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Abstract: The boundary effect model (BEM) for concrete fracture and the effects of specimens size and crack length has previously been
criticized on theoretical grounds, but the experimental evidence found in the literature, when taken alone, has been too limited to judge the
validity of BEM conclusively. New, separately published, comprehensive fracture experiments, which were made on specimens cast from
one and the same batch concrete and featured a broad ranges of both the size and the crack length (including a zero crack length), change
the situation. The optimum fit of the data by Hu and Duan’s model shows major deviations from these new test results. On the other hand,
the Type 1 and 2 size effect laws (SELs) and their amalgamation in the universal size effect law are found to give a far better fit of the test results.
Thus, regardless of the previously expounded theoretical objections, the comparisonwith experimental evidence alone suffices to conclude that
Hu and Duan’s model is not realistic. DOI: 10.1061/(ASCE)EM.1943-7889.0000632. © 2014 American Society of Civil Engineers.
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Introduction

Although a vast amount of test data on concrete fracture exists in the
literature, the experimental verification of theoretical models has
been hampered by the fact that most data sets have a rather limited
range and have been obtained for different concretes and under
different test conditions. It is thus not surprising that rather different
theoretical models have happily coexisted for a long time, and
polemics about their differences have not resulted in a universal
consensus.

One such model that received much publicity is the boundary
effect model (BEM). It was first proposed by Hu and Wittmann
(2000) and subsequently elaborated on in a series of papers by Hu
and Duan (Duan and Hu 2004; Duan et al. 2006; Hu 2002; Hu and
Duan 2007, 2008, 2010). This model was critically examined in this
journal in a recent paper by Yu et al. (2010). Significant theoretical
objections were raised, but their experimental verification was in-
complete because the test data available had a rather limited scope.

The situation has now changed with the publication (Hoover
et al. 2013) of extensive experimental data on the structure size and
crack length effects in notched and unnotched three-point bend
beams cast from the same concrete. These data are comprehensive
enough to check the basic hypothesis ofHu andDuan’smodel for the

case of three-point bend beams (the data are summarized in a later
section and used to compare the BEM with the size effect laws).

Review of Energetic Size Effect Laws of Types 1 and 2

Because Hu and Duan contrasted their recently proposed BEMwith
the size effect law (SEL) derived in 1984 (Ba�zant 1984) from energy
release arguments and reformulated in 1991 (Ba�zant and Kazemi
1991) in terms of dimensionless energy release function GðaÞ of
linear elastic fracture mechanics (LEFM), this law is summarized
first. For Type 2 failures, which are those occurring when there is
a notch or large stress-free crack formed before reaching the maxi-
mum (or ultimate) load Pu, this law reads

sN ¼ Bft9ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ D=D0

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E9Gf

gða0ÞDþ g9ða0Þcf

s
(1)

where, for two-dimensional scaling, sN 5 cNPu=bD 5 nominal
strength of the structure; cN 5 conveniently chosen dimensionless
factor (often chosen as 1); D 5 size of structure; b 5 its width in
the third dimension; ft95 tensile strength; B 5 geometry dependent
dimensionless constant; D0 5 constant called the transitional size;
a5a=D 5 relative crack length of notch or stress-free crack,
a0 5 a0=D0 5 initial value of a; Gf 5 initial fracture energy,
representing the area under the initial tangent of the bilinear soft-
ening stress-separation curve of cohesive (or fictitious) crack model;
gðaÞ5 k2ðaÞ 5 dimensionless LEFM energy release curve; and
kðaÞ 5 dimensionless stress intensity factor.

Eq. (1) is not valid fora→ 0. This is the case of Type 1 size effect,
which occurs for structural geometries (such as unnotched beams)
for which the failure occurs as soon as a macrocrack initiates from
a smooth surface. According to the cohesive crack model, the large-
size asymptote (forD→‘) of the size effect plot of logsN versus log
D must be horizontal when the statistical Weibull size effect
(Weibull 1939, 1951) is negligible, which is the case for the three-
point bend beams, and for D→ 0, there must be another horizontal
asymptote. For small and medium sizes, the Type 1 size effect is a
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smooth transition between these two asymptotes expressed (without
the Weibull component) as follows (Ba�zant 2005):

sN ¼ fr,‘

�
1þ rDb

Dþ lp

�1=r

(2)

Here, fr,‘, Db, lp, and r 5 constants of the model whose values need
to be determined empirically; Db 5 depth of the boundary layer
of cracking [about equal to the fracture process zone (FPZ)width]; fr,‘
5 nominal strength for very large structures (assuming negligible
Weibull statistical size effects); and lp 5material characteristic length
that is related to themaximum aggregate size. The initial asymptote is
an abstraction that makes it possible to match the predictions of the
cohesive crack model and thus provides a plastic upper bound on sN .

A smooth transition between the Type 1 and Type 2 size effects is
described by the universal SEL (USEL),whose improved versionwas
formulated and validated in the companion paper (Hoover and Ba�zant
2014).

Review of Hu and Duan’s Model

Hu and Duan’s BEM is based on a hypothesis about the effect of
crack length on the nominal strength sN of a fracture specimen,
illustrated by Fig. 1 and described by the following equation:

sN ¼ ft9ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a0=aFPZ

p (3)

Here a0 5 length of the initial crack (or initial notch) without con-
sidering the FPZ; aFPZ 5 lCH=1:122 p � 0:25lCH; lCH 5 ðKIC=ft9Þ2
5E9GF=f 92t 5 Irwin’s (1958) critical (or characteristic) length based
on the total fracture energy GF (Hillerborg et al. 1976; Hillerborg
1985); KIC 5 critical KI (or fracture toughness); KI 5 mode I stress
intensity factor;E95E for plane stress andE95E=ð12 v2Þ for plane
strain; E 5 Young’s modulus; and v 5 Poisson ratio.

TheBEMand the Type 2 SEL differ in the definition of the fracture
energy that they use. Whereas the SEL corresponds to the area under
the initial tangent of the softening bilinear stress-separation curve of the
cohesive crack model, which represents the initial fracture energy Gf

(and can be used to determineGf from size effect tests),Hu andDuan’s
BEMuses the total area under the softening curve,which represents the
total fracture energy GF (Hu and Wittmann 2000; Duan et al. 2006).

Aiming to capture not only the crack length effect but also the
effect of structure size on the nominal strength of geometrically
similar structures, Hu and Duan (2007, 2008) had to introduce the
following modification of Eq. (3):

sN ¼ AðaÞft9ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þW=Wp

p ¼ AðaÞft9ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þWaBðaÞ=aFPZ

p (4)

in which W 5D 5 depth of the beam; a5 a0=W ; and BðaÞ
5 ½AðaÞYðaÞ=1:12�2. AðaÞ is a factor relating the fictitious stress sn

at the notch tip calculated under the assumption of a linear stress
profile (i.e., ignoring the elastic stress singularity) to the nominal
stress sN defined as the stress at the tensile face of unnotched beam
calculated according to the beam theory (inwhich caseCN 5 3L=2D,
L5 span).

In three-pointbending (TPB),sN 5AðaÞsn 5 ð12aÞ2sn. Eq. (4)
then becomes

sN ¼ ð12aÞ2ft9ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Dap½YðaÞ�2ð12aÞ4f 92t =EGF

q (5)

(however, as shown later, the fit of the size effect data for a→ 0 is
poor). Based on Tada et al. (1985) and ASTM (1990), Hu and Duan
also introduced the geometry factor

YðaÞ ¼ 1:992að12aÞ�2:152 3:93aþ 2:7a2
�

ffiffiffiffi
p

p ð1þ 2aÞð12aÞ3=2
(6)

Review of Comprehensive Tests of Size and Crack
Length Effects

The experimental data published in a previous paper byHoover et al.
(2013) and also described in Hoover and Ba�zant (2013, 2014) are
sufficiently extensive and systematic to assess the validity of Hu and
Duan’s BEM [Eqs. (3)–(5)]. All the specimens were cast from the
same batch of concrete. They were geometrically similar three-point
bend beams of four different depths, D5 500, 215, 93 and 40 mm,
and five different relative crack lengths, a0=D5 0, 0:025,
0:075, 0:15 and 0:30 for each size, except that the notch a0=D
5 0:025 was skipped for the two smallest sizes (because it would
have been much shorter than the coarse aggregate diameter da and
thus essentially equivalent to the case a5 a=D5 0).

The Type 2 SELwas fitted to themeans of each family of tests for
a5 0:30 and 0:15. Themeans for each family are shown as large and
thin x-points (Figs. 2 and 3). Hu and Duan’s Eq. (4) also fits these
data quite well, but only if ft9 and aFPZ are optimized. This is expected
because Eq. (4) has the same form as the Type 2 SEL. Fora5 0:075,
the BEM also fits the data quite well; however, the Type 2 SEL is
not applicable for a, 0:1, and the USEL needs to be used instead
(Hoover and Ba�zant 2014). The parameters for the optimal fits are
listed in Table 1 (where GF from the BEM is calculated from aFPZ).

For the same notch depth, the values of tensile strength ft9 given in
Tables 1 and 2 are different. The reason is that the data are optimally
fitted by the BEM in two different ways. The first is to fit the BEM
[Eq. (4)] to the comprehensive size effect data assuming that ft9 and
aFPZ are not known. The second is to use Eq. (5), along with the
average total fracture energy GF calculated by the Hillerborg (or
work-of-fracture) method from the diagrams of load versus load-
point displacement, to find the optimal values of ft9 for each data set,
as discussed in the next section.

GF was determined using the work-of-fracture method (Hoover
and Ba�zant 2013) or Hillerborg’s model (Shah 1990; RILEM
1985), in which one calculates the area under the load versus the
load-point displacement curve, applies a correction for the self-
weight of the beam, and divides the result by the ligament area
(Table 1). The GF value from the BEM is about half that calculated
from the work-of-fracture method, which is a significant deficiency.

Fig. 1. Dependence of sN on crack length in concrete assumed by Hu
and Duan BEM (cf., e.g., Fig. 2 in Hu and Duan 2010)
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The tensile strength ft9 can also be calculated from the initial
fracture energyGf and corresponding Irwin’s relation lch 5E9Gf =f 92t ;
lch is related to the effective length of fracture process zone cf by
lch 5 cf =g (Cusatis and Schauffert 2009), where g5 0:29 (Cusatis
and Schauffert 2009) or g5 0:28 (Yu et al. 2010). The initial fracture
energiesGf fora5 0:30 anda5 0:15 (Hoover andBa�zant 2013), as
well as the respective cf -values, yield the tensile strengths listed
in Table 1. It is clear that the BEM gives values of GF that are
significantly lower (about half) than the widely accepted work-
of-fracture method. The BEM also overestimates ft9 by more than
50%. These are again significant deficiencies.

Comparison of Optimum Fits of Size Effect Data by
BEM and SEL

The optimalfits with theBEMandSEL are shown in Figs. 2 and 3 by
the solid and dashed lines, respectively. The open circles in Fig. 2

represent the individual tests, and the means of each group of
points are marked by thin but large x points. Including the in-
dividual data points gives a clear impression of the magnitude of
scatter, but the visual comparison with the data means is cluttered.
Therefore, to make the comparisons with the mean results con-
spicuous, the data means from the group for each size D are
replotted in Fig. 3.

The BEM and SEL fits are optimized in Figs. 2 and 3 with the
restriction that all the material parameters of each model be the same
for all tests. The optimization is carried out with the least-square
Levenberg-Marquardt optimization algorithm. The BEM was fitted
to the entire data set simultaneously. The optimized ft9 for the entire
data set is 7.3 MPa, and the coefficients of variation (COV; defined
as the RMS error divided by the mean of all data) for the BEM are
listed in Table 2. The averageGF froma5 0:3 anda5 0:15 equal to
104 N=m was used. The BEM was also fitted to each individual set
for comparison. The optimized ft and the COV of fit for each graph

Fig. 2.BEMsize effect trends: open circles are individual data points, solid lines representBEM [Eq. (5)]fittedwith the samematerial parameters to the
entire data set, and dashed lines are the optimum fits by the SEL; (a) a5 0; (b) a5 0, but fit by optimized a; (c) a5 0.075; (d) a5 0.15; (e) a5 0.3
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in Figs. 2 and 3 are also provided in Table 2, along with the COV of
fit for the size effect laws.

The optimum material properties used in the Type 2 SEL were
Gf 5 49:56 ðN=mÞ and cf 5 22:34 ðmmÞ, determined by fitting
Eq. (2) simultaneously to the a5 0:3 and a5 0:15 beams. This
gives ft95 5:07MPa. The optimum material parameters used
in fitting the crack initiation specimens were Db 5 73:2mm,
lp 5 126:6mm, fr,‘ 5 5:27MPa, and r5 0:52. The parameters used
in the universal size effect law are discussed in Hoover and Ba�zant
(2014).

As seen in Figs. 2 and 3, for deep notches (a5 0:30 and 0:15),
the size effect fits by BEM are worse than those by SEL, and for
short or zero notches, they are much worse. For a5 0, the Type 1
SEL agrees with the data points quite well. Also, it shows a double
curvature, which agrees with the fact that, according to the cohesive
crack model, the curve should approach two horizontal asymptotes:
one for small sizes and one for large sizes.

Fig. 3. BEM size effect trends: solid lines are BEM [Eq. (5)] fitted with the same material parameters to the entire data set, and dashed lines are the
optimum fits by the SEL; (a) a 5 0; (b) a 5 0, but fit by optimized a; (c) a 5 0.075; (d) a 5 0.15; (e) a 5 0.3

Table 1.OptimumValueof ft9 and aFPZ fromBEM for EachRelative Notch
Length a from Eq. (4)

aa 0.3 0.15 0.075

aFPZ (mm) 7.66 8.3 6.34
GF ðN=mÞ (from BEM) 53.4 55.4 45.8
GF ðN=mÞ (fromHoover and
Ba�zant 2013)

96.9 110.5 —

cf (from Hoover and Ba�zant
2013)

27.97 20.99 —

ft9 (MPa) (from BEM) 8.52 8.34 8.67
ft9 (MPa) (from cf ) 4.63 5.23 —
aa 5 0.3, 0.15, and 0.075, respectively.
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At a5 0, the plot of the BEM size effect in Figs. 2 and 3 is
a horizontal line, i.e., no size effect is predicted [Figs. 2(a) and 3(a)],
This is a problem for the simple BEM. To circumvent it, Hu and
Duan proposed that, in absence of a notch, one needs to consider that
there must exist a pre-existing equivalent crack corresponding to
a certain finite a5aeq 5 aeq=D. However, this artifice is theoreti-
cally objectionable (Yu et al. 2010).

Themain reason is that, while optimizingaeq, it is implied that the
size of the largest flaw is assumed to be proportional to the structure
sizeD (i.e., asD increases, the largestflaw size a increases). However,
this assumption isflawed. If the size of the largestflaw in a10-cm-deep
test beam is 1 cm, one would have to infer that the size of inevitable
flaws in the 6-m-deep unreinforced plinth of the failed Schoharie
Creek Bridge would reach 0.6 m. That agrees neither with observa-
tions nor with statistics. The flaw size distribution is strictly a material
property and thus cannot be a function of the structure size (nor shape).

Nevertheless, let us check what is implied. Because the value of
this equivalent a is unclear, the aeq value that should replace a5 0

has been optimized. The optimization ensures that no other a value
can give for a notchless specimen a better BEM prediction.

The corresponding optimum fit with BEM is shown by the solid
curve in Figs. 2(b) and 3(b), for which aeq 5 0:015. This value was
optimized along with ft9 for the entire collection of data. Eq. (5) can
also befitted to the collection of notchless beams alone, forwhich the
optimized aeq 5 0:039. Figs. 2(c) and 3(c) also display, for com-
parison, the optimum fit of the a5 0:075 beams according to the
USEL. This law, which was presented (in an improved form) in the
companion paper (Hoover and Ba�zant 2014), gives a formula for
a smooth transition between the size effects of Types 1 and 2. Again,
thefit by theBEM, even though artificially adjusted fora5 0, is seen
to be inferior.

The ft value obtained when a5aeq is about 18% higher than the
other ft values. This shows that the BEM cannot predict the strength
of beamswith notches if it is fitted to specimenswith no notch. It also
demonstrates that the BEM cannot predict the strength of beams
when a5 0 if it is first calibrated to notched test specimens.

Table 2 also compares the tensile strength ft9, and COVs of the
BEM and SEL. In all cases, the SEL fits are distinctly more accurate.
The BEM also gives ft9 values that are about 40% higher than those
determined from the SEL (Table 2).

Comparisons in Terms of Crack Length Effect

Eq. (5) of the BEM was originally proposed for the crack length
effect on sN . Figs. 4 and 5 show by solid curves the optimum BEM
fit of the observed relative crack (notch) length effect for four
specimen sizes D, compared, respectively, with the individual data

Fig. 4. Effect of relative crack length a on the nominal strength sN optimally fitted by BEM using the samematerial parameters, shown by solid lines,
and by the SEL (with the Type 1–Type 2 transition), shown by dashed lines: open circles are the individual test data points; BEM crack length effect
trends; the solid lines represent [Eq. (5)] fit to the whole data set, and the dashed curve represents the fit by the USEL [Eq. (1)]

Table 2. Comparison of ft9 and Size Effect, COV of Curve Fits

Figures COV (%)a ft9 (MPa)b COV (%)b COV (%)c

Fig. 3(a) 12.7 — — 1.91
Fig. 3(b) 7.21 8.55 3.56 1.91
Fig. 3(c) 12.8 7.08 12.6 3.15
Fig. 3(d) 12.3 6.92 11.5 2.58
Fig. 3(e) 11.5 7.08 11.3 2.54
aDetermined from fitting Eq. (5) to the entire data set at once.
bDetermined from fitting Eq. (5) to each individual geometry.
cDetermined from fitting the SELs.
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points and to the mean values for each a considered. The optimized
material parameters for this fit are the same as was used for the size
effect plots.

Figs. 4 and 5 also shows the optimum fit of the crack length effect
using the USEL fromHoover and Ba�zant (2014), which is equivalent
to the simple Type 2 SEL [Eq. (1)] when a$ 0:15 and to the Type 1
SEL when a vanishes (i.e., when there is no notch). In this case the
optimizedmaterial parameters areGf 5 56:25 N=m, cf 5 29:79 mm,
and ft95 4:68MPa (Hoover andBa�zant 2014). The comparison again
shows that the BEM is distinctly inferior. The COV of fit for each
graph in Figs. 4 and 5 is provided in Table 3.

When a→ 0, the strength for all sizes D approaches the same
value. This is consistent with the BEM graph in Figs. 2 and 3, but
is in conflict with the experimental data on the Type 1 size effect
and the Type 1 SEL.

Another point to note is that the optimized equivalent relative notch
length aeq needed to match the strength of notchless specimens
(a5 0) is constant (Hu and Duan 2010), which implies that the initial
notch lengthaeq varieswith structure size.However, it is claimed inHu
and Duan (2010) that aeq is supposed to be a material property on the
order of aggregate size. So why should the length a of the preexisting
cracks vary with structure size? This implication is not realistic.

It has been noted that the BEM fit of the crack length effect could
be improved if the ft9 and Gf were optimized to fit this effect only.
However, other problemswould arise, e.g., excessive ft9, especially for
a→ 0, and a fracture energy GF , which is about 50% less than
calculated from the work-of-fracture method. It has also been noticed
that ifGF in the BEMwere replacedwithGf , then the fits in Figs. 2–5
would become somewhat better. However, they would still be sig-
nificantly inferior to the SEL and USEL fits shown in these figures.

Conclusion

The new comprehensive fracture tests of concrete with broad size
ranges of both the specimen size and the relative crack depth, in-
cluding zero and very short depths, make it possible to examine Hu
and Duan’s BEM solely on the basis of experimental evidence.
Although the BEM gives trends somewhat resembling the obser-
vations of the size effect and crack length effect in notched three-
point bend beams, it gives a poor representation of the data from
these new tests. In fitting these data, the BEM is distinctly inferior
to the SELs, both Types 1 and 2, and their transition described by
the universal SEL.
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Fig. 5. Effect of relative crack length a on the nominal strength sN optimally fitted by BEM using the samematerial parameters, shown by solid lines,
and by the SEL (with the Type 1–Type 2 transition), shown by dashed lines: BEM crack length effect trends; the solid lines represent [Eq. (5)] fit to
the whole data set, and the dashed curve represents the fit by the USEL

Table 3. Comparison of Crack Length Effect, COV of Curve Fits

Depth (mm) COV (%)a COV (%)b

40 7.9 2.03
93 3.92 2.32
215 17.1 2.91
500 23.9 2.5
aDetermined from fitting Eq. (5) to the entire data set at once.
bDetermined from fitting the USEL.
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