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ABSTRACT

Themomentum variables of streamfunction and velocity potential are used as control variables in a number

of operational variational data assimilation systems. However, in this study it is shown that, for limited-area

high-resolution data assimilation, the momentum control variables c and x (cx) pose potential difficulties in

background error modeling and, hence, may result in degraded analysis and forecast when compared with the

direct use of x and y components of wind (UV). In this study, the characteristics of the modeled background

error statistics, derived from an ensemble generated fromWeather Research and Forecasting (WRF) Model

real-time forecasts of two summer months, are first compared between the two control variable options.

Assimilation and forecast experiments are then conducted with both options for seven convective events in a

domain that encompasses the Rocky Mountain Front Range using the three-dimensional variational data

assimilation (3DVar) system of the WRF Model. The impacts of the two control variable options are com-

pared in terms of their skills in short-term qualitative precipitation forecasts. Further analysis is performed for

one case to examine the impacts when radar observations are included in the 3DVar assimilation. The main

findings are as follows: 1) the background error modeling used in WRF 3DVar with the control variables cx

increases the length scale and decreases the variance for u and y, which causes negative impact on the analysis

of the velocity field and on precipitation prediction; 2) the UV-based 3DVar allows closer fits to radar wind

observations; and 3) the use of UV control variables improves the 0–12-h precipitation prediction.

1. Introduction

The variational data assimilation (DA) technique has

been widely used in operational centers as well as in

research communities to provide analysis and initiali-

zation for numerical models. The technique can be

implemented with a three-dimensional (3DVar) or a

four-dimensional (4DVar) variational data assimilation
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approach; the latter requires the use of a prediction

model as the constraint. The variational method seeks to

find the optimal analysis by minimizing a cost function

that measures the discrepancies of the atmospheric state

from a background (i.e., a model forecast) as well as

from observations. The control variables can be the

prognostic model variables or any diagnostic variables

derived from them. Three pairs of control variables for

momentum are typically used in variational DA sys-

tems: streamfunction and velocity potential (cx), east-

ward and northward velocity components (UV), and

vorticity and divergence (zd). Historically, the cx and zd

momentum pairs have been used as control variables in

global DA systems and in some regional DA systems

that primarily assimilate large-scale observations

(Derber and Bouttier 1999; Lorenc et al. 2000; Berre

2000; Ingleby 2001; Zupanski et al. 2005; Rawlins et al.

2007; Huang et al. 2009; Barker et al. 2004, 2012; Wang

et al. 2013a,b; Xiao et al. 2005). In contrast, the UV

control variables have been the choice for variational

systems that emphasize mesoscale data assimilation us-

ing observations that have higher densities (Zou et al.

1995; Sun et al. 1991; Sun and Crook 1997; Gao

et al. 1999).

Wu and Purser (2002) pointed out that an advantage

in using cx is that the relation between the mass field

and the streamfunction is linear under the geostrophic

assumption so that statistical regression between the

two is possible. The balance between the mass and

wind fields is important because it can project in-

formation from one variable to the others and mini-

mize initial balance adjustment and spinup when a

forecast is launched. The balance part of the stream-

function with each of the other variables can then be

subtracted, resulting in a set of control variables that

includes streamfunction, unbalanced velocity potential,

unbalanced temperature, unbalanced surface pressure,

and humidity.

Xie and MacDonald (2012) performed mathematical

analysis on cost function formulations with different

momentum control variables in the context of limited-

area DA and showed that a cx variational system tends

to produce analyses that possess large-scale motions of

the background field. It has the tendency to ignore the

small-scale information of observation networks and

instead to treat it as an uncertainty unless a perfect error

covariance is known. In comparison, a UV system can

combine the background and observations for smaller

scales. They also found that a cx system possesses a

property of preserving the integral value of wind due to

the fact that cx are essentially the integration of UV,

which can potentially introduce nonphysical errors to its

analysis increment fields. In addition, they pointed out

that another difficulty in using cx as control variables

on a limited-area domain arises from the treatment of

lateral boundary conditions in solving the Poisson

equations to convert between cx and the forecast vari-

ables UV.

The study by Xie and MacDonald (2012) raises the

question whether using cx as the control momentum

variables is still beneficial when an increasing number of

high-resolution observations is being used in limited-

area convection-permitting data assimilation systems. In

these systems, the main goal is to analyze atmospheric

flow at the convective scale for improved short-term

prediction of high-impact weather. As such, the large-

scale balance (such as geostrophic) is no longer domi-

nant for the small spatial and short time scales of

interest, and therefore the benefit of using diagnosed

momentum variables such as cx might disappear. Berre

(2000) showed that the percentage of the variance of

surface pressure that can be explained by balanced

geopotential drops quickly with horizontal scale for a

limited-area mesoscale model. Since there is no easily

defined balance that can be used for the small scale, the

primary concern for data assimilation at the convection-

permitting scale using a limited-area model is to extract

small-scale information from high-resolution observa-

tions. Therefore, early data assimilation studies with the

primary goal to obtain convective-scale analyses used

UV as control variables, out of belief that their direct

links to the observations would allow more accurate

extraction of small-scale information from the obser-

vations. As major NWP systems are moving toward the

capability of resolving both large-scale and small-scale

flows, it is timely to compare the impact of the choice of

momentum control variables on high-resolution analy-

sis. In the current study, we only focus on the two pairs

of control variables, cx and UV. Although the study by

Xie and MacDonald (2012) laid the groundwork for

understanding the behaviors of the two pairs of control

variables, they have not been compared with real ob-

servations in terms of convective forecasting.

In this paper, we present results from real-data ex-

periments that compare the two pairs of momentum

control variables, cx and UV, in the context of high-

resolution analysis aimed at improved short-term con-

vective forecasting. Our experiments are conducted

using the 3DVar system developed for the Advanced

Research version of the Weather Research and Fore-

casting (WRF) Model (WRFVAR) (Barker et al. 2004,

2012). One issue that is not investigated by Xie and

MacDonald (2012) but can impact the quality of the

analysis and forecast is the different background error

(BE) statistics of velocity resulting from the use of dif-

ferent momentum control variables. This issue is
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examined in the current study by comparing the BE

statistics of the two control variable options derived

from two months of warm season WRF forecasts. We

then use these error statistics in real-data 3DVar ex-

periments of seven cases to examine their impacts on

convective forecasting. The 3DVar DA experiments

for the multiple cases were performed with contin-

uous update cycles with conventional Global Tele-

communications System (GTS) data. We then examine

the responses of the two control variable systems to radar

DA through a more detailed study on one of the seven

cases.

In section 2, we provide an overview of WRF 3DVar

and describe the method to derive the background error

statistics. In section 3, we compare the characteristics of

the BE statistics of the cx andUV control variables. The

analysis increments from single-observation and real

data experiments are compared in section 4. The im-

pacts of the two pairs of control variables on pre-

cipitation forecasts of the seven summer convective

cases are compared in section 5. In this section we also

show results of one case that includes radar DA. The

summary and conclusions are given in the final section.

2. Description of WRFVAR

a. Overview

WRFVAR employs the incremental variational for-

mulation (Courtier et al. 1994) commonly applied in

operational systems. The advantage of the incremental

approach is that it not only reduces the computational

cost but also improves the mathematical conditioning of

the cost function (i.e., a quadratic cost function) because

of the linearization of the forward operator. The in-

cremental variational scheme minimizes a cost function

defined as a function of the analysis increment relative

to the background. The original nonlinear formulation

of the cost function is written as

J5
1

2
(x2 x

b
)B21(x2 x

b
)1 [yo 2H(x)]TR21[yo 2H(x)] ,

(1)

where the vectors x, xb, and yo represent the analysis

variable, the background variable, and the observation

variable, respectively; B is the background error matrix;

and R is the observation error matrix. The variable H is

the observation operator that maps the analysis or

background variables from model space to observation

space. With the typical number of grid points in nu-

merical weather prediction (NWP) models, the back-

ground error covariance B is commonly a 107 3 107

matrix and its inverse is difficult to compute and, hence,

simplifications must be sought. Applying the matrix

decomposition B5UU
T, the transforms

Uv5 x2 x
b

(2)

and

d5 yo 2H(x
b
) , (3)

and the approximation

yo 2H(x)’ yo 2H(x
b
)2H

0(x2 x
b
) (4)

to Eq. (1), the incremental formulation of the cost

function is obtained and written as

J5
1

2
vTv1

1

2
(d2H

0
Uv)TR21(d2H

0
Uv) . (5)

The vector v is the control variable, the vector d is the

innovation (observation minus background) vector that

measures the departure of the observation yo from its

background xb, and H
0 is the linearization of the non-

linear observation operator H. Note that the adjoint of

H
0 is needed to calculate the gradient of the cost

function.

Equation (2) is a preconditioning transform through

which the direct computation of the inverse of the

background matrix B is avoided. With this transform,

the analysis increment

dx5 x2 x
b
5Uv5U

p
U

y
U

h
v (6)

is obtained by applying the decomposed background

matrix U to the control variable v. The matrix U consists

of a series of operations (Barker et al. 2004), UpUyUh,

where Uh and Uy stand for the horizontal and vertical

transforms, respectively, that essentially create hori-

zontal and vertical autocorrelations of control variables.

The variable Uh is realized through the application of a

recursive filter (Hayden and Purser 1995). The de-

termination of the correlation length scales used in the

filter will be described later in this section. The vertical

transform Uy is applied by an empirical orthogonal

function (EOF) decomposition of the vertical compo-

nent of background error covariance. The transform Up

converts the increment in control variable space to

model variable space.

The most commonly used control variables in

WRFVAR are streamfunction (c), unbalanced velocity

potential (xu), unbalanced surface pressure (Psu), un-

balanced temperature (Tu), and pseudo–relative hu-

midity (RHs) (water vapor mixing ratio divided by

its saturated counterpart in the background field).

The word ‘‘unbalanced’’ refers to the residual after a
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statistical balance to the streamfunction is removed.

This set of control variables (CV) is hereafter referred to

as CV_cx. The transform Up is defined as

=
2c5

›y

›x
2

›u

›y
and =

2x5
›u

›x
1

›y

›y
, (7)

or

u5
›c

›y
2
›x

›x
and y5

›c

›x
1

›x

›y
. (8)

In addition to the control variable conversion, Up also

involves the addition of the correlations between the

streamfunction and other variables.

For this study, the new control variable option that

directly uses the velocity components u and y is added to

WRFVAR. For this new CV option, the operation Up in

Eq. (6) becomes an identity matrix. Hereafter, we refer

to this new CV option as CV_UV. The control variables

from the two CV options are summarized as

CV_cx: c,x
u
,P

su
,T

u
, and RH

s
,

CV_UV: u, y,P
s
,T , and RH

s
.

Note that the temperature and surface pressure are the

full variables in CV_UV because it is assumed that the

control variables are independent. In the next section,

we will show that the correlations of u and y between

themselves and with other variables are not significant.

In CV_cx, however, a linear regression is used to com-

pute and subtract the correlations between the stream-

function and the velocity potential, temperature, and

surface pressure. Only the unbalanced part of the vari-

able is used as the control variable. We could compare

CV_UV with the CV_cx without the consideration of

the multivariate correlation. However, since it has been

found that the impact of the multivariate correlation is

not significant on the precipitation forecast using a

similar configuration as in the current study (H. Wang

2013, personal communication), the WRFDA standard

CV_cx option that was a popular choice in previous

studies is used in the current study.

b. Derivation of background error statistics

In section 2a we have shown that the background er-

ror covariance matrix B is modeled by a series of oper-

ations that results in the following approximation:

B’U
p
U

y
U

h
U

T
hU

T
yU

T
p . (9)

To computeB using Eq. (9), a forecast error ensemble is

needed that is obtained by the NMC method in this

study. The NMCmethod was first introduced by Parrish

and Derber (1992) and named after the National Me-

teorological Center, now called the National Centers for

Environmental Prediction (NCEP). Although the

method has its potential deficiencies (Errico et al. 2015),

it is one of the most commonly used methods for vari-

ational data assimilation. The NMC method derives the

climatological BE statistics from an ensemble of the

differences between forecasts of two different lengths

[hereafter called the forecast difference ensemble

(FDE)], but valid at the same time. The forecasts are

usually obtained by running a NWP model for at least a

month. The dataset used to obtain the FDE is from the

WRF 3-km real-time forecasts during May and June

2012 over a domain with the longitudinal and latitudinal

distances about twice as large as the inner 3-km domain

shown in Fig. 1b, which is the nested domain for the DA

and forecast experiments that will be discussed in sec-

tions 4 and 5. The FDE was obtained by computing the

difference between the 24- and 12-h model forecasts

valid at the same time using this dataset, yielding 60

ensemble members. From this FDE, statistics such as

variance and length scale can be obtained.

To compute the variance and length scale for c and

x from the FDE, the streamfunction and velocity po-

tential need to be calculated first by the inverse Lap-

lacian implied by Eq. (7) from the model-forecasted

u and y. Although the conversion between UV and cx

is reversible (this property has been checked for

WRFVAR) as long as the boundary conditions for c and

x are correctly specified, the background error statistics

can be altered, as will be shown in the next section. For

the current study we used the WRFVAR utility gen_be

to generate the BE statistics. The reader can refer to

WRFDA Users’ Guide (http://www2.mmm.ucar.edu/

wrf/users/wrfda/index.html) for detailed description of

the computation method. Referring back to Eq. (9), we

can see that the background error covariance is de-

composed into the horizontal and vertical compo-

nents. The horizontal covariance is realized through a

recursive filter using the length scales and variances

obtained in the above procedure, while the vertical

covariance is achieved by the vertical covariance de-

composition. Hence, both the variance and the length

scale generated by gen_be are a function of the K

EOF modes, where K is the number of the model

vertical levels.

3. Comparison of the background error statistics

In this section, we compare the forecast error statistics

of the momentum variables for CV_cx and CV_UV

obtained from the NMC FDE. In addition to physi-

cal considerations, a requirement in choosing control
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variables is that their errors are similar to that of a

Gaussian error distribution, because this assumption is

applied in deriving the 3DVar cost function in Eq. (1)

(Lorenc 1986). Therefore, we first examine the charac-

teristics of error distributions of the two pairs of control

variables. Figure 2 shows the error distributions of the

four momentum variables c, x, u, and y. It is evident that

all four variables display approximately Gaussian-

distributed error structures.

To see how the two pairs of momentum variables

correlate with each other and with other variables, cor-

relation coefficients of c, x, u, and y on each vertical

level are calculated from the FDE and shown in Fig. 3.

The vertical distributions of the correlations between

the momentum pairs are shown in Fig. 3a and between

temperature, pressure, and relative humidity and the

four momentum variables are shown in Figs. 3b, 3c, and

3d, respectively. From Fig. 3a, we first observe that the

correlation between c and x is significantly greater than

that between u and y, especially on the low levels.

Figure 3c shows that the correlation between the pres-

sure and the velocity components u (or y) is negligible

for all levels. In contrast, and as expected, significant

correlation is seen in the low levels between pressure

and c (or x), presumably due to the geostrophic balance.

The velocity components u and y are generally less

correlated with temperature than are c and x (Fig. 3b)

except for the top levels above 200mb (1mb 5 1 hPa).

The correlations of relative humidity are largest with u

below 400mb and the larger correlations occur at higher

levels with c and x.

The small correlations between u and y and between

wind and pressure suggest that there is not an obvious

climatological balance between these two momentum

variables, and thus it is justifiable to treat these variables

independently without consideration of multivariate

correlation. For temperature and humidity, however,

there could be some benefit to model the small corre-

lations with wind, although we have chosen to ignore

them in the current study. In contrast to CV_UV, the

correlations in CV_cx are relatively larger, especially

between c and x and between c (or x) and pressure,

which can be regarded as a justification for the appli-

cation of multivariate correlation modeling. Following

Wu and Purser (2002) and Barker et al. (2004), the

multivariate correlation in CV_cx is estimated by a

statistical regression using the data from FDE. The use

of the cx control variables provides a way to take into

account the geostrophic balance, which is important for

data assimilation systems aimed primarily at resolving

large-scale motions. However, for a nonhydrostatic

model resolving high-resolution flows, we question

whether CV_cx is the best way to consider the large-

scale geostrophic balance. In the following, we will show

that CV_cx has some BE properties that may produce a

negative impact on 3DVar analysis when a limited-area

nonhydrostatic model is used.

Although no multivariate correlation is considered in

CV_UV in the current study, we are not suggesting that

it is not important to account for the multivariate bal-

ance. Rather, the purpose of this study is to point out

some potential problems of the cx control variable

scheme in the context of high-resolution data assimila-

tion when large amounts of data (e.g., from radar and

mesonet) are used with a nonhydrostatic model. These

types of high-resolution models have the capability to

resolve the multiscale atmospheric flows that cannot be

FIG. 1. (a) The 15/3-km nested domain for data assimilation and

forecast experiments. (b) Enlarged 3-km domain with topography

and locations of NEXRADs used in the case study of the 9 Aug

2008 event. The states of Colorado, Kansas, Wyoming, and

Nebraska are also marked in (b).
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described by any specific balance approximations. We

believe that for regional data assimilation with plentiful

high-resolution observations a large portion of the

multivariate balance should be extracted from the

observations, although it is still necessary to include

balance constraints, which can be important for under-

sampled regions. Approaches are being sought by adding

appropriate constraints in the cost function (penalty

function) that can account for the multivariate balance

suitable for convective-scale data assimilation. The pen-

alty function method of adding multivariate constraints

has been shown to be effective in meso- and convective-

scale variational data assimilation systems (Xie et al.

2002; Ge et al. 2012).

The BE statistics of variance and length scale for both

momentum control variable options are derived based

on homogeneous and isotropic assumptions, so they

only vary with height. As mentioned previously, the

vertical variation is represented by an EOF decompo-

sition in the vertical, and we can thus plot the length

scale and variance in terms of the EOF mode. In

Fig. 4a, a plot of these length scales is displayed and it

is shown that the length scales of u and y are smaller than

those of c and x. Also plotted in Fig. 4a are the length

scale ratios between the momentum variables as a

function of the EOFmode, as shown by the black dotted

(for the length scale ratio between c and u) and dashed

(for the length scale ratio between xu and u) lines. These

two ratios increase as the wavenumber increases (except

for modes 3–6), suggesting that the BE of cx results in

larger length scales for small-scale features in the at-

mosphere compared to that of UV. When the eigen-

values (indicating the variance explained by each EOF

mode) are plotted with respect to the vertical wave-

numbers (Fig. 4b), we can see that the ratio between

c (or x) and u decreases as the wavenumber increases,

FIG. 2. Forecast error distributions of (a) streamfunction c, (b) velocity potential x, (c) u wind, and (d) y wind as

estimated using the NMC method (blue) and by the Gaussian function (red).
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opposite to the trend for the length scale. Note that the

eigenvalues plotted in Fig. 4b are scaled by their re-

spective first mode to equalize the scales for the ease of

plotting. Figure 4 suggests that the variable trans-

formation between UV and cx acts as a smoother that

enlarges the length scale and reduces the variance and

that the smoothing impact increases as the wavenumber

increases. That finding is easily understandable if we

examine Eq. (6) in terms of spectral decomposition:

=
2c} (k2

1 l2)c5F , (10)

where F represents the right-hand side of Eq. (7), c is

the Fourier expansion ofc, and k and l are wavenumbers

in the x and y directions, respectively. Equation (10)

clearly shows that c is inversely proportional to the

horizontal wavenumbers. If we assume the dominant

motions in the atmosphere are three dimensional,

meaning that the magnitude of the horizontal scale is

positively correlated with that of the vertical scale,

Eq. (10) can be used to explain the scale dependence of

the BE statistics between the two control variable op-

tions displayed in Fig. 4.

The above comparison of the BE statistics of the

momentum control variables in spectral space provides

some insight, but we also want to see, in physical space,

the differences of the u and y error statistics resulting

from the two CV options. To do that, we generated u

and y ensembles of 200 members via a Gaussian re-

sampling process (Wang et al. 2014) using the BE vari-

ances and length scales from CV_UV. Similarly, 200

c and x ensembles were generated using those statistics

from CV_cx, and then the c and x ensemble fields were

converted to u and y fields using Eq. (8) after the

FIG. 3. (a) Vertical distribution of correlation coefficients between u and y (blue) and between c and x (red).

(b) Vertical distribution of correlation coefficients between T and y (dashed blue), T and u (solid blue), T and

c (dashed red), andT and x (solid red). (c) As in (b), but for pressureP. (d) As in (b), but for relative humidity RH.
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balanced part between c and x is added back. From

these two groups of ensembles, the spatial correlations

of u and y can be computed for the two CV options. The

spatial correlations are also directly calculated from the

NMC FDE and used as truth in the following compari-

son. By comparing the spatial correlation and STD cal-

culated from the resampled ensembles for the two CV

options against those computed directly from NMC

FDE, we can evaluate how the BE modeling procedure

summarized in the last section can alter the spatial cor-

relations of the velocity components. For simplicity, in

the following, the direct calculation of the error statistics

from the NMC FDE will be referred to as NMC.

Figure 5 shows the u-wind (Figs. 5a,b) and y-wind

(Figs. 5c,d) correlations from CV_cx, CV_UV, and

NMC along the west–east (Figs. 5a,c) and north–south

(Figs. 5b,d) directions on the ninth vertical model level,

which is close to 700mb. The results suggest that CV_cx

gives much larger decorrelation distances than that from

NMC, while CV_UV yields substantially smaller de-

correlation distances than CV_cx but still larger than

NMC. Another notable aspect that can be observed

from Fig. 5 is that the u-wind correlation along the y

direction and the y-wind correlation along the x di-

rection from CV_cx have negative values at long dis-

tance, which is not shown by the direct calculation from

NMC FDE. When the length scales of CV_cx are re-

duced by half, the resulting spatial correlations are very

close to those from CV_UV for the u wind along the x

direction and the y wind along the y direction (thin

dashed lines denoted by CV_cx0.5 in Fig. 5); however,

the negative tails are amplified for the u-wind correla-

tion along the y direction and the y wind along the x

direction. Wang et al. (2014) found similar unrealistic

negative correlations at long distance from CV_cx

using aNMCFDE fromChina in their study to design an

inhomogeneous BE covariance for WRFVAR. This

finding suggests that, although the enlarged length scales

in CV_cx can be reduced by an artificial tuning, the

practice can result in unrealistic correlations at long

distance, posing another potential problem.

4. Comparison of analysis increments

a. Single-observation experiments

One simple way to examine the effect of the BE sta-

tistics in physical space is via a single-observation test.

Such a test was performed by placing a single observa-

tion of u with an innovation (difference between ob-

servation and background) of 1m s21 on the 20th model

level in themiddle of the inner analysis domain shown in

Fig. 1. CV_cx and CV_UV can result in different u in-

crements due to their different BE covariance matrices.

The background field for the single-observation exper-

iments is the North American Mesoscale Forecast Sys-

tem (NAM) analysis at 0000 UTC 9 August 2008, which

is the case that will be studied in more detail in section 5.

With the background and the single observation, WRF

3DVar was run with both control variable options

CV_cx and CV_UV and their respective BE statistics.

The increments of u from the experiments using

CV_cx and CV_UV are shown in Figs. 6a and 6b, re-

spectively, plotted in the x–z plane through the obser-

vation point. The area of the positive increment is much

larger from the experiment CV_cx (Fig. 6a) than that

FIG. 4. (a) Length scale plotted as a function of vertical mode for

c (black), xu (green), u (blue), and y (red). The length scale ratios

between c and u and between xu and u are shown by dotted and

dashed lines, respectively. (b) As in (a), but for eigenvalue scaled

by the first mode.
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fromCV_UV (Fig. 6b) in terms of the horizontal spread.

The smoothing effect of CV_cx is more clearly seen in

Fig. 6d where the increment profiles from the two ex-

periments along the blue line in Fig. 6a and the red line

in Fig. 6b are compared. It shows that the increment of u

from CV_UV has a larger magnitude and smaller hori-

zontal spread than that from CV_cx.

Since the correlation between c and x, T, and Ps are

accounted for in CV_cx, the observation of u not

only results in u increments but also in increments of

y, T, and Ps. However, it is noted that the values of these

increments are relatively insignificant. The maxima of

the increments for y,T, andPs are 0.06m s21, 0.038C, and

0.057 hPa, respectively, in response to the 1m s21 inno-

vation of u. Figure 6c shows the temperature increment

on the y–z plane through the observation point. Clear

patterns are obtained due to the balance correlation

between c and T in the CV_cx BE, but the magnitude

is very small. There are no y, T, and Ps increments pro-

duced by CV_UV because no climatological correlations

are considered between u and these variables. The hu-

midity field is independent in both CV schemes, so there

are no increments in response to the 1m s21 innovation

of u.

b. Comparison of increments using real data

The increments from CV_cx and CV_UV are also

compared when synoptic observations from GTS are

assimilated with the same background as in the single-

observation experiments. Figure 7 shows the u, T, and

qy increments on the sixth model level from the 3DVar

experiments using CV_cx (left column) and CV_UV

(right column). The most striking difference occurs in

the u-increment fields where the CV_cx experiment

(Fig. 7a) produces a much smoother increment than the

CV_UV experiment (Fig. 7b) in which more small-scale

features are analyzed. Both experiments yield larger

increments over the high terrain of the Rocky Moun-

tains in Colorado; however, the increment field from

the CV_UV experiment shows a north–south pattern

FIG. 5. Horizontal correlations on the ninth model level (about 700mb) for u along the (a) x direction and (b) y

direction, and for y along the (c) x direction and (d) y direction. The four lines represent correlations directly cal-

culated from the NMC FDE (thick solid), recomputed from c and x BE statistics (thick dash) and u and y BE

statistics (thin solid), and recomputed from c and x BE statistics but with half of the length scale (thin dash).
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that is in better agreement with the orographic orienta-

tion. The temperature increments from the two schemes

are quite similar. Since the only difference between the

two CV options for the temperature is that CV_cx con-

siders the correlation between c and T through a linear

regression, the differences in the temperature increments

represent the impact of the multivariate balance. The

humidity increments are exactly the same since both CV

options treats the humidity variable independently.

It is not surprising to observe the large differences

between the velocity increments from the two CV op-

tions given their significant differences in the velocity

error statistics presented in section 3. Although it is

possible to artificially reduce the length scales of c and

x to obtain a velocity increment with some smaller-scale

structures, it can cause nonphysical errors as shown

in section 3, and it could violate the statistical multi-

variate balance that is consistent with the untuned BE.

In section 5, we will show in a case study that reducing

the length scale does not improve the analysis and

forecast either.

5. Impacts of control variables on precipitation

forecasts

a. Results from multiple-case experiments

Multiple historical convective cases that caused flash

floods over the region of the Rocky Mountain Front

Range were selected and employed in the current study

as part of a collaborative project on the study of flash

flood prediction in this region. The WRF 3DVAR

FIG. 6. Vertical x–z cross sections of u analysis increment from the single-observation ex-

periments using (a) CV_cx and (b) CV_UV. Vertical y–z cross section of T analysis increment

from the single-observation experiment using (c) CV_cx. (d) The profiles of the increments of

u along the blue line in (a) (blue) and along the red line in (b) (red) on the level where the single

observation is assumed.Note that in the plots (a),(b), and (c) the vertical coordinate is theWRF

sigma level labeled by the corresponding height in km.
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model was run for seven cases using both control vari-

able options in order to examine their sensitivities on

quantitative precipitation forecasts (QPFs). Table 1 lists

the dates and main high-impact weather features of the

seven cases. For each of these cases, WRF 3DVAR was

run with continuous 3-h analysis cycles, and 0–12-h

forecasts were produced at 0000, 0600, 1200, and

1800 UTC initialization times. The nested domains

shown in Fig. 1a were used for these runs. The inner

domain is enlarged in Fig. 1b to show the topography

and the locations of eight radars used in the case study

discussed later in this section. There are a total of 51

vertical levels used in the WRF forecast model.

The multiple-case runs assimilate GTS data, including

radiosonde and aircraft data, surface synoptic obser-

vations (SYNOP), automated weather station obser-

vations (AWS), and the global positioning system

precipitable water (GPS PW). The starting and ending

times for each case vary depending on the occurrence

time of the major convective systems on the analysis

FIG. 7. Analysis increments of (a),(b) u (m s21); (c),(d) T (8C); and (e),(f) qy (g g
21) on the

sixth model s level (approximately 800mb) at 1200 UTC 8 Aug 2008 from the real data ex-

periments using (left) CV_cx and (right) CV_UV.
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domain. There are 29 (in total) 0–12-h forecasts for the

7 cases. The boundary conditions for the 15-km outer

domain are provided by the NAM forecast. The

Kain–Fritsch cumulus parameterization scheme is used

only in the outer domain. Other physics options are

the Thompson bulk microphysics scheme, the Mellor–

Yamada–Janji�c (MYJ) PBL scheme, the Monin–

Obukhov surface layer scheme, and the RRTMG radi-

ation scheme. The description of the above schemes can

be found in the ARW technical report (Skamarock

et al. 2008).

Since themain purpose of themultiple-case studies on

the chosen domain is to assess the system performance

in terms of QPF, our statistical analysis focuses on pre-

cipitation skills over the 29 forecasts. The respective

QPF skill, as represented by the fractions skill score

(FSS) with a radius of influence of 9 km, from the

two analysis and forecast runs using CV_cx (named

EXP_cx) and CV_UV (named EXP_UV) are com-

pared in Fig. 8 for the hourly accumulated precipitation

thresholds of 1 (Fig. 8a) and 5mm (Fig. 8b). The stage-

IV precipitation analysis, a multisensor rainfall product

produced by NCEP (Lin and Mitchell 2005), is used as

the observation in the computation of the FSS. Im-

provement of the QPF skill is evident for the higher

threshold over the entire 12 forecast hours, while im-

provement for the lower threshold occurs mostly during

the later forecast hours. The trend of decreasing QPF

skill for both thresholds in the later hours shown for

EXP_cx is appreciably corrected by EXP_UV. To test

whether the difference between the two runs is statistical

significant, the mean FSS difference and its 95% confi-

dence interval are calculated for both thresholds and the

results are written on the two figure panels, respectively.

The results indicate that the difference well passes the

significance test for the higher threshold and barely

passes it for the lower threshold.

By examining the forecast precipitation patterns of the

29 forecasts over the seven cases, we found that EXP_UV

had the most positive impact on QPF for forecasts of or-

ganized convective systems. In Fig. 9, some results of the

forecasts from EXP_cx (middle column) and EXP_UV

(right column) are shown and verified by the stage-IV

precipitation analysis (left column).

On 28 July 2010 (Figs. 9a–c), scattered convection

occurred in the area of the Rocky Mountain Front

Range, and a storm near Nederland, Colorado, pro-

duced heavy rain and hail. The two forecasts do not

show significant differences for this case, and they both

FIG. 8. Fractions skill scores with 9-km radius of influence for

the hourly precipitation thresholds of (a) 1 and (b) 5mm aggre-

gated over 29 forecasts, from the experiments EXP_cx (blue) and

EXP_UV (red). The standard deviations (STD) of the FSSs (over

all forecast hours and all cases) are shown for both experiments

(red for EXP_UV and blue for EXP_cx).

TABLE 1. Summary of seven convective cases.

Date Description

8–9 Aug 2008 Flooding with fatality in south Denver

3–4 Jul 2009 Large hailstorm in north Denver

28 Jul 2010 Heavy hailstorm in Nederland

16 Aug 2010 Boulder thunderstorm

13–14 Jul 2011 Fourmile Canyon flood

6–7 Jun 2012 Widespread heavy rain over foothills

7–8 Jul 2012 Widespread heavy rain over Front Range
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produced false alarms at various locations, although the

deep storm that resulted in heavy rain and hail is fore-

casted by both experiments. This example typifies the

cases of isolated convection that have less sensitivity to

the selection of control variables. We believe that the

reason for the low sensitivity in these cases is that the

isolated storms cannot be well resolved by the 3-km

model resolution.

The second case shown by Fig. 9d occurred on 9 Au-

gust 2008. The 12-h forecast of EXP_UV (Fig. 9f)

FIG. 9. Forecasts of 1-h accumulated precipitation for four different cases. (left) The stage-IV analyses, (middle) the forecasts from

EXP_cx, and (right) the forecasts from EXP_UV. (from top to bottom) Forecast valid times are at 2300 UTC 28 Jul 2010, 1000 UTC

9 Aug 2008, 0700 UTC 3 Jul 2009, and 1000 UTC 8 Jul 2012. The forecast length for each case is labeled on the panel.
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starting at 0000 UTC predicts the organized line of

convection quite well, while in contrast EXP_cx

(Fig. 9e) failed to forecast the organized convective

system. The third case shown by Fig. 9g occurred on

3 July 2009. Similar to the previous case, the experiment

with EXP_cx fails to organize the storms near the bor-

der of Nebraska and South Dakota. For the last case

shown by Fig. 9j, which occurred on 8 July 2012, the

experiment of EXP_cx predicts an organized convec-

tive system, but the location is too far to the northeast;

while the forecast by EXP_UV produces a system that

is in closer agreement with the observed system in terms

of its orientation and location.

From these QPF examples, we can see that the

EXP_UV control variables produce analyses that result

in improved precipitation forecasts, especially for or-

ganized convective systems. In other words, the fore-

casts from EXP_UV are able to organize the convection

when organized convective systems exist in the domain.

The larger FSS values tend to be associated with more

organized systems that have higher predictability in

general. Overall, the EXP_cx forecasts have more

spurious convection and, hence, result in a larger false

alarm rate (FAR), which is confirmed by the statistics of

FAR over the 29 forecasts shown in Fig. 10. The largest

reduction of FAR is for the higher precipitation

threshold (5mm, Fig. 10b). For the lower precipitation

threshold, the main improvement is only for the long

forecast ranges. The statistical significance test results

(shown on the figure panels) also indicate that the dif-

ference is significant for the higher threshold, but not for

the low threshold.

b. Case study of 9 August 2008

To gain more insight into the impacts of the two pairs

of momentum control variables on analysis and forecast,

we conducted a case study on the 9 August 2008 event.

An emphasis here is to examine how the two control

variable schemes behave when radar observations are

assimilated. On this day, a cluster of storms initiated in

Wyoming in the early afternoon (Fig. 11a) and orga-

nized into a convective line as the storms approached

Colorado in the late afternoon (Fig. 11b). As the con-

vective system passed through the Denver area, its

southwest end collided with a mesoscale convergence

feature (marked by the black arrow in Fig. 11c) and

initiated a deep storm that resulted in flooding in Den-

ver. The major system then dissipated as it moved out of

Colorado. Note that a secondary convective band de-

veloped in Kansas between 0300 and 0500 UTC.

For this case study, we compare the impacts of the

two control variable options without (EXP_cx and

EXP_UV) and with (EXP_cx_RA and EXP_UV_RA)

radar observations. Both radial velocity and reflectivity

data from the eight radars shown in Fig. 1b are assimi-

lated using the scheme developed by Xiao et al. (2005)

for radial velocity and Wang et al. (2013a) for re-

flectivity. The radar data are assimilated at 0000 and

0300 UTC 9 August 2008, and 0–12-h forecasts are

launched at 0300 UTC. The 3DVar analysis at 0000

UTC from the multiple-case studies described above is

used as the background.

We examined the fitting of the 3DVar analysis to the

observations (O 2 A), where A represents the 3DVar

analysis and O is the observation, and found that the

largest difference occurred in the fitting to radial ve-

locity. Figure 12 compares the ratio between the root-

mean-square of (O 2 A) and that of (O 2 B) for radial

FIG. 10. As in Fig. 8, but for the false alarm rate.
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velocity at 0300 UTC, where B stands for the first-guess

background (WRF forecast initialized at 0000 UTCwith

radar DA). The results clearly indicate that the analyzed

radial wind from EXP_UV_RA fits much closer to the

observation than that from EXP_cx_RA. Tuning of the

length scale and variance improves the fit in both ex-

periments; however, it does not change the fact that

EXP_UV_RA results in a closer fit to the radial velocity

FIG. 11. Mosaic of first-elevation reflectivity using the NEXRADs KCYS, KFTG, KPUX, KDDC, KRIW,

KGJX, and KGLD (see Fig. 1b for their locations) at (a) 2000 UTC 8 Aug 2008, and (b) 0000, (c) 0200, (d) 0300,

(e) 0500, and (f) 0700 UTC 9 Aug 2008.
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observations than EXP_cx_RA. Figure 12 shows an ex-

ample of halving the length scales; it reveals that the

tuning improves the fitting for both experiments (cf. the

solid lines with the dashed lines), but EXP_UV_RA re-

sults in a closer fit to the observation than EXP_cx_RA.

Nevertheless, a closer fit to observations does not

necessarily mean an improved analysis. One way to

evaluate the quality of the analysis is to verify the fore-

cast from that analysis—an accurate and well-balanced

analysis should result in an improved forecast. Below

we compare and verify the precipitation forecasts from

the four experiments without and with radar observa-

tions. Wind forecasts will also be verified later in this

section. For the radar experiments, we use those with

halved length scales to improve the fitting to radar

observations (refer to Fig. 12 and a discussion later),

despite the fact that reducing the length scale can re-

sult in negative correlations at long distance. Further

reduction of the length scales or increase of the vari-

ances were attempted for EXP_cx_RA, but did not

result in significant change of (O 2 A) and rather had

the tendency to cause an adverse effect on precipitation

forecast.

The FSSs for the precipitation threshold of 1mm are

compared in Fig. 13a for the no-radar experiments and

in Fig. 13b for the radar experiments. For the no-radar

experiments, the two forecasts have comparable fore-

cast skills before t 5 7 h and EXP_UV has a higher

skill after that. With the radar DA, the skills for both

EXP_UV_RA and EXP_cx_RA are increased from

their counterparts without the radar DA up to t 5 4 h,

but beyond that, the FSS from EXP_UV_RA main-

tains a higher skill than EXP_UV except for the last

hour; in contrast, the FSS from EXP_cx_RA decreases

reaching a lower skill than EXP_cx for most of the re-

maining forecast hours.

When the precipitation patterns between EXP_cx_RA

and EXP_UV_RA are compared, it is seen that an or-

ganized precipitation band is forecasted as early as t 5

1 h by EXP_cx_RA (Fig. 14c); however, there are sub-

stantial false alarms. In contrast, the results from EXP_

UV_RA (Fig. 14d) agree better with the stage-IV

analysis (Fig. 14a) both in terms of the area coverage

FIG. 12. Ratio between O 2 A and O 2 B where O 2 A is the

root-mean-square difference between the observed and the ana-

lyzed radial velocity andO2 B is the root-mean-square difference

between the observed and the background radial velocity. The

solid lines are results from the experiments with halved length

scales (LS).

FIG. 13. Fractions skill scores with 9-km radius of influence for the hourly precipitation

threshold of 1mm from the experiments (a) without radar data assimilation and (b) with radar

data assimilation. The horizontal black lines are drawn at the FSS level of 0.35 for the purpose

of easy comparison between (a) and (b).
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of the major precipitation system and the number of

false alarm cells. The development of the secondary

convective band in Kansas and Nebraska is forecasted

quite well by the experiment EXP_UV_RA (Fig. 16f),

but not by EXP_cx_RA (Fig. 14e).

To gain an understanding about what caused the dif-

ferences in the precipitation forecasts, the increments of

u, T, and RH from the experiments EXP_UV_RA and

EXP_cx_RA at 0300 UTC are examined and compared

in Fig. 15. Both the increments of u and T clearly show

larger-scale patterns for the experiment CV_cx_RA in

comparison with CV_UV_RA. The increments of u from

EXP_UV_RA mainly concentrate in Colorado and

Wyoming where the convective activities occur while the

increments are much smaller in other parts of the do-

main. This increment pattern is desirable because it is

expected that the convective-scale DA adds disturbances

in the convective region while maintaining the existing

large-scale balance in the surrounding environment from

the first guess. In contrast to EXP_UV_RA, there are

large increments from EXP_cx_RA over the east and

southeast parts of the domain, which is not desirable

and lacks physical explanations. The relative humidity

shows a strip of moistening in northeastern Colorado

from EXP_UV_RA, where the major precipitation

system occurs, in comparison with EXP_cx_RA.

The vertical motion fields from both experiments

(Fig. 16) show areas of strong updrafts in northeastern

FIG. 14. Forecasts of 1-h accumulated precipitation at t 5 1 h for (c) EXP_cx_RA0.5

and (e) EXP_UV_RA0.5, and at t 5 6 h for (d) EXP_cx_RA0.5 and (f) EXP_UV_RA0.5.

(a),(b) The stage-IV precipitation analyses at these two forecast times are displayed, re-

spectively, for verification. The blue rectangle in (a) is the subdomain used for Fig. 16.
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Colorado; however, the details of the updraft structures

are noticeably different. Note that in Fig. 16 we show

the vertical velocity and horizontal wind vector fields of

the two experiments at t5 1 h rather than at the analysis

time because the vertical velocity is not an analysis

variable in WRF 3DVar. The gust front (marked by

‘‘GF’’ in Fig. 16b) is revealed in EXP_UV_RA by the

strong vertical velocity associated with the convergence

FIG. 15. Analysis increments of (a),(b) u; (c),(d) T; and (e),(f) RH at the fifth model level

(;265m). (left) EXP_UV_RA0.5 and (right) EXP_cx_RA0.5.

166 MONTHLY WEATHER REV IEW VOLUME 144



between the prestorm environmental southeasterly flow

and the northwesterly outflow from the storm. In

Fig. 16a, the southeasterly flow is clearly disturbed;

consequently, the main convergence zone is moved to

the west of the GF shown in Fig. 16b and has a north–

south orientation, resulting in a larger precipitation

band (see Fig. 14c).

Using the radial velocity observations from the radars

in the domain, we verified the accuracy of the 12-h wind

forecasts from the two no-radar experiments and the

two radar experiments. The results are given in Fig. 17.

The verification confirms that CV_UV produces more

accurate wind forecasts with and without radar DA due

to the improved initial wind analysis. The wind forecast

from EXP_UV is improved over that from EXP_cx for

the entire 12-h forecast period. The wind forecast using

CV_UV is further improved when radar observations

are assimilated. In contrast, the wind forecast using

CV_cx is degraded after t 5 8h from its counterpart

without radar data, which could be the reason for the de-

graded precipitation forecast at later hours when radar

data are assimilated. The fact that the skills of both the

precipitation and wind forecasts persist for the entire 12-h

forecast range is an indication that physically meaningful

small-scale features have been added to the analysis by the

closer fitting to the radial wind in CV_UV.

In summary, the experiments in this section suggest

that the cx-based 3DVar has difficulties in fitting ana-

lyses to the high-resolution observations. The degree of

fitting can be improved when the length scales are re-

duced, however, the positive impact on the precipitation

forecast lasts only for a few hours for the experiment

using CV_cx. Although most previous studies using

WRF 3DVar and CV_cx have shown that radar DA can

have a positive impact on short-term precipitation

forecasts, it is not unusual for any positive impact to

disappear after a few hours. For example, Sun et al.

(2012) found from statistical results obtained over a

period of active convective days that positive impacts

lasted for 6–8 h. Although there could be several reasons

for the short-term positive impact, our current study

suggests that the proper selection of momentum control

variables has the potential to extend the period during

which the radar observations produce a positive impact

on precipitation prediction.

6. Summary and conclusions

In this study, we compared the background error

characteristics of two momentum control variable

FIG. 16. Vertical velocity fields overlaid by horizontal wind vectors on the level of 150m above ground at t5 1 h

from (a) EXP_cx_RA0.5 and (b) EXP _UV_RA0.5. Note that the plots are on a subdomain of the 3-km exper-

imental domain indicated in Fig. 14a.

FIG. 17. Root-mean-square error of forecast radial velocity

verified against observations from six Doppler radars in the

analysis domain.
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options for variational data assimilation and their im-

pacts on short-term convective forecasting. The error

statistics are derived from a forecast difference ensem-

ble generated by the 3-km WRF real-time forecasts

during May and June 2012 over a domain in the United

States using the NMC method. By comparing the error

statistics of cx and UV, we have found that the corre-

lation between u and y is small and notably smaller than

that between c and x, which provides the justification

that u and y can be treated as independent control var-

iables. We have shown that the additional step of vari-

able transformation between cx and UV in CV_cx

results in larger length scale and smaller variance, in

spectral space, of u and y from the BE modeling. We

have also found that the spatial correlation of velocity

is negative at long distances and that the problem is

amplified when the length scale is tuned to a smaller

value. The larger length scale and smaller variance

from CV_cx produce analysis increments that tend to

miss small-scale features.

Both control variable options were applied to seven

historical convective cases that occurred in the Rocky

Mountain Front Range region. Precipitation skill scores

over 29 short-term forecasts showed that the experiment

using CV_UVproduced improved skills especially at the

later hours of 0–12-h forecasts. The experiments using

CV_UV enable the organization of the convective sys-

tems and show improved skill for the organized systems.

The case of 9 August 2008 was examined in more

detail by adding the assimilation of eight NEXRADs in

the 3-km inner domain. It was found that CV_UV

enables a 3DVar analysis that fits closer to the radial

velocity observations and the analysis using CV_UV

improves the precipitation forecast skill with or without

radar data over that using CV_cx. It was also shown

that the use of different momentum control variables in

the 3DVar system results in notable discrepancies in the

horizontal wind and vertical velocity, causing forecast

discrepancies in precipitation. The wind increment from

CV_UV showed small-scale disturbances where the

convective activities occur while maintaining the back-

ground large-scale balance in the surrounding environ-

ment. In contrast to EXP_UV_RA, the increment

pattern from EXP_cx_RA is more widespread, which

may have contributed to the degraded forecast with

respect to its counterpart experiment without radar.

CV_UV enables an improved forecast of the vertical

velocity field associated with the convergence between

the prestorm environmental southeasterly flow and

the northwesterly outflow from the storm. The wind

forecasts from the experiment using CV_UV are

more accurate as verified by the radar radial velocity

observations.

Another choice of the momentum control variables

that is not compared in the current study is vorticity and

divergence. Xie and MacDonald (2012) showed that a

vorticity/divergence-based 3DVar was comparable with

the UV-based 3DVar in terms of producing accurate

velocity analysis. However, they pointed out that the

implementation of the vorticity and divergence 3DVar is

more complex and numerically inefficient because it re-

quires solving the Poisson equations for every minimi-

zation iteration. It would nevertheless be of interest to

compare the BE characteristics and performance of the

UV 3DVar with that of a vorticity/divergence 3DVar in

the context of high-resolution analysis and forecast.
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