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An array of 20 compositionally different carbon black-
polymer composite chemiresistor vapor detectors was
challenged under laboratory conditions to discriminate
between a pair of extremely similar pure analytes (H2O
and D2O), compositionally similar mixtures of pairs of
compounds, and low concentrations of vapors of similar
chemicals. Several discriminant algorithms were utilized,
including k nearest neighbors (kNN, with k ) 1), linear
discriminant analysis (LDA, or Fisher’s linear discrimi-
nant), quadratic discriminant analysis (QDA), regularized
discriminant analysis (RDA, a hybrid of LDA and QDA),
partial least squares, and soft independent modeling of
class analogy (SIMCA). H2O and D2O were perfectly
classified by most of the discriminants when a separate
training and test set was used. As expected, discrimina-
tion performance decreased as the analyte concentration
decreased, and performance decreased as the composi-
tion of the analyte mixtures became more similar. RDA
was the overall best-performing discriminant, and LDA
was the best-performing discriminant that did not require
several cross-validations for optimization.

A. Background and Goals. Arrays of broadly responsive
detectors, in conjunction with pattern recognition algorithms, have
attracted significant recent attention for use in vapor detection.1

Such detector arrays have been shown to allow identification,
classification, and in some cases quantification of various organic
vapors.1 Unlike traditional “lock and key” chemical sensing, in
the array approach an individual sensor need not be highly
selective toward the analyte of interest. Instead, variations in the
pattern of responses produced by the detector array are used to
differentiate between various analytes.

The ability of such detector arrays to discriminate between
various analytes comprises one figure of merit for the sensing
system as a whole. This figure of merit is analogous to the
selectivity ratio of an individual, traditional chemical sensor for
the target analyte relative to interferences, because when only
one channel of data is available, the performance of a sensor
system is identical to the performance of the sensor. However,

one broadly responsive detector gives no information about an
unknown analyte presented at an unknown concentration. In
contrast, two differently responding, only partially correlated,
detectors that each respond linearly to analyte concentration will
yield a unique quantity, the ratio of their signals, for any given
analyte. When an array of n detectors is exposed to an analyte, it
generates n responses, which can be plotted as a single point in
n-dimensional space. A set of exposures to a given analyte at a
given concentration will yield a set of points in detector space,
which are separated only by the variations in the detector
responses. “Training” the array with many exposures to many
known analytes will lead to several clusters, one for each analyte.
Various discriminant algorithms can then be used to assign a
single exposure of an unknown analyte to one of the clusters
obtained from the training set, thus identifying the unknown with
a specific probability of success.

Clearly, when an array approach to sensing is used, the system-
level discrimination performance not only is a function of the
detector performance but also is related to the performance of
the accompanying data-processing algorithm. Expressions for the
signal-to-noise ratio, sensitivity, and selectivity of a detector array
system have been given by Lorber2 and utilized by Kowalski and
co-workers.3,4 Previous studies have compared the performance
of some of these algorithms on both real chemical data and
simulated data.5-7 The goal of this work is to evaluate the
performance of various data-processing algorithms on a specific
vapor detector array used in some several, relatively demanding
discrimination tasks.

The detector arrays in the present study are formed from
chemically sensitive resistors. Each detector material consists of
regions of a conductor interspersed into regions of an insulating
organic polymer. Typically the conductor is carbon black, and the
dc electrical resistance of the composite is modulated by the
swelling of the polymer that results from sorption of the analyte
vapor.8 Diversity in the response of the various detectors in the
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array is achieved by using different insulating organic polymers
to form the composite films of the chemiresistors.

Detector arrays formed from carbon black composite chemire-
sistors have been shown to exhibit excellent pairwise discrimina-
tion between even closely related sets of analytes when a
statistically based, linear discriminant algorithm is used to analyze
the responses of 10-20 chemically diverse conducting polymer
composites.9 To compare the relative performance of various
discriminant algorithms in conjunction with these detector array
data, the array must be presented with pairs of analytes that will
not be perfectly classified by at least some of the discriminant
methods. This was not the case with pairs of simple organic
vapors, all of which were essentially perfectly separated from each
other, including structural isomers such as o- and m-xylene.10 As
part of this work, we have challenged a carbon black-polymer
composite detector array with a pair of compounds that are very
chemically similar, H2O and D2O.

In addition, it is of interest to evaluate the array performance
on analyte mixtures. The steady-state relative differential resistance
responses of the carbon black composite detectors, which serve
as the descriptors that form an n-dimensional odor space from
an n-member detector array, are linear with analyte concentration,
and the response of a binary mixture of analytes is the response
of the pure analytes weighted by the mole fraction of analytes in
the mixture.11 For each exposure, the responses of the d detectors
can be mapped to d orthogonal axes. In this space, the Euclidean
distance between a binary vapor mixture that is 0.5 mol fraction
of each constituent and a binary mixture that is a 0.6:0.4
distribution of these same analytes should be one-tenth of the
Euclidean distance between the array responses of the individual
pure analytes. Several different binary mixtures of 1-propanol and
2-propanol, and of n-hexane and n-heptane, were therefore utilized
as part of the present work.

Another method to decrease the discriminating ability of a
detector array is to decrease the signal-to-noise ratio of the
individual detectors. Delivery of low concentrations of analytes
will decrease the detector signal and therefore reduce the signal-
to-noise ratio, broadening the clusters relative to their separation.
A number of low-concentration (e1.0% of the vapor pressure)
exposures to 1-propanol, 2-propanol, n-hexane, and n-heptane were
therefore studied, and the performance of different discriminant
algorithms was also assessed for these specific sensing tasks.

B. Description of Selected Discriminant Algorithms.
Discriminant algorithms generally fall into two categories: para-
metric methods, which assume that the data have a certain
distribution (usually a normal Gaussian distribution), and non-
parametric methods, which make no assumptions about the
underlying structure of the data. The classical parametric methods
include linear discriminant analysis12,13 (LDA, also known as
Fisher’s linear discriminant) and quadratic discriminant analysis
(QDA). A hybrid of LDA and QDA, termed regularized discrimi-
nant analysis (RDA), has been more recently introduced.5,14 The

classic nonparametric discriminant is k nearest neighbors (kNN),13

which has been applied to chemical data as well as to other types
of data.15 Many other classifiers have been developed, including
artificial neural networks (ANN),16 partial least-squares methods
(PLS),17 and soft independent modeling of class analogy (SIM-
CA).18,19 In this work, the performance of the kNN, LDA, QDA,
RDA, PLS, and SIMCA discriminant algorithms was compared
for various analyte discrimination tasks using data from the carbon
black composite detector array. Brief explanations of the various
discriminant algorithms are provided below.

1. k-Nearest Neighbor Discriminant. The kNN algorithm
involves calculation of the distance between the response of a test
analyte and the responses of all of the examples in the training
set.13 The most commonly used distance metric is the Euclidean
distance, which in two and thre dimensions is the familiar spatial
distance. For an arbitrary number of dimensions, the Euclidean
distance is simply

where Xin and Xjn are the coordinates of the ith and jth point in
the nth dimension, respectively, and d is the number of dimen-
sions. The test sample is then assigned to the class having the
largest number of nearest neighbors to the test data. For example,
if k ) 3, the classes of the three nearest neighbors are compared,
and the unknown is assigned to the class with the majority of
nearest neighbors. When choosing from more than two classes,
any k > 1 allows the possibility of a tie. For this reason, and
because it has been shown that k ) 1 is the best method for a
wide variety of distributions,20 k ) 1 has been used in our study.
It has also been shown that any classification rule, including those
with information about the statistical distribution of the data, can
perform at best twice as well as kNN (k ) 1) in the asymptotic
case in which the training set includes a very large number of
examples from each class.20 The straightforward kNN classifier
is therefore a good benchmark against which to measure other,
more sophisticated, discriminants.

2. Linear Discriminant Analysis. LDA is typically taken to
mean Fisher’s linear discriminant.12 The orthogonal projection of
points in a d-dimensional space onto a line reduces the classifica-
tion problem from d dimensions to one dimension. When the data
are projected onto one dimension, it is desirable to maximize the
distance between the means of the two classes being separated,
while minimizing their within-class variation. Such a ratio can be
expressed as a resolution factor, RF (eq 2), where δ is the distance

between the two class means and σ1 and σ2 are the standard
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deviations of the two classes, respectively. Fisher’s discriminant
finds the vector w onto which the data are projected that
maximizes the RF. The Fisher method does not prescribe how
the resulting one-dimensional data should be separated into
classes. In our work, we have used a simple threshold that is
derived using the assumption that the projected (one-dimensional)
distributions for each class are Gaussian.

3. Quadratic Discriminant Analysis. QDA assumes a
multivariate normal distribution of the data for each class.13 A data
point x is placed in the class ωk that minimizes the value of Dk-
(x), as given by

In this equation, µk is the mean vector of class ωk, Σk is the
covariance matrix of class ωk, and P(ωk) is the a priori probability
of membership in class ωk. The value of P(ωk) was taken to be
equal to the quantity 1/(number of classes) for all of the classes.
QDA effectively measures the distance from the unknown point
to the mean of a class, while normalizing for the variance in the
individual measurements (dimensions). The unknown is assigned
to the class with the minimum “normalized” distance, Dk(x). In
practice, the class-conditional mean vectors and covariance
matrices are not known in advance, so these parameters are
typically estimated from training data using the conventional
maximum likelihood (ML) estimators.13

4. Regularized Discriminant Analysis. RDA minimizes the
same Dk(x) as is done in QDA (eq 3), but the ML estimates of
the class-conditional covariance matrices are replaced with regu-
larized estimates, Σk(λ,γ).14 The first regularizing parameter, λ,
converts the class covariance matrix to a linear combination of
the class covariance matrix and the pooled covariance matrix (i.e.,
that of all training samples) (eqs 4-6). The second regularizing

parameter, γ, shrinks the class covariance matrix toward a multiple
of the identity matrix (eq 7). These regularizations correct for

known discrepancies between the estimates of class distributions
obtained from finite samples and the true population densities.
The optimal values of λ and γ are determined by minimizing the
misclassification in a leave-one-out cross-validation of all samples.
The terms of eqs 4-7 are defined as follows: Qk is the
ML-estimated class-conditional covariance matrix of class ωk, Qp

is the pooled covariance matrix, Nk is the number of objects in

class ωk, N is the total number of objects, K is the number of
classes, xi

(k) is the vector of the ith object in class ωk, µκ is the
mean vector of class k, d is the number of variables (dimensions),
tr[Σk(λ)] is the trace of Σk(λ), and I is the identity matrix.

5. Partial Least Squares. A slightly different approach to
classification is through the use of regression. Given a set of
examples, we seek a weight vector w that will map each example
to a desired target value. The target value is termed t1 for class 1
and t2 for class 2; t1 is typically +1 and t2 is typically -1. The
parameter n1 is defined as the number of examples in class 1, n2

is defined as the number of examples in class 2, and n is defined
as n1 + n2. If the examples from class 1 are arranged as rows in
a matrix X1 (each column is a detector) and the examples from
class 2 are arranged as rows in a matrix X2, then w can be
determined by solving the following multiple linear regression
(MLR) problem:

where t is a column vector containing n1 rows of t1 followed by n2

rows of t2. X is the vertical concatenation of the matrices X1 and
X2. The magnitude of the error vector, e, is minimized to solve
the regression problem. Typically, the target vector and the
measurements are mean-centered (and in some cases autoscaled
as well). The minimum mean-squared error solution to the MLR
problem is well known,13 and is given by

The effectiveness of w for classification can be determined by
evaluating its predictive ability on new data (e.g., on a sequestered
test set or on holdout examples in a leave-one-out cross-validation).
If the target values are chosen as follows, t1 ) n/n1 and t2 ) -n/
n2, then it can be shown that this approach reduces exactly to
Fisher’s linear discriminant.13

In some situations, such as when the measurements from
different sensors are highly correlated or are noisy, obtaining a
good weight vector through standard multiple linear regression
is difficult due to the inverse appearing in eq 9. One method to
resolve this problem is to perform a principal components analysis
(PCA) on X to determine the directions that have the most
variance. The data are projected onto this reduced dimensional
subspace and directions with smaller variance are presumed to
correspond to noise and discarded. The target values are then
predicted from the projected subspace rather than from the
original data. In the chemometrics literature, this approach is
known as principal components regression (PCR).21 The projected
data are commonly referred to as the “score matrix”.

PCR provides an alternative solution to the regression equation
(eq 8) that may be better-behaved than the standard MLR solution.
Partial least-squares regression is another method that provides
an alternative solution to the regression equation.17,21 The PLS
method is similar to PCR, except that both the target vector and
the measurements are used to determine a lower dimensional
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Chemical Product Design; Oxford University Press: New York, 1995.
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subspace from which the predictions will be made. Determination
of the subspace is accomplished through an iterative procedure.17

6. SIMCA. The SIMCA algorithm, which was developed by
Wold in the 1970s,18,19 is based on representing each class with
its own principal components model. If a class is viewed as a cloud
of points in a d-dimensional space, PCA finds an orthonormal basis
for the cloud. (Here we assume that the PCA is applied to mean-
centered data.) The first principal component is the direction of
maximum variance of the data. The second principal component
is the direction of maximum variance in the subspace orthogonal
to the first component, and so on. If the cloud is “thin” in some
directions, the class can be accurately approximated as a linear
combination of k < d principal components.

In the original SIMCA formulation,18 the distance of a point
from a class was determined by the out-of-space distance, i.e., by
the Euclidean distance of the point from the subspace spanned
by the k principal components used to model the class. The
underlying assumption was that the variances in the directions
orthogonal to the PCA subspace were all equal (e.g., due to white
noise). By considering the out-of-space distance relative to the
average out-of-space distance observed for the training set (the
training examples do not all lie exactly on the PCA subspace),
the SIMCA algorithm determined whether an unknown point was
well-modeled by a particular class.

In more recent formulations,19 the SIMCA distance includes
an in-space distance, as well as an out-of-space distance. The in-
space distance is a measure of how well the projection of the point
into the principal components subspace agrees with the projec-
tions of the known class data. The maximum and minimum values
of the projected training data along each dimension of the
subspace define a bounding box. SIMCA uses a slightly larger
box (one standard deviation wider along each principal component
direction) to represent the in-space distribution. If the projected
point falls within the SIMCA box, i.e., within the “normal bounds”,
the in-space distance is 0; otherwise, the in-space distance is given
by the weighted Euclidean distance of the point from the SIMCA
box, where the weights correspond to the inverse variance along
each dimension. The in-space and out-of-space distances are then
combined and the unknown test point is assigned to the nearest
class.

With a different definition of the in-space distance that is not
based on a bounding box, but is based instead on a Gaussian
model of the in-space distribution, it is readily shown that SIMCA
is similar to a form of regularized QDA known in the chemomet-
rics literature as DASCO (discriminant analysis with shrunken
covariances).7 The maximum likelihood estimates of the class
covariance matrices used in standard QDA are replaced by a
principal components estimate in which variances along the
directions of highest variance are retained, while variances along
directions of lowest variance are replaced with a constant value
(related to the average out-of-space distance of the training set,
which is used as a normalizing factor in SIMCA). Frank and
Friedman discussed the connection between LDA, QDA, RDA,
SIMCA, and DASCO in more detail.7

EXPERIMENTAL SECTION
A. Materials. Poly(ethylene-co-vinyl acetate) (70% vinyl ace-

tate), polycaprolactone, cellulose acetate, hydroxypropylcellulose,
poly(4-vinylpyridine), poly(vinyl acetate), ethyl cellulose, poly-

(ethylene-co-acrylic acid) (86% ethylene), 1,2-polybutadiene, poly-
(methyloctadecylsiloxane), and poly(styrene-co-acrylonitrile) were
purchased from Scientific Polymer Products. Poly(4-vinylphenol),
poly(vinyl butyral), and poly(ethylene glycol) were purchased from
Polysciences. Poly(ethylene oxide), poly(ethylene-co-vinyl acetate)
(18% vinyl acetate), poly(styrene-co-maleic anhydride) (50:50), poly-
(vinylpyrrolidone), polystyrene, and poly(methyl methacrylate)
were purchased from Aldrich. The carbon black was Black Pearls
2000 from Cabot Corp. Bis(2-ethylhexyl) phthalate was purchased
from Aldrich. n-Hexane was 99+% from Aldrich, heptane was
supplied by Mallinckrodt, and 1-propanol and 2-propanol were
obtained from EM Science. The H2O was filtered through a
Barnstead 18 MΩ‚cm resistivity filter. D2O was 99.9 atom %
deuterium, purchased from Aldrich and used as received.

B. Detectors and Instrumentation. Polymers were generally
dissolved in tetrahydrofuran, except for poly(4-vinylpyridine) and
poly(vinylpyrrolidone), which were dissolved in ethanol, and poly-
(ethylene-co-vinyl acetate) (18% vinyl acetate) and 1,2-poly(buta-
diene), which were dissolved in toluene. Each polymer (160 mg)
was dissolved in 20 mL of its respective solvent either at room
temperature or by heating to 35-40 °C for several hours. Carbon
black (40 mg) was then added and the suspension was then
sonicated for at least 20 min.

Corning microscope slides were cut into 10 mm × 25 mm
pieces to provide substrates for the detectors. A 7-8-mm gap
across the middle of each slide was masked and 300 nm of
chromium and 500 nm of gold were then evaporated onto the ends
of the slides to form the electrical contacts. Detectors were formed
by spin-coating polymer-carbon black suspensions onto the
prepared substrates. The resulting films were then allowed to dry
overnight.

C. Measurements. The instrumentation and apparatus for
resistance measurements and for the delivery of vapors have been
described previously.9 The array of 20 polymers listed in Table 1
was used for the measurements. All exposures were performed
for a duration of 300 s and were separated by periods of 600 s of

Table 1. Polymers in the 20-Detector Array

detector polymera

1 poly(ethylene-co-vinyl acetate) (70% vinyl acetate)
2 poly(ethylene oxide)
3 poly(vinylpyrrolidone) P
4 1,2-polybutadiene
5 polycaprolactone
6 poly(4-vinylphenol) P
7 poly(vinyl acetate) P
8 cellulose acetate
9 poly(4-vinylpyridine) P

10 poly(methyl methacrylate) P
11 poly(styrene-co-maleic anhydride) P
12 poly(vinyl butyral) P
13 hydroxypropylcellulose
14 ethyl cellulose
15 poly(ethylene-co-acrylic acid) (86% ethylene)
16 poly(methyloctadecylsiloxane)
17 poly(ethylene glycol)
18 poly(ethylene-co-vinyl acetate) (18% vinyl acetate)
19 polystyrene P
20 poly(styrene-co-acrylonitrile) P

a P indicates plasticization with 8% by mass bis(2-ethylhexyl)
phthalate
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flowing laboratory air. The first several exposures in a long series
tended to give responses that were different from those of the
remainder of the exposures, so the initial 40 exposures were
excluded from analysis for every data set evaluated in this work.
The background air contained 1.10( 0.15 parts per thousand of
water vapor, but no active auxiliary control over the humidity of
the solvents or over the ambient temperature of the bubblers or
the detectors (generally 21.5( 1.5 °C) was performed during data
collection.

1. H2O vs D2O. Two bubblers were filled with D2O (labeled
1 and 3) and two with H2O (labeled 2 and 4). For all exposures,
vapors were diluted to P/Po)0.050, where P is the partial pressure
of the analyte and Po is the vapor pressure of the analyte at room
temperature. Forty exposures alternating between H2O and D2O
were performed, and then 200 additional exposures were per-
formed, cycling 50 times sequentially through bubblers 1-4.

2. Pairwise Resolution of Similar Analytes at Low Frac-
tions of their Vapor Pressure. A series of 120 exposures to
1-propanol and 2-propanol were performed, with exposures
alternating sequentially between each member of the pair of
analytes. All exposures were initially performed at a partial
pressure, P, such that P/Po ) 0.01 for the analyte in a background
of laboratory air. Similar data were collected at partial pressures
of P/Po ) 7.5 × 10-3, 5.0 × 10-3, and 2.5 × 10-3, with 120
alternating exposures to each member of the solvent pair
performed at each analyte concentration. An identical exposure
sequence and protocol was performed for collection of the detector
response data for n-hexane vs n-heptane. The first 40 exposures
in each sequence were not included in the data analysis.

3. Mixtures of Analytes. Vapor was delivered from two
bubblers, one containing 2-propanol and the other containing
1-propanol. The 40 initial exposures (which were not used in the
data analysis) consisted of a combination of 2-propanol at P/Po )
2.5 × 10-2 and 1-propanol at P/Po ) 2.5 × 10-2. For data collection,
exposure 1 consisted of a combination of 2-propanol at P/Po )
2.5 × 10-2 and 1-propanol at P/Po ) 2.5 × 10-2. Exposure 2
consisted of 2-propanol P/Po ) 2.7 × 10-2 and 1-propanol P/Po )
2.3 × 10-2; exposure 3, 2-propanol P/Po ) 2.1 × 10-2 and
1-propanol P/Po ) 2.9 × 10-2; exposure 4, 2-propanol P/Po ) 3.5
× 10-2 and 1-propanol P/Po ) 1.5 × 10-2. The series of exposures
1-4 was repeated 100 times, for a total of 400 exposures. An
analogous data set was collected for n-hexane and n-heptane.

D. Data Reduction. The average of resistance readings for
the 60 s immediately prior to the beginning of the exposure was
used as the baseline resistance, Rb, and the average of the
resistance readings for the last 60 s of the exposure was taken as
the steady-state response, Rss. The quantity used in data analysis
was the steady-state relative differential resistance change, ∆R/
Rb, where ∆R ) Rss - Rb. Data were converted to ∆R/Rb form in
Microsoft Excel, while all subsequent manipulations were per-
formed using Matlab. Original Matlab code was written to analyze
the data, but the SIMCA routine was based upon one by Donald
B. Dahlberg, available on the Internet at ftp://ftp.cdrom.com/
pub/MacSciTech/chem/chemometrics/Dahlberg SIMCA.text.

The ∆R/Rb data were evaluated in three different formss

unnormalized and normalized by two different methods. In the
first normalization (na), for each exposure the signal (Xi ) ∆R/
Rb) of the ith detector was divided by the sum of the Xi signals of

all 20 detectors in the array (eq 10). In the second normalization

(ng), signals were divided by the square root of the sum of the
squares of the signals across the array (eq 11). In three dimen-
sions, the first normalization method maps the data onto a plane,
whereas the second normalization method maps the data onto
the unit sphere. Because the responses of the carbon black
composite detectors to various analytes have been observed to
vary linearly with concentration of the analyte in the vapor phase,9

either normalization results in a unique, concentration-insensitive
signature for an analyte of interest. The two normalizations had a
very similar effect on the classification accuracy of the discrimi-
nants studied herein; therefore, only the results from na are
presented.

Except where otherwise specified, all the discriminants were
evaluated using a leave-one-out cross-validation methodology. In
this procedure, one exposure (data vector) is left out of the data
set and the remaining exposures are used as a training set to
create the classification boundary. The left-out exposure is then
classified by this rule and the classification is checked against
the analyte’s true class. The procedure is repeated for each
member of the data set, and the rate of correct classification is a
useful measure of a particular discriminant’s performance.

RESULTS
A. Discrimination Between H2O and D2O. Figure 1

presents the average responses and standard deviations of the
detectors in response to 100 exposures of H2O and 100 exposures
of D2O. Despite the similarities in response that were expected,
and observed, for these two compounds, it was possible to
discriminate robustly between the light and heavy water exposures
based on the small differences in response patterns that were
produced on the carbon black-polymer composite chemiresistor
array.

Table 2 presents the resolution factors between D2O and H2O
obtained from Fisher’s linear discriminant when each bubbler is
treated as a separate class. Bubblers containing H2O were well-
differentiated from bubblers containing D2O, with resolution
factors between 8.1 and 10.1.

Interestingly, the analyte exposures from bubbler 1 were
resolved from analyte exposures from bubbler 3 by a factor of
2.1, even though both contained D2O. Similarly, analytes from
bubblers 2 and 4 were both nominally H2O, yet were resolved by
a factor of 1.8. Resolution factors obtained using the LDA
algorithm will never be zero with a finite sample size. Additionally,
small amounts of contamination in the bubblers and lines could
possibly contribute to the differences in patterns from nominally
identical analytes placed in different bubblers. As a test for
differences between bubblers, the exposures were divided into
four sets, two each of H2O and D2O, but with each set containing
data from a combination of two bubblers. As shown in Table 3,
resolution factors between H2O and H2O and between D2O and
D2O were then only 0.8 and 0.9, clearly indicating that some of

X(na) ) X/∑
n)1

d

Xn (10)

X(ng) ) X/[∑
n)1

d

(Xn)2]1/2 (11)
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the original discrmination was due to differences in what was
delivered from the bubblers. The RF values for discrimination
between these grouped exposures of H2O and D2O were still quite
significant and fell in the range of RF ) 8.3-8.6 (Table 3).

To further test that discrimination was occurring because of
differences between H2O and D2O, and not because of various
impurities in the bubblers or some other cause, the data were
divided into two halves, one of which was used as a training set
and the other of which was used a test set. The array was trained
on the exposures from bubblers 1 (D2O) and 2 (H2O) and LDA
was then used to classify the exposures from bubblers 3 (D2O)
and 4 (H2O). All 100 of these exposures from bubbler 3 or 4 were
correctly identified as either H2O or D2O using this procedure.

Similarly, training on bubblers 3 and 4 and testing on 1 and 2
yielded 100 correct identifications. Training on 100 randomly
selected exposures taken from all four bubblers and then testing
on the other 100 exposures also produced perfect classification.

Table 4 presents the leave-one-out cross-validation error rates
for all of the data obtained on this system. All the discriminants
except for kNN and SIMCA (when a fixed number of principal
components were used) were perfect in their classification.
Normalization decreased the performance of the kNN algorithm,
whereas it enhanced the performance of SIMCA. The degradation
in performance of the kNN algorithm upon normalization of the
response data occurred because the normalization produced less
overall amplitude differences between the patterns, and the kNN
algorithm utilized such differences in classifying the analytes.

B. Resolution of Analytes at Low Fractions of Their Vapor
Pressure. 1. Form of the Data. Figure 2 shows the unnormal-
ized response data for each detector in the array to hexane and
to heptane, with each analyte at P/Po ) 7.5 × 10-3. Figure 3
displays similar data at an analyte partial pressure of P/Po ) 2.5
× 10-3. At a fixed fraction of the analyte’s vapor pressure, the
response patterns for hexane and heptane are quite similar, as
would be expected from their similar chemical structure and
properties. The mean magnitude of the response from detectors
that showed significant signals when exposed to hexane (detectors
1, 2, 4, 5, 8, 12-19) decreased by a factor of 3.0 when the hexane
partial pressure was decreased from P/Po ) 7.5 × 10-3 to P/Po )

Figure 1. Steady-state relative differential resistance response, ∆R/Rb, of carbon black-polymer composite vapor detectors to H2O and D2O
(error bars are plus and minus one standard deviation). All exposures were at P/P° ) 0.050. Data represent means and standard deviations for
100 exposures to each analyte. The detector number indicates the polymer used to form the composite, with the detector numbering corresponding
to the polymer composition listed in Table 1.

Table 2. Resolution Factors for H2O versus D2O Using
LDA When Data from Each Bubbler Is Treated as a
Separate Class

bubbler 1, D2O 2, H2O 3, D2O 4, H2O

1, D2O 0.0
2, H2O 8.2 0.0
3, D2O 2.1 8.1 0.0
4, H2O 9.3 1.8 10.1 0.0

Table 3. Resolution Factors for H2O versus D2O Using
LDA When Data Are Grouped into Four Classes, with
the Two H2O Classes Each a Random Combination of
Half the H2O Exposures and the Two D2O Classes
Each a Random Combination of Half the D2O
Exposures

analyte D2O H2O D2O H2O

D2O 0.0
H2O 8.6 0.0
D2O 0.9 8.5 0.0
H2O 8.4 0.8 8.3 0.0

Table 4. Leave-One-Out Cross-Validation Error Rates
for H2O versus D2O (Complete Data Set)

SIMCA

kNN LDA QDA RDA PLS 12 PCs
best no.
of PCs

unnormalized 0.125 0 0 0 0 0.015 0 (17)
na 0.37 0 0 0 0 0.005 0 (16)
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2.5 × 10-3, whereas the same decrease in heptane partial pressure
produced a mean signal decrease of 2.7 across the same set of
detectors. These data are in accord with the linearity of response
of carbon black composite detectors to analyte concentration that
has been observed previously.9

In contrast, the absolute standard deviation of the responses
across the set of 100 exposures was essentially constant as the
analyte concentration was varied. For example, the ratio of the
standard deviation of a detector’s responses to hexane at P/Po)7.5
× 10-3 to that at P/Po)2.5 × 10-3 had an average of 1.15 across
the set of detectors that responded well to hexane (1, 2, 4, 5, 8,
12-19), and this ratio had a value of 1.12 for heptane. Thus, the
absolute signal strength decreased as the analyte partial pressure
declined, but the absolute variance remained essentially constant,
so the discrimination ability of the array is expected to become
worse at lower analyte partial pressures.

A quite different situation was, however, observed for 1-pro-
panol and 2-propanol. The absolute standard deviations decreased
by an average of 3.91 for 1-propanol and by an average of 3.54 for

2-propanol when the partial pressure of these analytes was reduced
from P/Po ) 1.0 × 10-2 to 2.5 × 10-3 (Figures 4 and 5). The main
cause for the difference was not a change in random noise, but a
steady drift in some of the detector responses over the course of
this particular interval of data collection. The effect was more
pronounced at P/Po ) 1.0 × 10-2 than at P/Po ) 2.5 × 10-3,
accounting for the larger absolute standard deviation values
observed at the higher analyte concentration. For illustration,
Figure 6 shows the data for 100 responses of detector 8 to
1-propanol at P/Po ) 1.0 × 10-2 and P/Po ) 2.5 × 10-3,
respectively. At the higher concentration, the signal drifted by
32% over 50 h, while at the lower concentration it drifted by only
10%. When a simple linear correction was applied to the data
(Figure 6), the standard deviation of the higher concentration data
decreased by a factor of 3.3, while that of the lower concentration
data decreased by a factor of 1.3.

2. Performance of Various Discriminant Algorithms. Table
5 presents the leave-one-out cross-validation error rates for the
different discriminant algorithms for the 1-propanol/2-propanol

Figure 2. ∆R/Rb response of an array of carbon black-polymer
composite vapor detectors to n-hexane or n-heptane at P/P° )
0.0075. Means and standard deviations are for 100 exposures to each
analyte, with exposures alternating sequentially between each mem-
ber of the pair of analytes.

Figure 3. ∆R/Rb response of an array of carbon black-polymer
composite vapor detectors to n-hexane or n-heptane at P/P° )
0.0025. Means and standard deviations are for 100 exposures to each
analyte, with exposures alternating sequentially between each mem-
ber of the pair of analytes.

Figure 4. ∆R/Rb response of an array of carbon black-polymer
composite vapor detectors to 1-propanol or 2-propanol at P/P° )
0.010. Means and standard deviations are for 100 exposures to each
analyte, with exposures alternating sequentially between each mem-
ber of the pair of analytes.

Figure 5. ∆R/Rb response of an array of carbon black-polymer
composite vapor detectors to 1-propanol or 2-propanol at P/P° )
0.0025. Means and standard deviations are for 100 exposures to each
analyte, with exposures alternating sequentially between each mem-
ber of the pair of analytes.
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and hexane/heptane data sets. For both the 1-propanol/2-propanol
and n-hexane/n-heptane classifications, the error rate increased
for all discriminants at lower partial pressures of analyte. For the
unnormalized data, LDA and RDA were the best discriminants
(average error rates of 0.079 for hexane vs heptane) with RDA
offering only a very slight improvement upon LDA. The PLS
algorithm had an average error rate of 0.089, followed by QDA
and optimized SIMCA at ∼0.10. The kNN discriminant had an
average error rate of 0.117, and the worst-performing discriminant
was SIMCA, with an average error rate of 0.13.

The discriminants were more uniform in their leave-one-out
cross-validated performance on normalized data. Once again,
SIMCA and kNN were the worst classifiers. LDA and QDA were
similar overall in their classification accuracy, but their classifica-
tion performance differed somewhat in different tasks. Because
RDA can vary between LDA and QDA, and necessarily chooses
the best of these two limiting algorithms based upon cross-
validation, RDA was the best discriminant for these normalized
data.

C. Discrimination between Compositionally Similar Bi-
nary Analyte Mixtures. 1. Structure of Data. Figure 7 displays
the average responses of each detector to the four different
hexane/heptane binary mixtures. The detector responses exhib-
ited a monotonic trend as the mole fraction of hexane was
increased, as expected. In contrast, the response of some detectors
was not monotonic for the 1-propanol/2-propanol vapor mixtures
(Figure 8). Standard deviations of the detector responses for the
1-propanol/2-propanol vapor mixtures were also generally larger
than those for the hexane/heptane mixtures. The larger standard
deviations can be attributed to a steady change (usually a
decrease) in the response of a detector observed over the course
of that particular data collection interval, and the error introduced
by the drift may account for the fact that the change across a
series is not always monotonic, especially when comparing the
very similar 50/50 and 54/46 binary mixtures of 2-propanol and
1-propanol.

2. Performance of Discriminant Algorithms. The leave-
one-out cross-validation error rates for this data set are given in

Table 6. For both the 1-propanol/2-propanol and n-hexane/n-
heptane classifications, the error rate decreased for all discrimi-
nants as the separation in mole fraction between the analytes
increased. Normalization did not have a large effect on discrimi-
nant performance. The LDA and RDA algorithms were the best-
performing discriminants, with average error rates near 0.024. The
RDA algorithm was nearly identical in performance to LDA and
usually converged to the grid point (λ,γ) ) (1,0), equivalent to
LDA. The PLS discriminant was almost as proficient as LDA and
RDA, with average error rates of ∼0.025. The other discriminants
followed in the order, best to worst: QDA, optimized SIMCA,
SIMCA, and kNN.

DISCUSSION
A. Discrimination between H2O and D2O. Although H2O

and D2O have very similar physical properties, there are many
quite measurable differences, including, for example, boiling point
(100 vs 101.4 °C) and melting point (0 vs 3.8 °C).22 Note that in
Figure 1 the detectors with the largest responses (those that are
most polar and hydrogen-bonding) tended to respond more
strongly to H2O than D2O, while the converse is true of the relative
responses of the less-polar polymers.

An examination of Figure 1 (and specifically the indicated
standard deviations) reveals that most detectors would individually
perform very poorly in distinguishing H2O from D2O. Detector
11 is the most discriminating individual detector, as reflected by
the fact that the w vectors found between H2O and D2O always
had their largest coefficients for 11. Even so, when 11 was
removed from the data set, RFs of 8-10 were still obtained, and
identification tests were perfect.

B. Performance of LDA and QDA. The H2O and D2O data
do not provide an appropriate challenge for evaluating the
performance of discriminant algorithms, because perfect clas-
sification was achieved for most of the algorithms investigated.
Such comparisons could be made, however, for both of the
experiments involving analytes at low fractions of their vapor
pressure and for experiments involving compositionally similar
binary analyte mixtures. In these tasks, LDA performed better
than QDA. In RDA, where the floating parameter λ allows
hybridization between LDA and RDA, a λ value near 1, corre-
sponding to LDA, was generally found to be optimal. These results
may at first seem surprising, because QDA is a more general
classifier and because QDA reduces to LDA in the specific case
when the class covariance matrices are equal. LDA simply uses
the pooled covariance matrix, effectively assuming that all the class
covariance matrices are equal.

If the true class covariance matrices are the same, then the
two classifiers should perform identically in the asymptotic
situation in which an infinite number of training examples are
available and the class statistics are known exactly. However, in
the present situation, the statistics must be estimated from a finite
number of training examples. The QDA algorithm estimates a (d
× d) covariance matrix for each class, whereas LDA estimates a
(d × d) covariance matrix for the pooled data. The covariance
estimates produced by QDA will be based on half as much data
as in the LDA case and therefore are less likely to reflect the “true”
covariance matrix. Also, as shown below, QDA emphasizes the
differences in covariance structure between the two classes. From

(22) CRC Handbook of Chemistry and Physics, 67th ed.; Weast, R. C., Ed.; CRC
Press: Boca Raton, FL, 1986.

Figure 6. ∆R/Rb response of detector 8 to 1-propanol and 2-pro-
panol at P/P° ) 0.010 (diamonds) and at P/P° ) 0.0025 (circles).
Uncorrected, raw data are indicated by filled symbols, and data
produced through the use of a linear correction to yield a regression
line with slope of zero are indicated by unfilled symbols.
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eq 3, we have

After some manipulation one obtains

When Σ1 and Σ2 are identical, the first term drops out and the
LDA classifier is obtained. However, when Σ1 and Σ2 are replaced
with their estimated versions, which are not likely to be exactly
equal, the first term remains, leading to suboptimal classification.

C. Performance of PLS and SIMCA. The performance of
PLS tracked very closely with that of LDA. The PLS discriminant
is fundamentally a form of multiple linear regression, and, as
explained above, linear regression is equivalent to LDA. It is
therefore not surprising that, through different algorithms for
optimization, PLS and LDA give similar results. The LDA
algorithm might be the preferred method because it is somewhat
simpler to implement.

When compared to the other discriminants evaluated, SIMCA
performed rather poorly on the discrimination tasks investigated
in this work. When the model with the optimal number of principal
components was chosen, 16 or 17 principal components were often
found to give near-optimal (or optimal) classification accuracy. At
these higher limits, SIMCA becomes somewhat similar to QDA,
because it is using almost the full dimensionality of the data. Both
SIMCA and QDA create a separate model for each class. In
situations where the covariance matrices (size, shape, and orienta-

Table 5. Leave-One-Out Cross-Validation Error Ratesa for 1-Propanol versus 2-Propanol and n-Hexane versus
n-Heptane at Low Concentration

SIMCA

100 × P/P° kNN LDA QDA RDA PLS 12 PCs
best no.
of PCs

1-Propanol vs 2-Propanol
0.01 0 (0.01) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0.025) 0 (0.005)
0.0075 0.01 (0.015) 0.005 (0) 0.005 (0.01) 0.005 (0) 0.015 (0) 0.02 (0.005) 0.01 (0)
0.005 0.41 (0.495) 0.26 (0.48) 0.335 (0.41) 0.255 (0.39) 0.3 (0.495) 0.47 (0.445) 0.36 (0.395)
0.0025 0.385 (0.465) 0.35 (0.495) 0.435 (0.47) 0.35 (0.415) 0.38 (0.55) 0.44 (0.515) 0.4 (0.42)

n-Hexane vs n-Heptane
0.01 0.03 (0.01) 0.005 (0.005) 0.005 (0.005) 0.005 (0.005) 0.005 (0.005) 0.01 (0.005) 0 (0.005)
0.0075 0.035 (0.065) 0.005 (0.01) 0.01 (0.045) 0.005 (0.01) 0.005 (0.01) 0.065 (0.11) 0.03 (0.075)
0.005 0.02 (0.285) 0.005 (0.18) 0.005 (0.245) 0.005 (0.165) 0.005 (0.16) 0.01 (0.29) 0.005 (0.285)
0.0025 0.045 (0.41) 0.005 (0.35) 0.01 (0.32) 0.005 (0.29) 0.005 (0.305) 0.025 (0.36) 0.01 (0.345)
averages 0.134 (0.219) 0.079 (0.190) 0.101 (0.188) 0.079 (0.159) 0.089 (0.191) 0.130 (0.219) 0.102 (0.191)

a Error rate for unnormalized data; error rates for normalized data given in parentheses

Figure 7. ∆R/Rb response of an array of carbon black-polymer composite vapor detectors to mixtures of hexane and heptane. The partial
pressure of heptane is [0.050-P/P°hexane]P°heptane, where P is the partial pressure of hexane for a given exposure. The value of 20 P/P° for each
analyte in the mixture is indicated in the legend.
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tion of the data “cloud”) of the two classes under study are very
different, it is advantageous to have these separate models.
However, as observed in the comparison of LDA with QDA, the
data in our tasks generally consist of pairs of classes that have
similar covariance matrices. There is therefore little advantage in
forming two separate models.

When comparing SIMCA to the other discriminants, it is
important to keep in mind the manner in which the models were
formed. For LDA, QDA, and PLS, the model is created using the
training data, and then unknown “test” data are classified accord-
ing to the model. The situation is similar for SIMCA when 12
principal components was chosen as an approximately optimal
number and used for both classes in all the tasks. In contrast,

the optimized SIMCA model was customized for each classification
by performing a leave-one-out cross-validation for models that used
from 6 to 18 principal components. It is therefore most appropriate
to compare the optimized SIMCA to RDA, which also built many
models that were tested by cross-validation, and from which the
best-performing model was chosen for each classification task.

Overall, QDA and RDA both outperformed SIMCA, whether
it was optimized or not. Frank and Friedman discuss some
shortcomings of SIMCA that may explain its relatively poor
performance.7

D. Effects of Normalization. 1. Analytes at Low Fractions
of Their Vapor Pressure. Because all pairs of vapors were
delivered at the same fraction of their vapor pressure, to a first

Figure 8. ∆R/Rb response of an array of carbon black-polymer composite vapor detectors to mixtures of 1-propanol and 2-propanol. The
partial pressure of 2-propanol is [0.050-P/P°1-propanol]P°2-propanol, where P is the partial pressure of 1-propanol for a given exposure. The value
of 20 P/P° for each analyte in the mixture is indicated in the legend.

Table 6. Leave-One-Out Cross-Validation Error Ratesa for Compositionally Similar Analyte Mixtures of 1-Propanol/
2-Propanol and n-Hexane/n-Heptane

SIMCA

∆ mixtureb kNN LDA QDA RDA PLS 12 PCs
best no.
of PCs

1-Propanol and 2-Propanol
4 0.325 (0.165) 0.03 (0.025) 0.075 (0.08) 0.03 (0.025) 0.03 (0.025) 0.205 (0.145) 0.13 (0.12)
8 0.12 (0.105) 0.005 (0.01) 0.015 (0.02) 0.005 (0.01) 0.005 (0.01) 0.19 (0.21) 0.045 (0.065)
12 0.065 (0.045) 0 (0) 0 (0) 0 (0) 0 (0) 0.1 (0.05) 0.005 (0.005)
16 0.01 (0.01) 0 (0) 0 (0) 0 (0) 0 (0) 0.01 (0) 0 (0)
20 0.005 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0.005 (0.005) 0 (0)
28 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

n-Hexane and n-Heptane
4 0.42 (0.45) 0.225 (0.21) 0.31 (0.285) 0.225 (0.21) 0.23 (0.21) 0.34 (0.365) 0.28 (0.305)
8 0.365 (0.295) 0.025 (0.04) 0.04 (0.06) 0.025 (0.01) 0.025 (0.025) 0.085 (0.13) 0.06 (0.105)
12 0.3 (0.27) 0.005 (0) 0.01 (0.05) 0.005 (0) 0.005 (0.005) 0.025 (0.045) 0.015 (0.025)
16 0.31 (0.265) 0.005 (0.005) 0.005 (0) 0.005 (0) 0.005 (0.005) 0.035 (0.025) 0.015 (0.025)
20 0.215 (0.135) 0 (0) 0 (0) 0 (0) 0 (0) 0.005 (0) 0 (0)
28 0.065 (0.01) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
averages: 0.183 (0.146) 0.025 (0.024) 0.038 (0.038) 0.025 (0.024) 0.025 (0.025) 0.083 (0.081) 0.046 (0.054)

a Error rate for unnormalized data; error rates for normalized data given in parentheses. b ∆ mixture indicates the difference in mole fraction
between the pairs of mixtures being discriminated, as follows: ∆ ) 4 refers to 50:50 (1-propanol/2-propanol) vs 46:54 (1-propanol/2-propanol); ∆
) 8, 50:50 vs 58:42; ∆ ) 12, 46:54 vs 58:42; ∆ ) 16, 50:50 vs 30:70; ∆ ) 20, 50:50 vs 30:70; ∆ ) 28, 58:42 vs 30:70, and the total of P/P° was 0.050
for all mixtures. Analogous formulas apply to discrimination between mixtures of n-hexane and n-heptane, with the composition of all mixtures
given in the Experimental Section.
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approximation, the total response across the array should be
similar for different analytes.23 This is the case in our experiments,
especially because the pairs of analytes investigated are so
chemically similar. There are differences, however, with heptane
giving a slightly larger total response than hexane, and 1-propanol
producing a larger total response than 2-propanol. Normalization
using eq 10 forces the total response across the array to be the
same for every single exposure. If the response patterns of two
analytes are similar but differ in magnitude, normalization will
make their discrimination more difficult, and this was indeed found
to be the case for both analyte pairs across all the discriminants
(Table 5). However, normalization is necessary when one has no
auxiliary information about the concentration of the analyte and
is attempting to perform a classification/identification task for
members of these analyte pairs.

2. Compositionally Similar Binary Analyte Mixtures. In
contrast to the situation for pure analyte discrimination described
above, for the binary mixture data, both normalization procedures
led to an improvement in the performance of kNN, while the
performance of the other discriminants was essentially unaffected
by data normalization. This behavior occurs because each
exposure is normalized individually, so the effects of variations
in external parameters that influence all the detectors in the same
way is eliminated though the normalization process. For example,
if variations are present in the amount of analyte that is delivered
to the array among nominally identical exposures, normalization
will ideally correct all the response patterns to the same normal-
ized pattern. Variance in detector response due to other external
parameters (perhaps the temperature or the humidity of the
background air) that affect the detector signals in the same
direction, albeit by different relative magnitudes, will also be
canceled to some extent by normalization. One large effect of this
type is the drift of the detector signals over the course of the
experiment. If the drift is in the same direction for all the detectors,
it will be partially ameliorated by normalization. The standard
deviations for individual detectors across a set of responses will
decrease, but it is not clear how the classification accuracy of the
discriminants will be affected.

The drift was much larger for the propanols than for the
alkanes and decreased significantly for the propanols between
P/P° ) 0.01 and 0.0025. The largest baseline resistance drifts of
any of the sensors over the course of data collection was ∼10%,
and this appeared to have no correlation with the largest drifts in
∆R/R. The largest downward drifts in ∆R/Rb (for propanols) were
observed for hydrogen-bonding polymers, including poly(vinylpyr-
rolidone), poly(4-vinylphenol), cellulose acetate, poly(4-vinylpyri-
dine), and poly(styrene-co-maleic anhydride), whereas the one
polymer in which a significant upward drift in ∆R/Rb (for
propanols) was observed was 1,2-polybutadiene.

E. Extension to Other Vapor Sensor Array Data Sets. Our
experiments were carried out under controlled laboratory condi-
tions using carbon black composite chemiresistors; thus, the
conclusions regarding which discriminant performed optimally will
not necessarily apply to other situations in which variations in
detector responses can be produced by a variety of additional
factors. For example, a hand-held detector array system that is
utilized outdoors may encounter a variety of ambient temperatures,
humidities, and background vapors. The resulting class covariance
matrices may have a different form and relation to each other

than those encountered in our experiments. We point out,
however, that a 20-member array of polymer-carbon black
detectors has little difficulty in distinguishing two analytes at
significant fractions of their vapor pressure unless they are
extremely similar (i.e., more similar than H2O and D2O). There-
fore, the cases in which a choice of discriminant is important will
occur only in classification of very similar vapors or at relatively
low analyte concentrations. Training of such an array under the
variety of conditions under which it will be expected to perform
classifications of unknowns will presumably result in similar
variances (and relationships between variances on different
detectors, i.e., covariances) because the analytes themselves are
so similar. The LDA algorithm, which assumes identical covari-
ance matrices for both classes, will therefore likely perform well
relative to the other discriminant algorithms evaluated in this work
most situations in which the discrimination ability of such an array
is challenged.

The conclusions described herein may well also apply to other
polymer-based sensor arrays. Polymer-coated quartz resonators
of either quartz crystal microbalance (QCM, also called thickness-
shear mode resonators) or surface acoustic wave (SAW) devices1

also utilize sorption of a vapor by the polymer film to detect an
analyte. Because these methodologies also rely upon vapor
sorption by a polymer film to produce a signal, the conclusions
obtained above may apply to the data from such systems as well.

SUMMARY AND CONCLUSIONS
In summary, an array of 20 compositionally different carbon

black-polymer composite chemiresistor vapor detectors was
challenged under laboratory conditions to discriminate between
a pair of extremely similar pure analytes (H2O and D2O),
compositionally similar mixtures of pairs of compounds, and low
concentrations of vapors of similar chemicals. H2O and D2O were
perfectly separated from each other, and all 100 examples in a
test set were correctly classified based on 100 examples in a
training set. Discrimination performance decreased as the analyte
concentration decreased, and for n-hexane and n-heptane, clas-
sification error rates on normalized data using a leave-one-out
cross-validation method exceeded 18% when the analyte concen-
tration was less than 0.005 P/Po. Mixtures of chemically similar
analytes were also robustly discriminated (error of 1% or less)
when the analyte compositions differed by more than 0.006 P/Po

(and the total analyte concentration was 0.05 P/Po), with clas-
sification error rates using the leave-one-out cross-validation
method exceeding 20% only when the mole fractions of the hexane
and heptane differed by less than 0.002 P/Po in composition (and
the total analyte concentration was 0.05 P/Po). Excluding regular-
ized discriminant analysis, which required the building and cross-
validation of many models and which tended to become linear
discriminant analysis under optimization, Fisher’s classic linear
discriminant was the best-performing method under the conditions
evaluated in this work.
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