic one might
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ChooseX, ho (scale and sensitivity).

Set 0: =h5;\/2.
SOR parameter: w = 2/(1 + 1/;\).
Function sequence: p E {I, 0.5,0.25, ... , l/A}.
Nodes: i E {I, ..., N}.

Iterate n =1,2, ...

For i = 2, ... , N - 1:

W {2 (u~n) - di) + g(p)' ( u ~ n ) - u~~tl»)

+ gCp)1 (u~n) - U~~l)} / (2 + 4A2
)

where

{

2;\2t, if ItI< q

g(p)1(t) = - 2~ (Itl- r)sign(t), if q ~ ItI < r

0, if ItI ~ r

and

2 ( 1 ) Ct'
r =a 4p+ ;\2 ,q = ,\2 r ·

Initially p = 1. Switch to successive p after convergence at current p.

Appropriate modification is necessary at boundaries:

and similarly at i = N.

Table 1: The GNC algorithm for the weak string (SOR version).
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(a)

(b)

Figure 3: The energy of interaction between neighbouring
sites in the weak string computation is governed by the func
tion shown (a). The central part of the function represents a
Hooke's law spring, and the outer part a spring pulled past
its breaking point. The GNC algorithm replaces this function
with a sequence of functions (b).

1- _ {I if 3k s.t . t., = i
I - 0 otherwise.

The optimal Ui for a given set of break-points could then
be obtained simply by minimising E(u, I) which (remem
ber earlier) is convex with respect to u. Hence u is ob
tainable from any classical descent algorithm, or else by
a recurrence relation with time complexity O(N). In fact
we will not be interested in u - only I will be required
explicitly.

Given data di , i = 1, 00' N and choices of parameters a ,.A,

our problem is to find a global minimum of E(u,I) . The
first step will be to re-express energy E in terms of the

set of breakpoints L = {Ll;, k =0, 00 ' I< + I} which take
values (their positions)

Ll; E {O, 00' N -I}, 1 $ k $ I<, with Lo = 0, LK+l = N.

The constant I< is to be chosen in a manner to be de
scribed later. Without loss of generality it can be as

sumed that Ll; $ L1:+1 . Given breakpoints, line-variables
I; are

An exact dynamic programming algorithm will be de
scribed which requires no quantisation of the Ui . In many
cases, moreover , its time-complexity is better than for the
earlier dynamic programmming algorithm. The new al
gorithm will be described in outline here ; some further
details are given in appendix A.

However the effect of coarseness of quantisation on accu
racy of the solution cannot easily be analysed. Therefore
the method is unusable as an assay. Mumford and Shah
[22] describe an algorithm for the weak string (or at least

for a closely related problem) for which Ui are not re
quired to be quantised. But it relies on an assumption

that breakpoints (values of i for which Ii =1) are spaced
by a distance that is large compared with the character

istic scale >.. Hence it is not usable in general. As neither
of these existing algorithms is suitable for our purpose, a
new one is required.

stringweakAn assay for

benchmarks

3

expect that it should be more efficient than algorithms
employing random perturbations. This is precisely what ,
by controlled experiment, this paper sets out to demon
strate. Now in order to demonstrate the success or failure
of an algorithm in reconstruction from a particular set of
data d it is necessary to have some access to the correct
solution u,l. For the weak string problem, the solution
can be obtained from a dynamic programming algorithm
described in the next section.

Given a set L of breakpoints , energy E can be expressed
as

3.1 Expressing energy E in terms of
breakpoints

Once energy has been obtained in terms of breakpoints

as E(L), it will remain to observe that E(L) is decom
posable into a sum of functions each involving only two
adjacent breakpoints. Therefore dynamic programming,

can be applied in a standard manner, to find the optimal
breakpoint set L.

In this section a new dynamic programming algorithm is

presented that delivers an exact solution to the problem of
minimisingE(u, I). The time-complexity of the algorithm
is at worst O(N3

) and can be as little as O(N2
) . This

compares unfavourably however with GNC whose time
complexity is O(N).) [8]. However, because it is exact
the dynamic programming algorithm can be used as an
"assay" to verify that a particular reconstruction (u, I) of
data d is indeed optimal (i.e. that it globally minimises
E(u , I)). Readers wishing to take the assay on trust and
look at the results of algorithm evaluation should skip the
remainder of this section.

It has already been pointed out [7] that the problem of
minimising F(u) can be solved by dynamic programming,
provided the real-valued Ui are first quantised into M
discrete levels. The time complexity of the resulting al
gorithm is then O(NM 2

) so M must not be too large.

K K

E(L) =L eii«, Ll:+d +L Z(Ll;)
l;=0 l;=1

where

{
a if 0 < Ll; < N

Z(Ll;) = 0 otherwise (i.e. when Ll; = 0)

(15)

(16)
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- the penalty for allowing a discontinuity - and
&(LI:, LI:+l) is the energy of the continuous length of re

constructed string between breakpoints LI:' LI:+l which,
from the elastic string model, is:

Having obtained the triangular array & we are now in a
position to determine K the maximum number of break
points. The global minimum energy E(L) is clearly less
than the energy in the absence of breakpoints, that is:

&(i,j) =

u;:~ .~u; { i; (um - dm )2+
m=.+l

>.2 E(Um - um+l)2}
m=i+1

for j 2: i + 2

(17) E(L) :5 &(O,N)

but if there are K' active breakpoints (breakpoints Lk # 0

which incur a penalty a) then

K

E(L) 2: E Z(Lk) =K'a.

1:=1

Hence

and

&(i,i) = &(i,i + 1) = O. (18)

[(' < &(O,N)
- a

so it is safe to choose

Note that when LI: = 0, Z(Lk) = 0 so that node i = 0
acts as a "garage" for unrequired breakpoint variables
LI:, where they can rest without incurring any breakpoint

penalty o, By this means the energy E(L) can represent
the energy of any weak string reconstruction with up to

K breakpoints.

(23)

where L..J denotes the integer part of a real-valued quan

tity.

It remains actually to construct &(i, j) which is a triangu
lar array since it is defined only for j 2: i. It is a function

of d, >. , a and can be constructed by means of recurrence

relations. First the quantity &t(i, j, UH1) is defined:

+>.2 mt;.l (Um - Um+l? }

for i > i

and

&t (i, i , ui+d = (Ui+1 - di+d2. (20)

Now from this definition it follows that the following re

cursive property holds, for j > i:

3.2 Dynamic programming

Now that energy E(L) is in the form of a sum of local

functions (15), dynamic programming [1] can be applied.

Partial energy functions 4>k and policy functions PI: are

defined:

tPo(Ld = &(0, Ld, (24)

tPl:(L.l:+1) = min tPl:-1(Lk) + &(LI:, Lk+1), 1:5 k:5 ]{
L.5,L k +l

(25)
and Pk(LI:+d is the value of Lk that minimises (25) above.
Construction of all these policy functions (as a set of K

N-element tables) has time-complexity 0([(N 2
) . Then

the solution for the optimal breakpoints is given by

LK+l = Nand LI: = Pk(Lk+d for 1:5 k :5 tc. (26)

4 Measurements of performance

of height h = 64. Varying amounts of uncorrelated, gaus

sian noise are added as in figure 1. The added noise has

standard deviation (J" and a relative measure of noise s

will frequently be used

(28)

(27)

(J"

s= va'

The previous section described an exact algorithm usable
as an assay for weak string benchmarks. In this paper I

the bench used for most performance measurements will

be an antisymmetric step with N = 128 data points:

{
32 for 1 < i < 64

di = 96 for 65-:5 ;:5 128

where ,rm and Ui,j are constant coefficients that must be
computed and , of course , &(i,j) is the desired triangular
array whose evaluation is the goal of the entire construc

tion above . Substitution of (22) into (21) yields mutual

recurrence relations for ,rm, Ui,j, &(i,j) (appendix A.)

which enable &(i,j) to be computed.

It can now be deduced from (21) and (20), by induction

on j, that &(i,j,uH1) is a quadratic expression in UH1.
From (17), (19) and (20) the quadratic expression is:

&t(i,j,uHd= (UH1-Ui,i+1)2,rj+l_i+&(i,j+l), (22)

&t(i,j,UH1)= (21)

min {&t(i,j -1, Uj) + >.2(Uj - uHd
Uj

+(Uj+l - dHd}·



It can be shown that, in theory [8], as s falls below 1/v'2,
there is a very low probability of "spurious" breakpoints
(i.e. other than the "real" one at i =64) occurring in the
weak string reconstruction. Moreover, if

1
a < "2h2,A

the real breakpoint does appear in the reconstruction
(with high probability). Provided a < 2h, it is also lo
cated precisely correctly (i.e. at i = 64). These theo
retical predictions have been corroborated by the assay

for the data above with added noise of relative amplitude
s = 0.1,0.2,004, with a = 1600 and a variety of trial val
ues of.A E [2,16]. Numerical details are given in appendix
B. Moreover, when s = 0.8, the exact, weak string recon
struction contains r.nanyspurious breakpoints, also in line
with theoretical expectations.
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whether 1 is in the correct state. Error rate - the propor
tion of time for which 1 is in a state other than the correct
one (computed using a time window of 100 iterations) - is
plotted as a function of iteration number. Typical exam
ples are shown in figure 4a,b. They are noisy but show
a clear trend towards the correct state as the algorithm
progresses. The profile in figure 4b was generated from
data with 4 times as much noise as in figure 4a. Increased
noise in the data has clearly led to a noisier convergence
profile. In some cases the profile has been observed even
tually to decay to zero error rate, although this is not the

case in figure 4a,b.

An error rate threshold of 50% is a natural choice for the
following reason . If it is known that the vector len) (the

line process at the nth iteration) is in the correct state for

more than half of the iterations n E {nI' ..,n2} then it is
sufficient to estimate 1 to be:

4.1 Measuring rates of convergence Ii = { ~
'f ",n, len)
1 LoOm=n, i > n3

otherwise
(29)

The GNC algorithm, being deterministic, presents lit
tle difficulty in measurement of convergence rate. It is
simply a matter of running the algorithm repeatedly at
gradually increasing precision 1 (and consequently requir
ing more and more iterations) until breakpoints in the
output agree with those in the true reconstruction. Note
that only breakpoints, as represented by line-variables 1,
are required to agree - u is not tested. This policy is

justified by the following observations.

• Determination of breakpoints is the difficult part of
the reconstruction problem. Once correct break
points are obtained, u can be calculated by classi
cal relaxation procedures. This is true both of dense
data as considered here, and of sparse data [27] .

• The Ui are real-valued so they could never be ex
actly correct, only correct to within some tolerance.

Choice of tolerance would be unsatisfactorily arbi
trary.

The measure of computation time for the GNC algorithm
is then the minimum number of iterations required for a
correct output.

Comparisons between algorithms will be in terms of num
bers of iterations, ignoring differences in the amount of
computation involved in a single iteration which, in any
case, are not appreciable.

In the case of stochastic algorithms, convergence rate is
much harder to measure because of the random nature of
the process. Convergence profiles vary randomly between
successive runs of an algorithm. For a given run, a pro

file is obtained by checking, after each iteration, to see

1 Precision is measured in terms of "absolute norm" [8] which is,
in tum, computed from "dynamic norm" • a measure of the change
in u in successive iterations.

where n3 is defined by

In other words the estimated Ii is simply the value

adopted by l~n) in the majority of iterations. (This is
similar to the 'majority vote" criterion used in defining
the class "BPP" of stochastic algorithms.) Convergence

could be defined to occur at the largest n for which error
rate (measured in a suitable time-window) exceeds 50%.
We will adopt a practical lower bound nL on this value by
recording the smallest n for which the error rate falls be
low 50%. In this respect estimates of convergence rate for
stochastic algorithms will be optimistic". In the examples
of figure 4a,b lower bound nz, is smaller than convergence
time as defined above by a factor of 3 or so.

To allow for randomness an average rate nL will be esti

mated by running the algorithm under test 10 times and
computing the average of nL for those cases in which the
algorithm succeeds. (Stochastic algorithms can and do
fail by locking out of the correct state - this shows up as
a persistent 100% error rate.)

Cooling schedule

An analysis of optimal cooling schedules is outside the

scope of this paper, but it is worth noting that a lin
ear schedule is in some ways preferable. Logarithmic and
linear schedules for the same data are compared in fig
ure 4b,c. Convergence in the linear case occurs later but

2Lundy and Mees [19] suggest recording the firot iteration at

which the correct state is hit . This is a still more optimistic measure.

But in the first place this is not really applicable to problems like
ours that involve real variables. In the second place, even treating
I as the state vector (i ,e. ignoring u) so that their measure C/In be
applied, results turn out to be qualitatively similar to those obtained

by our proposed measure.
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Convrzrgcmcrz: MQtropotls-H123tbath. log schrzdul12 " ..4. 'S-0.1.

f 1ftp ercen age 0 success u runs
Starting temp. Linear Logarithmic

To= 2a 60% 0%

To=a 90% 100%

To = 0.5a 90% 20%

(Metropolis-Heatbathwith ,.\ =4, S =0.4, out of 10
runs)

approximately at the same temperature, roughly 10% of
the starting temperature. In the logarithmic case, final
temperature is strongly determined by initial tempera

ture. Even after 106 iterations the final temperature is
still about 5% of the initial temperature - see equation
(12). In the linear case the final temperature is zero,

regardless of starting temperature. Hence performance
should be less critically dependent on starting tempera

ture and the following table of results bears this out.
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4.2 Relative performance of stochastic
algorithms

Note also that, in the logarithmic case, it appears that
the starting temperature must not be much less than o if
the algorithm is to succeed.

In this study a logarithmic schedule with starting tem

perature To =a will be used throughout.
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4.3 Relative performance of determinis
tic and stochastic algorithms

A measurement procedure for determination of success

and convergence rate of stochastic algorithms has been

set up. This makes it possible, first of all, to compare

performance of the three stochastic algorithms described
in section 2.

Performance is somewhat dependent on the relative noise

level s of the data. At low noise (figure 5a) all three algo

rithms are successful at scales up to A= 8. For X> 8 the
mixed annealing algorithm fails. At a higher noise level

(fig 5b) the mixed annealing algorithm fails at all scales.

(This continues to be true even when site visitation is

random and when the optimal relaxation parameter w is

used.) Mixed annealing therefore appears to be much less

powerful than the other two. Of those two, Heatbath and
Metropolis-Heatbath, it seems from figure 5 that each is

of similar power in that they fail (figure 5b) at the same

value of A. But Metropolis-Heatbath is a little more ef
ficient. Therefore Metropolis-Heatbath will be used in

comparisons with the GNC algorithm.
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90 t £rror("')

80

Figure 4: Convergence profiles for individual runs of the

Metropolis-Heatbath algorithm. '(a) Logarithmic schedule 

low noise. (b) Logarithmic schedule - higher noise. (c) Linear

schedule - higher noise. Error percentages are averages over

100 successive iterations.

At last the main purpose of the paper can be accom

plished - comparison of the power of-the GNC algorithm
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(b)

with that of the chosen stochastic algorithm. Compar

ative results are obtained as a function both of scale >.
and noise level s . Variation with scale, at moderately

high noise level, shows that up to a certain critical scale

Metropolis-Heatbath requires between 10 and 20 times
more iterations than GNC does (figure 6). Increasing lev

els of noise (figure 7) and increasing scale (figure 6) cause

both algorithms to do more work, though GNC remains

comparatively much more efficient. Beyond the critical

scale Metropolis-Heatbath fails altogether to find a so
lution (within 8000 iterations). This justifies the claim,

made at the beginning of the paper, that GNC is both

more powerful and more efficient. Figure 8 shows that

these conclusions hold also for parallel (chequerboard) im

plementations of the algorithms.

"A _1210
oto--.-~:-----:r----r--7.:"'"--:':'--"'--~

Figure 5: Comparison of stochastic algorithms. (a) Low

noise. (b) Higher noise. Dotted lines indicate that algorithm

failed on at least some runs.

Finally a more complex signal is shown in figure 9.

Uncorrelated gaussian noise is added to give a signal-to

noise ratio of about 1:2. The result of the GNC algorithm

is shown in figure 9c. Not only is the signal retrieved from
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Figure 9: A more complex signal (a) with added noise (b)

- signal-to-noise is roughly 1:2. Deterministic GNC algo

rithm produces a correct reconstruction (c) with parameters

A = 16,0' = 5000. Stochastic algorithm fails (d).

200

the noise, but the reconstruction is verified by the assay.
A reasonably large scale A must be used to retrieve the
signal because of the high noise level (s=0.23). (This is
because high resistance to noise (large a), with reason
able sensitivity (small va/A), demands large scale A.)
The stochastic algorithm can be expected to fail. This is
just what it does in 100% of 10 runs. In a typical run
it never visits the correct state". An example state (af
ter 8000 iterations) contains extra, spurious breakpoints
(figure 9d) in addition to some correct ones.

18141210
o+---""T"""'"---.---_----,,....----.------.---__r---,..-

o

(b) 5 Conclusions

Figure 8: Comparative performance of serial and paral

lel algorithms at various scales. (a) Stochastic Metropo

lis-Heatbath. (b) Deterministic GNC.

First of all, a "test-bed" for a piecewise continuous recon
struction problem has been established, by means of the

assay described in section 3. The dynamic programming
algorithm is relatively straightforward to implement".
Reconstructions for data used in this paper have been ver
ified by the assay for certain values of a, A, s (appendix
B.).

Comparison of the deterministic GNC algorithm with
three stochastic algorithms has shown the latter to be
considerably less efficient. Furthermore they are less pow
erful in that they cannot practically deliver correct so
lutions for problems involving moderately high levels of
noise (and which therefore demand large scale in recon-

3It therefore fails even under the Lundy and Mees [19] criterion
'Code in POPl1 is available from the author on request.
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struction). This is true both of serial and parallel imple

mentations of the algorithms.

Finally the theoretical power of simulated annealing, at

least for the practical annealing schedules used , is not re

alised in practice. This is consistent with experimental

results from another study [12]. This suggests that the

apparent freedom to "design" MRFs to represent prior

knowledge is severely curtailed in practice, since it is un

known whether available estimation techniques will be

powerful enough to apply that knowledge. Hence this pa

per reinforces earlier arguments [8] that the potential of

MRFs as a general vehicle for specifying and integrating

visual tasks must be regarded as highly questionable.
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