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Abstract. Four Eulerian network models are implemented to model high al-
titude air traffic flow. Three of the models use the framework of discrete time
dynamical systems, while the fourth consists of a network of partial differen-
tial equations. The construction of these models is done using one year of air
traffic data. The four models are applied to high altitude traffic for six Air

Route Traffic Control Centers in the National Airspace System and surround-
ing airspace. Simulations are carried out for a full day of data for each of the
models, to assess their predictive capabilities. The models’ predictions are com-
pared to the recorded flight data. Several error metrics are used to characterize
the relative accuracy of the models. The efficiency of the respective models is
also compared in terms of computational time and memory requirements for
the scenarios of interest. Control strategies are designed and implemented on
similar benchmark scenarios for two of the models. They use techniques such
as adjoint-based optimization, as well as mixed integer linear programming. A
discussion of the four models’ structural differences explains why one model
may outperform another.

1. Introduction. With the uninterrupted growth of air traffic over the last few
decades, strategic Traffic Flow Management (TFM) has become a very important
issue in the study of the National Airspace System (NAS), which is a complex
physical system consisting of aircraft, control facilities, procedures, navigation and
surveillance equipment, analysis equipment, decision support tools, and controllers
who operate the system [4]. One of the key elements in TFM is the Air Traffic

Control (ATC) system, which helps Air Traffic Controllers manage the increasing
complexity of traffic flow in the en route airspace. ATC is operated at the sector
level, where a sector is a small portion of the airspace controlled by a single human
Air Traffic Controller [25]. TFM typically deals with traffic at the Air Route Traffic
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Control Center (ARTCC) level, i.e. 10 to 20 sectors. TFM problems include main-
taining the aircraft count in each sector below a legal threshold in order to ensure
the safety of the flights, as well as to ease the human ATC workload [10]. This task
is quite cumbersome; furthermore, extensive traffic forecast simulations (includ-
ing all airborne aircraft) are computationally too expensive to include systematic
investigations of traffic patterns that lead to sector overload [4].

As a result, a new class of traffic flow models has emerged from recent studies:
Eulerian models, which aim at studying the design of optimized flows in the NAS.
Eulerian models [4, 23, 24, 34] are control-volume based, which means that they
rely on conservation equations. This is in contrast to Lagrangian models, which are
trajectory-based and take into account individual aircraft trajectories [3]. Eulerian
models have two main advantages over Lagrangian models. (i) Their computational
complexity depends only on the size of the physical problem of interest, rather
than the number of aircraft. (ii) Their mathematical structure enables the use of
standard methods to analyze them, such as control theory or optimization.

The field of Eulerian network modeling for the NAS is strongly inspired by hy-
drodynamic theory for highway traffic flow (see in particular the work of Lighthill,
Whitham and Richards [20, 27], and its discrete counterparts in the highway traf-
fic literature [8, 9]). This framework is sometimes referred to as the LWR the-

ory [33], and was introduced in [23] in the context of air traffic. This work was
subsequently extended by the same authors, including a tessellation model which
partitions the NAS into two dimensional cells and studies traffic flows through this
cellular network [24]. Aggregate models were later adapted to include a stochastic
framework [30, 32], in which data aggregation procedures enable predictions of flows
in the expected sense. Adjoint-based techniques [4] were subsequently developed
for a fully continuous NAS model (i.e. using partial differential equations), which
was also used for modeling behavior of single agents (airlines) in the NAS [26].
In order to alleviate the problems due to network splits inherent to most of the
aforementioned models, a multicommodity Large-capacity Cell Transmission Model

(CTM(L)) based on network flow techniques [14] was finally proposed [28, 34] and
successfully implemented.

The field of control and optimization of physical networks is a very wide area,
for which numerous research efforts have led to the development of several methods
to deal with networks of distributed parameter systems. Several of them can be
mentioned here, because of their relevance to our work. Networks of interconnected
roads are modeled and studied in the recent book of Garavello and Piccoli [11] and
can be used for the study of highway traffic flow. A variety of techniques exist
for optimization of physical networks. Frequency domain approaches have been
used by Litrico et al. in the context of canal network control for the Saint-Venant
equations [21] and provide useful control techniques when underlying equations of
flows are linear. Linear quadratic optimal control theory was applied by Malaterre
for the automatic control of two different eight-pool irrigation canals [22]. Sev-
eral approaches have been developed to deal with nonlinear phenomenon present
in physical networks. A nonlinear output feedback method was studied in [2] for
a compartmental network flow system. ¿From a macroscopic point of view, Haut
et al. modeled the junctions in a road network, which presents physically accept-
able solutions and is able to represent the capacity drop phenomenon in highway
systems [13]. Methods based on Lyapunov functions were presented by Coron et
al. for a hydraulic application, namely the level and flow regulation in a horizontal
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open channel [7]. A decentralized nonlinear control approach was used in [17] for
fluid flow networks, where actuator valves and flow rate sensors are collocated in
individual branches and do not exchange information. A similar model was used
for optimal control of supply networks in [16].

In the present article, the control techniques used are driven by the mathemat-
ical features of the underlying flow models developed. We present four different
aggregate Eulerian models of en route (high altitude) air traffic flow. We start
with the large-capacity cell transmission model derived in earlier work [28, 34]. We
present a modified version of the Menon model [23], adapted to fit a general network
topology. We also present a new application of the Lax Wendroff scheme to a PDE
model developed earlier in [4]. Finally, we implement the two-dimensional Menon
model [24] at a NAS-wide level. We implement and compare predictive capabili-
ties of the four models above on the same benchmark problem, for fairness of the
comparison. Control strategies are designed and implemented on for the scenario of
controlling sector counts for two of the models. This article is thus the first NAS-
wide implementation of the four aforementioned models, and the first comparison
of their respective performance on the same benchmark scenario.

We expect that this work will impact TFM research in the following areas: (i)
automated bottleneck identification in the NAS; (ii) study of the uncertainty in
en route demand and the volatility associated with seasonal patterns; (iii) NAS-
wide characterization of delay and workload; (iv) design and implementation of new
Airspace Flow Programs (AFP); (v) impact of weather on high altitude traffic flow.

This article is organized as follows. In the next section, the formulations of the
four models are summarized. Section 3 assesses the predictive capabilities of each
model through a careful validation against recorded Aircraft Situation Display to

Industry (ASDI) and Enhanced Traffic Management System (ETMS) data. Sec-
tion 4 illustrates the design of control strategies for the models. Section 5 compares
the performance of the different models, in particular, accuracy of predictive capa-
bilities, computational time, and memory requirements. A discussion follows which
highlights the structural differences between the four models and explains why one
model may outperform another. Finally, conclusions are presented in Section 6.

2. Models. This section presents a short summary of each of the four models used
for this study. A detailed description of each model is available in the corresponding
references.

2.1. The Large-capacity Cell Transmission Model (CTM(L)). The Large-

capacity Cell Transmission Model (CTM(L)) is a new Eulerian traffic flow model
developed in [34, 29]. It uses a graph-theoretic representation of traffic flow. Air
traffic flow on this graph is modeled as a discrete time dynamical system evolving
on a network. To formulate the model, the following assumptions are made:

1. Each link of the network is modeled as a directional edge.

2. All aircraft in a given link fly at an aggregate speed. This speed can be
obtained by aggregating the speed (obtained from the ASDI/ETMS data) of
all aircraft following this link.

3. The number of cells in one link is given by the number of steps of expected
travel time. In this implementation, 1 minute is taken as a unit time step. For
example, if it takes around 12 minutes for an aircraft to fly across a sector,
following a particular link, then this link would be divided into 12 segments,
called cells. The choice of the cell length (time discretization) is arbitrary. In
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the model, a link indexed by i has mi cells. As the time step decreases, the
model becomes more accurate, but at the expense of increased computational
complexity.

4. At the link level, only high altitude traffic (above 24,000 feet) is taken into
account for the calculation of aircraft count. This choice is also arbitrary and
can be adjusted to any user-defined level.

5. The control strategy (based on application of delays to aircraft) is mainly
used as the controlled input to the model, which can be implemented in many
forms: speed change, vector for spacing (VFS), holding pattern (HP), etc. It
is applied in time increment corresponding to the unit time step.

6. The model is deterministic. No statistical factor, such as weather impact, is
taken into consideration at this stage. Note that it could be added later using
a stochastic framework [30, 31].

7. In this model, all states, inputs, and outputs, are integer valued. This might
increase the complexity of computation or analysis, in particular, the com-
putational complexity for optimization which is integer programming, but
provides higher accuracy.

Under the assumption that air traffic flow can be accurately represented by an ag-
gregated travel time, the behavior of aircraft flow on a single link can be modeled by
a deterministic linear dynamical system with unit time delay, defined as follows [34]:

xi(k + 1) = Aixi(k) + Bf
i fi(k) + Bu

i ui(k) (1)

y(k) = Cixi(k) (2)

where xi(k) = [xmi

i (k), · · · , x1
i (k)]T is the state vector, whose elements represent

the corresponding aircraft counts in each cell of link i at time step k, and mi is the
number of cells in the link. The forcing input, fi(k), is a scalar which denotes the
entry count onto link i during a unit time interval from k to k + 1, and the control
input, ui(k) is an mi × 1 vector, representing holding pattern control. The output,
y(k), is the aircraft count in a user-specified set of cells at time step k. The nonzero
elements of the mi×1 vector Ci correspond to the cells in the user-specified set, and
are equal to one. Ai is an mi ×mi nilpotent matrix with 1’s on its super-diagonal.

Bf
i = [0, · · · , 0, 1]T is the forcing vector with mi elements, and Bu

i is the mi × mi

holding pattern matrix, in which all nonzero elements are 1 on the diagonal and −1
on the super-diagonal.

Because there is no interconnection between different links in one sector, it is
straightforward to extend this modeling technique to set up a sector level model as
follows. Suppose there are n links in a sector, then the state space equations for
the model at the sector level can be described as:

x(k + 1) = Ax(k) + Bff(k) + Buu(k) (3)

y(k) = Cx(k) (4)

where x(k) = [xn(k); · · · ; x1(k)]T denotes the state, and f(k) = [fn(k); · · · ; f1(k)]T

is the forcing input vector (the entry count onto the sector). The control input
vector u(k) = [un(k); · · · ;u1(k)]T . The vector y(k) represents the aircraft count in
a user-specified set of cells at time step k. The matrices A, Bf , and Bu are block
diagonal, with block elements associated with each link in the sector. For example,
A = diag(An, · · · , A1) with Ai’s defined by Equations (1).

When an ARTCC level model is created, it is necessary to include merge/diverge
nodes in the network [23, 30, 4, 32]. Merge nodes are straightforward: flows are
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added as streams of aircraft merge. For diverge nodes, the corresponding routing
choices must rely on knowledge of aircraft destination. Modeling the problem is
proposed based on a priori knowledge of the destination of the aircraft (provided
by ASDI/ETMS data): knowledge of each aircraft destination is available long
before its departure, in the form of filed flight plans. One significant contribution
of the CTM(L) is to incorporate this knowledge into the model, while previous
Eulerian models do not [23, 24, 30, 31, 4], with use of the notion of multicommodity
flow. More details are available in [34].

2.2. The Modified Menon Model (MMM). This section is based on the work
presented in [23]. The model has been modified to fit the structure of the graph
model that will be discussed in Section 2.5.

The original Menon model is an Eulerian traffic flow model in which the air
traffic is spatially aggregated into control volumes, which are line elements [23]. It
is based on the Daganzo Cell Transmission Model (CTM) [8, 9] in which the traffic
flowing into a control volume changes the density of aircraft in the control volume
and, hence, changes the outflow from the control volume. Several modifications of
the original Menon model are made and outlined at the end of this subsection; we
will thus refer to the improved version of the model as the Modified Menon Model

(MMM). The model is also able to account for ATC actuation, and handle merging
and diverging air traffic flows. The model consists of two parts, the one-dimensional
control volume model and the merge and diverge routing structure.

The one-dimensional control volume model models air traffic flow as a network
of inter-connected control cells through which the air traffic flows. Aircraft counts
in the network can be described by the discrete-time difference equation:

xj(i + 1) = xj(i) + τj [yj−1(i) − yj(i)] (5)

In the above equation, xj(i + 1) is the aircraft count of control volume j at time
i+1. The flow into j is yj−1(i) and yj(i) is equal to the flow out of j. The time step
τj is computed by dividing the cell dimension, Ωj , by the aircraft speed in the cell,
vj (τj = Ωj/vj). In other words, τj is the time an aircraft takes to travel through
the cell.

The effects of delaying aircraft due to ATC actuation is accounted for by recir-
culating some of the air traffic flow in a control volume. The recirculated air traffic
flow in control volume j is defined as uj . The physical constraint on uj is that at
time i, it can not be greater than the existing flow in the cell or less than 0,

0 ≤ τjuj(i) ≤ xj(i) (6)

By including uj and writing down the equation for yj , the model can be written
in the form of a linear, discrete-time dynamical system:

xj(i + 1) = ajxj(i) + τjuj(i) + τjyj−1(i) (7)

yj(i) = bjxj(i) − uj(i) (8)

The coefficients, aj , bj , and τj handle the conversion between the air traffic flow,
yj , and the aircraft count, xj . In other words, at a given time step, aj is the portion
of aircraft remaining in the volume, and bj is the portion of air traffic flow leaving
the volume. As was noted earlier, τj is the length of time needed for the aircraft to
travel the length of the control volume. The coefficients are defined in terms of Ωj ,
the control volume length, and vj , the aircraft speed.
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aj = (1 − vjτj/Ωj), bj = vj/Ωj , τj = Ωj/vj (9)

The original Menon model assumes that velocity is constant within a given con-
trol volume. This means that aj is always zero (see equation (13) in the original
article [23]). That is, if there is no control from uj , then all the aircraft in the
volume travel to the subsequent volume on the next time step.

Intuitively, what is happening in equations (7) and (8) is that the aircraft count
in a given control volume at time i + 1 depends on the number of aircraft in the
volume at time i, the number of aircraft that flow into the volume, the number of
aircraft that are recirculated and the number of aircraft that flow out of the volume.
Over multiple time steps, aircraft will move through successive cells.

In a network of inter-connected control volumes, there may be points where
air traffic coming from different directions merge into a single flow. This type of
situation is referred to as a merge node. Furthermore, there may be points where
the air traffic in one direction diverges into multiple flows. This type of situation
is referred to as a diverge node. Because the nodes do not retain any aircraft, the
conservation principle implies that for merge nodes, the resulting air traffic flow is
the sum of all air traffic flows into that node. For example, if the air traffic flows
qk−1 and qk−2 merge into qk,

qk = qk−1 + qk−2 (10)

Likewise, diverge nodes make use of the same conservation principle and the flow
along a path from a diverge node is some proportion of the total flow coming into
the diverge node. The proportion is defined as the divergence parameter, β, and is
the ratio of aircraft travelling out of the diverge node along a given path over the
aircraft travelling into the diverge node. In the following example, the air traffic
flow diverges from the qk to qk+1 and qk+2,

qk+1 = βqk, qk+2 = (1 − β)qk (11)

As mentioned earlier, since the MMM is implemented on a graph model of traffic
flow constructed in the articles [28, 34] and discussed in Section 2.5, a number
of modifications are made to improve the original Menon model described in the
article [23].

1. The flights in the MMM are aggregated according to the links of the graph
structure defined in our earlier work, and not the graph model presented in
their original article [23]. This will ensure fairness of the comparison with the
other models.

2. A link length (physical distance) is determined from flights in the data: flights
in the data are aggregated according to the links in the graph. A link’s entry
and exit locations are determined by those flights’ link entries and exits. The
entry and exit locations are used in computing the link’s length.

3. The MMM contains merge-diverge nodes. A merge-diverge node is one that
has both merging and diverging flows at the same time. The original Menon
model does not have such nodes.

4. A merge-diverge node can have n (n ≥ 2) outflows, whose β values are de-
termined from the data, whereas in the original Menon model n is limited to
n = 2.
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2.3. The PDE model. This section is based on work initiated in [4]. This model
divides the airspace into line elements. These line elements are called paths and in
practice often coincide with jetways. We represent a link on a path as a segment
[0, L] and we define C(x, t) as the number of aircraft between distances 0 and x
at time t. In particular, C(0, t) = 0, and C(L, t) is the total number of aircraft
in the path modeled by [0, L] at time t. We make the additional assumption of a
steady velocity profile v(x) > 0, which depicts the average velocity of aircraft flow
at position x and time t. Applying the conservation of mass to a control volume
comprised between positions x and x + h, and letting h tend to 0, one easily finds
the following relation between the spatial and temporal derivatives of C(x, t) [4]:







∂C(x,t)
∂t

+ v(x)∂C(x,t)
∂x

= q(t) (x, t) ∈ (0, L) × (0, T ]
C(x, 0) = C0(x) x ∈ [0, L]
C(0, t) = 0 t ∈ [0, T ]

(12)

where q(t) represents the inflow at the entrance of the link (x = 0). Alternatively,
q(t) can be defined in terms of the density as q(t) = ρ(0, t)v(0).

We can define the density of aircraft as the weak derivative of C(x, t) with respect

to x: ρ(x, t) = ∂C(x,t)
∂x

. The aircraft density is a solution to the partial differential
equation:











∂ρ(x,t)
∂t

+ ∂(ρ(x,t)v(x,t))
∂x

= 0 (x, t) ∈ (0, L) × (0, T ]
ρ(x, 0) = ρ0(x) x ∈ [0, L]

ρ(0, t) = q(t)
v(0) t ∈ [0, T ]

(13)

or in a nonconservative form:










∂ρ(x,t)
∂t

+ v(x)∂ρ(x,t)
∂x

+ v′(x)ρ(x, t) = 0 (x, t) ∈ (0, L) × (0, T ]
ρ(x, 0) = ρ0(x) x ∈ [0, L]

ρ(0, t) = q(t)
v(0) t ∈ [0, T ]

(14)

This is a linear advection equation with positive velocity v(x) and a source term:
v′(x)ρ(x, t). Clearly, these two partial differential equations are equivalent and
model the same physical phenomenon. In this article, we will use the latter for
control, as it enables us to impose constraints in terms of aircraft density. We will
use the former for simulation and comparison, because the aircraft count is more
readily available from experimental data.

Now that the model has been defined on one link, we will extend it to a network.
We consider a junction with m incoming links numbered from 1 to m and n outgoing
links numbered from m+1 to m+n; each link k is represented by an interval [0, Lk]
(Figure 1). One can see that any network is composed of a number of such junctions.
We define an allocation matrix M(t) = (mij(t)) for 1 6 i 6 m, m+1 6 j 6 m+n,
where 0 6 mij(t) 6 1 denotes the proportion of aircraft from incoming link i going

to the outgoing link j; we also require
∑m+n

j=m+1 mij(t) = 1 for 1 6 i 6 m. The
system of partial differential equations on the network can be written as:























∂ρk(x,t)
∂t

+ vk(x)
∂ρk(x,t)

∂x
+ v′

k(x)ρk(x, t) = 0 1 6 k 6 m + n, (x, t) ∈ (0, Lk) × (0, T ]

ρk(x, 0) = ρ0,k(x) x ∈ [0, Lk]

ρi(0, t) =
qi(t)
vi(0)

1 6 i 6 m, t ∈ [0, T ]

ρj(0, t) =
∑m

i=1 mij(t)ρi(Li,t)vi(Li)

vj(0)
m + 1 6 j 6 m + n, t ∈ [0, T ]

(15)

We will now show that on such a network, the preceding system of partial dif-
ferential equations admits a unique solution hence that the problem is well-posed.
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Figure 1. A junction with m incoming links (1 6 i 6 m) and n
outgoing links (m + 1 6 j 6 m + n).

First we consider the case of a single link [0, L]. Since the velocity is always
positive, a boundary condition shall be set on the left (x = 0) but not on the right
(x = L). Using classical partial differential equations techniques, more precisely
the theory of characteristics to compute the solution and prove the existence and
energy methods for the uniqueness, it can be shown that the advection equation will
have a unique solution on this interval (see for example [18] or [4] for a proof). On
a network, this ensures the existence and uniqueness of a solution on the incoming
links. For the outgoing links, we need to impose a boundary condition on the left,
that is, immediately after the junction. This is done using the coefficients of the
allocation matrix. Indeed for the j-th outgoing link, the density at the origin will
be related to the densities at the right extremity of the incoming links by:

ρj(0, t) =

∑m
i=1 mij(t)ρi(Li, t)vi(Li)

vj(0)

Now the advection equation on each outgoing link has a unique solution, thus
uniquely defining a density on both the incoming and outgoing links. Therefore,
the problem for any network, which is made of several such junctions, is well-posed.

We apply the Lax-Wendroff scheme to the preceding partial differential equation.
We use a discrete grid on the domain [0, L] × [0, T ]:

xa =
aL

M
, 0 ≤ a ≤ M and tb =

bT

N
, 0 ≤ b ≤ N

and

∆x =
L

M
, ∆t =

T

N

The Lax-Wendroff scheme (see [19]) is based on the second order Taylor series
expansion of C(x, t)

C(x, tb+1) = C(x, tb) + (∆t)Ct(x, tb) +
1

2
(∆t)2Ctt(x, tb) + . . .

Given that C(x, t) is a solution of the partial differential equation above, we have:

Ct(x, t) = −v(x)Cx(x, t) − v′(x)C(x, t)

Ctt(x, t) = −v(x)Cxt(x, t) − v′(x)Ct(x, t)

If we differentiate the expression of Ct(x, t) with respect to x, we obtain:
Cxt(x, t) = −v(x)Cxx(x, t) − v′′(x)C(x, t) − 2v′(x)Cx(x, t) which yields:

Ctt(x, t) =v2(x)Cxx(x, t) + 3v(x)v′(x)Cx(x, t)

+ (v(x)v′′(x) + (v′(x))2)C(x, t)
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Using the preceding expressions of Ct(x, t) and Ctt(x, t) in the Taylor series
expansion, we find:

C(x, tb+1) =C(x, tb) − (∆t)v(x)Cx(x, tb) − (∆t)v′(x)C(x, tb)

+
1

2
(∆t)2(v2(x)Cxx(x, tb) + 3v(x)v′(x)Cx(x, tb)

+ (v(x)v′′(x) + (v′(x))2)C(x, tb)) + . . .

Then we replace the spatial derivatives by central finite difference approxima-
tions:

Cx(x, t) ↔
Ca+1,b − Ca−1,b

2∆x

Cxx(x, t) ↔
Ca−1,b − 2Ca,b + Ca+1,b

(∆x)2

We eventually obtain the Lax-Wendroff scheme:

Ca,b+1 =

(

1 − (∆t)v′(xa) +
(∆t)2

2
(v(xa)v′′(xa) + (v′(xa))2)

)

Ca,b

+
∆t

2∆x
v(xa)

(

3

2
(∆t)v′(xa) − 1

)

(Ca+1,b − Ca−1,b)

+
1

2

(

∆t

∆x

)2

v2(xa)(Ca−1,b − 2Ca,b + Ca+1,b)

The initial condition implies:

Ca,0 =
1

2∆x

∫ xa+1

xa−1

C0(x)dx for 0 ≤ a ≤ M

The boundary conditions are implemented using 2 ghost-cells on the left and
right of the spatial domain. Given that the velocity is always positive, the boundary
conditions can only be prescribed on the left; we use zero-order extrapolation for
the right boundary condition:

C−1,b =
1

∆t

∫ tb+1

tb

q(t)

v(0)
dt and CM+1,b = CM,b for 1 ≤ b ≤ N

Finally, when choosing the space and time steps, the Courant-Friedrichs-Lewy

(CFL) condition has to be verified:

∣

∣

∣

∣

v(x)∆t

∆x

∣

∣

∣

∣

≤ 1 for x ∈ [0, L]

where
∣

∣

∣

v(x)∆t

∆x

∣

∣

∣
is called the Courant number. Since the Lax-Wendroff scheme is

increasingly accurate as the Courant number approaches to 1, the time and space
steps should be chosen so that:

∆t

∆x
is slightly smaller than

1

supx∈[0,L] v(x)
.
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2.4. The 2D Menon Model (MM2D). The section is based on [24]. The 2D

Menon Model (MM2D) first partitions the airspace into sectors called Control Vol-

umes (CVs) or Surface Elements (SELs). These SELs are formed by equal incre-
ments in latitudes and longitudes. To simplify the analysis, all the SELs are treated
as equal squares. Each SEL is then partitioned into eight streams which discretize
the notion of directions within a SEL (Figure 2). Conceptually, a ninth stream
will constitute the input/output of a SEL from an underlying airport or from alti-
tudes above or below the desired range of study. Each SEL will have three, five or
eight entry/exit points with its neighboring SELs depending on its location (corner,
border or center), in addition to an eventual airport beneath it.

Figure 2. Traffic flow directions in an SEL (i, j). Source: [24].

The MM2D discretizes the time into steps of increments τ . In each time step,
a number of aircraft exit from the streams of each SEL. The flow divergence pa-
rameter β is a five-dimensional variable. It is time dependent, and determines the
percentage of aircraft that switched from streams m to n in the SEL (i, j). The
inertia parameter a is four-dimensional. It characterizes the proportion of aircraft
that will stay in a certain stream s of a SEL (i, j) in from time k to k + 1. The
dynamics of the model can be represented as follows:

x(i,j,1)(k + 1) =a(i,j,1)

8
∑

m=1

β(i,j,1,m)x(i,j,m)(k)

+ τy(i−1,j,1)(k) + τqdepart
(i,j,1) (k)

(16)

where x(i,j,1)(k + 1) represents the predicted number of aircraft in the stream 1 of
SEL(i, j) at time step k + 1; a(i,j,1)(k) represents the fraction of aircraft that will
stay in stream 1 of SEL(i, j) after time step k; β(i,j,1,m)(k) represents the portion
of aircraft that switched from streams 1 to stream m at time step k before leaving
SEL(i, j) at time step k+1; y(i−1,j,1)(k) represents the flow at time step k of aircraft

into stream 1 of SEL(i, j), coming from SEL(i− 1, j); qdepart
(i,j,1) (k) represents the flow

at time step k of aircraft into stream 1 of SEL(i, j) coming from an airport located
beneath it.

The dynamics of other streams in the SEL can be expressed in a similar way,
simply by replacing the number 1 in the index by other numbers (2, 3, · · · , 8). The
output flow y is computed as follows:

y(i,j,m)(k) =
(

1 − a(i,j,m)

)

8
∑

n=1

β(i,j,m,n)x(i,j,n)(k).

The implementation of the MM2D relies on a two-dimensional geometric par-
tition of the airspace, which is different from the other three models described in
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the previous sections. The original work of the authors of the MM2D [24] did not
mention how to identify the parameters (a and β in equation (16) of the model).
We use one year of ASDI/ETMS data for this identification as follows: from the
recorded data, we compute a and β for each day in a full year of data, and take the
mean of the a’s and the normalized (by the rule of conservation of flows) mean of
the β’s as the parameters a and β respectively.

Figure 3. Map of the portion of airspace considered in this study:
the Oakland ARTCC (ZOA), Los Angeles ARTCC (ZLA), Salt
Lake City ARTCC (ZLC), Seattle ARTCC (ZSE), a portion of
Denver ARTCC (ZDV), a portion of Albuquerque ARTCC (ZAB),
and a portion of Oakland Oceanic ARTCC. Map obtained using
the software FACET [5].

2.5. A benchmark scenario for comparison of the models. For the compar-
ison, three of the four models described above (MMM, the CTM(L) and the PDE
model) are implemented on the same aggregate traffic flow graph model depicted in
Figure 5. The construction of the graph is outlined in the article [34]. The MM2D
must be implemented on its own flow structure, because of the two-dimensional
nature of the model. The portion of airspace studied for this article is depicted in
Figure 3, and consists of 75 sectors of the Oakland, Los Angeles, Seattle and Salt
Lake City, Denver, Albuquerque, and Oakland Oceanic Centers. The graph identifi-
cation procedure relies on the notion of a path, illustrated in Figure 4. We use a full
year of ASDI/ETMS data for this identification. A portion of the resulting graph is
shown in Figure 5. For the MMM, we will use β splits at the nodes where traffic is
diverging, following the procedure outlined in the original article [23] and modified
according to Section 2.2. For the two other models, we will use the notion of paths,
linking any origin to any destination in the graph. This idea is sometimes referred
to as the colored flow paradigm, which is an example of multicommodity flows in
the network flow and combinatorial optimization literature [1]. This enables us to
avoid the identification of the β split parameters, and the resulting inaccuracies of
this model, and most importantly, this uses the fact that the destinations of the
aircraft are known before take off.
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Using the terminology presented before and illustrated in Figure 4, the graph used
for this study has 648 paths, 437 links, 12574 cells (MMM), 39776 cells (CTM(L)),
and 128500 grid points (PDE model).

Figure 4. Examples of vertices and links for the network flow
construction; trajectories and paths.

The parameter identification used for the MMM is straightforward: following the
work in [23], we average all velocities of all aircraft over one year for the airspace of
interest. For the CTM(L) and the PDE model, we do it path by path. An example
of velocity fit for one path is shown in Figure 6. The β split coefficients used for the
MMM are computed by dividing the number of aircraft on a branch from a split by
the total number of aircraft exiting the split. The cell dimension in the MMM is
computed as the distance traveled by an aircraft in one minute (our time step in the
simulation). Since the average velocity is 480 knots, this gives a cell dimension of
about 15 km. For the CTM(L), the cell dimension is time-based and is one minute
in length.
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Figure 5. Top: An example of flight tracks for the full NAS.
Bottom: Graph model representing the flow patterns above.

3. Model validation. The models are validated against ASDI/ETMS data and
their respective performances are compared. The validation procedure consists in
taking inputs in the form of filed flight plans (origin-destination and schedule for
each aircraft), performing a forward simulation of traffic for the full NAS (with
the four models), and comparing the corresponding results with recorded data.
The input to each model is the number of aircraft entering the considered region
(Figure 3). The predicted states, for example, sector counts, are computed from
each model and compared with the recorded data. Simulations are performed from
8:00am GMT on January 24th, 2005 to 8:00am GMT on January 25th, 2005.
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Figure 6. Aggregation of velocities along a path. x-axis: posi-
tions from the starting point of a path in the model; y-axis: veloci-
ties in knots. A third order curve fit is used for the velocity profile.
Typically, flights going through this path (passing through way-
points TROSE-INYOE-OAL) pop-up from low altitude airspace
and climb up to high altitudes.

Sector counts predicted by the four models are compared with the recorded
ASDI/ETMS data. Our study shows that all the sector counts predicted by the
four models and ASDI/ETMS data differ from the true counts by noise of a non-
negligible magnitude for the following reasons: (1) for the CTM(L), the travel time
on a link in the network is computed as the average travel time for all flights in the
data set used for the identification; (2) for the PDE model, the velocity profile of
each path is filtered from sampled velocities and only several modes are preserved;
(3) for the MMM, the split ratios are computed from historical data which usually
do not match the instantaneous ratios for a specific day, and also the MMM assumes
a uniform velocity across the whole network; (4) for the MM2D, the parameters a
and β are computed from historical data, which differ from the actual a and β for
a specific day.

A moving average filter (MAF) technique is used to filter the sector counts for
both the recorded ASDI/ETMS data and the models’ simulation data. Applying a
MAF to the data requires an appropriate number of data points (time window) in
the average. A short time window captures the dynamics of the flow errors but loses
the “filtering” benefits, while a long time window filters noise but cancels the error
dynamics. To determine a proper size of time window, an experiment involving
the maximum sector count error is performed. The maximum count error is the
maximum error computed as the absolute difference between the model’s sector
count and the actual sector count computed from the recorded ASDI/ETMS data,
over the course of a simulation. Figure 7 shows the results obtained using different
size of time window for the four models in sector ZOA33. The maximum sector
count error between filtered ASDI/ETMS data and filtered simulation results of
the models decreases when the size of time window increases. In the extreme case,
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Figure 7. Maximum sector count error of ZOA33, between sim-
ulation of the models and ASDI/ETMS data (after filtering). The
maximum error decreases as the time window increases.

in which the time window is 24 hours (the simulation time span for our study),
the error between filtered recorded data and filtered simulation results tends to be
zero. This occurs because the error is the difference between the average sector
count from ASDI/ETMS data and simulation for a full day, which is very small in
general for this case. For example, for the PDE model, the maximum errors are
below two when the time window is 20 minutes. Above 20 minutes, increasing the
time window does not help significantly to decrease the maximum error, and does
not make sense for the problem of interest as well. Removing noise makes physical
sense for this problem. Indeed, very often, sector counts exceed legal values for a
few minutes (if aircraft are about to exit a sector), which is tolerated in practice, as
such flights usually do not pose significant problems to air traffic controllers, and
often, hand off procedures for these flights do not occur.

Figure 8 shows the predicted and actual sector counts as a function of time in
three sectors: highly loaded sector ZOA33, medium loaded sector ZOA32, and low
traffic sector ZOA35. The data shown in the figure is filtered by MAF. From the
figures we can see that all the models correctly predict the trends of sector counts.

4. Controller design.

4.1. The Large-capacity Cell Transmission Model. The present section for-
mulates the problem of regulating the aircraft count in different sectors under a
legal threshold so that high level TFM actuation can be applied to comply with
FAA standards.

The time horizon of the problem (order of magnitude of two hours), is discretized
in N time steps of length τ . Therefore, τ is the time spent by one aircraft in one cell
in absence of ATC actuation. The state of the system at time step k∈ {0, · · · , N}
is characterized by the number of aircraft in each cell and represented by the vector
xk ∈ R

n, where n is the number of cells in the network. The control variables are
denoted uk ∈ R

n for k∈ {0, · · · , N}, where uk represents the number of aircraft held
in each cell at time step k. The input to the system at time step k∈ {0, · · · , N}
consists of the aircraft entering the network, and the number of aircraft entering
each cell at time step k is represented by the vector fk ∈ R

n. Note that, unlike in a
standard control framework terminology, we do not have control over the input fk,
which is an “exogenous forcing” from outside the system.

Using a standard optimal control framework such as in [6], the dynamics (3)-
(4) becomes part of the constraints of the Mixed Integer Linear Program (MILP)
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Figure 8. Comparison between the predictions of aircraft sector
counts predicted by the four models and the actual ASDI/ETMS
data counts. Curves represent the processed sector counts after
filtering. 0 min corresponds to midnight.
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formulation:
min

∑N
k=0 cT xk

s.t. Exk + Luk ≤ M, k∈ {0, · · · , N − 1}
xN ∈ χf

xk+1 = Axk + Bf fk + Buuk, k∈ {0, · · · , N − 1}
x0 = Bf f0

(17)

where χf ⊆ R
n is a terminal polyhedron region, and the matrices E, L, and M

represent the constraints on the system: the sector counts must remain under a
legal threshold, and the number of aircraft held in a cell cannot be greater than
the number of aircraft in that cell. The objective of the problem is to minimize the
total travel time; therefore, c ∈ R

n is the vector [τ, τ, . . . , τ ]T .

4.1.1. Implementation. In order to solve (17) in practice, we need to encode it in a
computationally efficient manner, which we now present. Flights are clustered on
paths, as explained in section 3. The set P of paths is determined from the data,
as well as the number np of cells along path p ∈ P . Within each path, cells are
indexed so that flights go through cells of increasing index numbers. The notation
for the state of the system, the input and the control variables is adapted to take
the paths into account. The state is reindexed, such that xk,p,i now denotes the
number of aircraft in cell i∈ {1, · · · , np} of path p ∈ P at time step k∈ {0, · · · , N}.
The corresponding control variables are denoted uk,p,i for k∈ {0, · · · , N}, p ∈ P ,
and i∈ {1, · · · , np}, where uk,p,i represents the number of aircraft held in cell i of
path p at time step k. The [forcing] inputs to the system are denoted fk,p for
k∈ {0, · · · , N}, and p ∈ P , where fk,p represents the number of aircraft entering
the network on path p at time step k.

The sector capacity (i.e. the maximum number of aircraft allowed in the sector)
is enforced independently for a set S of different sectors. These sectors, referred
to as sector-capacity-constrained sectors, have capacities Cs, s ∈ S. The adapted
MILP formulation of the problem is as follows.

min τ
∑N

k=0

∑

p∈P

∑np

i=1 xk,p,i

s.t.
∑

(p,i)∈Is
xk,p,i ≤ Cs, k∈ {0, · · · , N}, s ∈ S

0 ≤ uk,p,i ≤ xk,p,i, k∈ {0, · · · , N}, p ∈ P, i∈ {1, · · · , np}
xk+1,p,i = xk,p,i−1 + uk,p,i − uk,p,i−1, k∈ {0, · · · , N − 1}, p ∈ P, i∈ {2, · · · , np}
xk,p,1 = fk,p + uk,p,1, k∈ {0, · · · , N}, p ∈ P

x0,p,i = 0, p ∈ P, i∈ {2, · · · , np}
xk,p,i ∈ Z, k∈ {0, · · · , N}, p ∈ P, i∈ {1, · · · , np}

(18)

where Is is the set of cells (represented by a path p and a cell number along path
p) physically present in sector s ∈ S. The integrality of the number of aircraft in
each cell ensures the integrality of the number of aircraft held in each cell, since the
input of the system is assumed to be integer.

4.1.2. LP relaxation of the MILP formulation. Because problem (18) cannot be
solved in polynominal time deterministically, it is relaxed to a Linear Program (LP),
which is faster to solve in practice, and theoretically polynomial time solvable1.

The relaxed MILP (i.e. the LP) was solved on a statistical sample of 1,000 differ-
ent sets of input parameters. 85 percent of the runs lead to an integer solution. For
the remaining 15 percent, the optimal solution of the LP (OPTLP) was compared
to the optimal solution of the corresponding MILP (OPTMILP). The integrality gap

1We did not assess the usefulness of the guaranteed computational complexity of LP explicitely
in the present case. Indeed, the fact that LPs are polynomial time solvable can only be used with
a thorough analysis of the constant mutiplying the corresponding higher order monomial.
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α, (i.e. OPTMILP = α · OPTLP), was always smaller then 1.0015. However, the
corresponding solutions are fractional, thus impractical. Several techniques might
apply in the future to alleviate this difficulty, in particular LP rounding, which
would yield to a suboptimal but integer solution.

On one hand, there is no guarantee of integrality of the LP solution, but on
the other hand, the running time of computing the MILPs solution is not guaran-
teed. Despite the limitations of these two approaches, one conclusion can still be
guaranteed from the LP approach: when it returns no solution, it provides a cer-
tificate of infeasibility of the corresponding TFM problem with guaranteed running
time. Also, given the structure of the problem, minimizing the total travel time is
equivalent to minimizing the amount of delay assigned to the aircraft. Therefore,
the number of holding patterns provided by the LP solution is the lower bound of
the number of holding patterns for which there may exist a physical solution. In
other words, no air traffic control actuation can enforce the sector count limitations
with less holding patterns than the number of holding patterns provided by the LP
relaxation.

4.2. The PDE model. In this section, we study an optimal flow control problem
for a network using the PDE model derived earlier. A similar case for highway
networks was studied in [12]. We try to mitigate congestion on the network by
acting on the coefficients of the allocation matrix. To evaluate the gradient of
the objective function, we implement a continuous adjoint method to evaluate its
performance. We consider the following problem:

min H(mij) =
∑m+n

k=1

∫ T
0

∫ Lk
0 ρk(x, t)dxdt

s.t.
∂ρk(x,t)

∂t
+ vk(x)

∂ρk(x,t))
∂x

+ v′

k(x)ρk(x, t) = 0, 1 6 k 6 m + n, (x, t) ∈ (0, Lk) × (0, T ]

ρk(x, 0) = ρ0,k(x), x ∈ [0, Lk]

ρi(0, t) =
qi(t)
vi(0)

, 1 6 i 6 m, t ∈ [0, T ]

ρj(0, t) =
∑m

i=1 mij(t)ρi(Li,t)vi(Li)

vj(0)
, m + 1 6 j 6 m + n, t ∈ [0, T ]

0 6 mij(t) 6 1, 1 6 i 6 m, m + 1 6 j 6 m + n
∑m+n

j=m+1 mij(t) = 1, 1 6 i 6 m

ρk(x, t) 6 ρmax
k , 1 6 k 6 m + n

(19)

Minimizing this functional is equivalent to maximizing the outflow of the network;
indeed the value of H represents the total amount of time aircraft spend in the
network. The control variables are the coefficients of the allocation matrix (mij(t)).
This is in fact a case of boundary control since as explained earlier, the density at
the left of an outgoing link is directly related to the value of (mij(t)) by:

ρj(0, t) =

∑m
i=1 mij(t)ρi(Li, t)vi(Li)

vj(0)
, m + 1 6 j 6 m + n and t ∈ [0, T ]

The first two constraints are used to make sure that the model is realistic; all
the aircraft have to leave an incoming link and enter an outgoing link. The third
constraint implements a maximum density not to be exceeded for each link.

Adjoint methods were first introduced in the late 1980s as a tool for shape opti-
mization, in particular aircraft design [15]. The direct approach which consists in
calculating the gradient of the cost functional using finite differences is only possi-
ble when the number of control variables is small. In most real life problems, this
number is too large making this approach unfeasible. A more efficient way of cal-
culating gradients is to use the adjoint equations and boundary conditions, which
can be solved using numerical schemes to yield the gradient of the cost functions.
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Figure 9. Network used for the optimization containing 16 links
and 5 junctions. The links are numbered according to the jetways
they represent which are part of the ZOA ARTCC.

We will use this technique to determine the gradient of the functional H. We
consider links of length Lk, which in our example will be equal to the actual length of
the corresponding links of the air traffic network considered. We bring the reader’s
attention to the fact that the following results can be applied to any functional

H(mij) =

m+n
∑

k=1

∫ T

0

∫ Lk

0

hk(ρk(x, t))dxdt

for any functions hk(x). Note that mij does not appear explicitly in the func-
tional, but implicitly, through the constraints of (19).

4.2.1. Continuous Adjoint Method. We will present the continuous adjoint method
in this section. We start by forming the variation in the cost function:

δH =H(mij + δmij) − H(mij)

=

m
∑

i=1

∫ Li

0

∫ T

0

ρi(x, t)dxdt +

m+n
∑

j=m+1

∫ Lj

0

∫ T

0

(ρj(x, t) + δρj(x, t))dxdt

−

m
∑

i=1

∫ Li

0

∫ T

0

ρi(x, t)dxdt −

m+n
∑

j=m+1

∫ Lj

0

∫ T

0

ρj(x, t)dxdt

=

m+n
∑

j=m+1

∫ Lj

0

∫ T

0

δρj(x, t)dxdt

We then compute the variation of the constraint equation in our case the partial
differential equation verified by the density which yields for the outgoing links (the
incoming links not being affected by the control):

∂δρj(x, t)

∂t
+ vj(x)

∂δρj(x, t)

∂x
+ v′

j(x)δρj(x, t) = 0 for m + 1 6 j 6 m + n

with the initial condition:

δρj(x, 0) = 0

and the boundary condition:

δρj(0, t) =

∑m
i=1 δmij(t)ρi(Li, t)vi(Li)

vj(0)
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Since the variation of the cost function depends on δρj , we need to add a term
to the variation of the cost function to eliminate this dependence; if λj(x, t) is
an arbitrary function, we can add the scalar product of λj(x, t) with the previous
equation since it is equal to zero:

δH = δH +

m+n
∑

j=m+1

∫ Lj

0

∫ T

0
λj(x, t)

(

∂δρj(x, t)

∂t
+ vj(x)

∂δρj(x, t)

∂x
+ v′

j(x)δρj(x, t)

)

dxdt

After integrating by parts:

δH = δH +

m+n
∑

j=m+1

{
∫ Lj

0

∫ T

0

(

−
∂λj(x, t)

∂t
−

∂(vj(x)λj(x, t))

∂x
+ v′

j(x)λj(x, t)

)

δρj(x, t)dxdt

+

∫ Lj

0
[λj(x, t)δρj(x, t)]T0 dx +

∫ T

0
[δρj(x, t)vj(x)λj(x, t)]

Lj

0 dt

}

Assembling the terms, we obtain:

δH =

m+n
∑

j=m+1

∫ Lj

0

∫ T

0

(

−
∂λj(x, t)

∂t
−

∂(vj(x)λj(x, t))

∂x
+ v′

j(x)λj(x, t) + 1

)

δρj(x, t)dxdt

+

m+n
∑

j=m+1

(
∫ Lj

0
[λj(x, t)δρj(x, t)]T0 dx +

∫ T

0
[δρj(x, t)vj(x)λj(x, t)]

Lj

0 dt

)

In order to eliminate the dependence of δH on δρj , we make the following choice
for λj :






∂λj(x,t)
∂t

+ vj(x)
∂λj(x,t)

∂x
= 1 m + 1 6 j 6 m + n, (x, t) ∈ [0, Lj) × [0, T )

λj(x, T ) = 0 x ∈ [0, Lj ]
λj(Lj , t) = 0 t ∈ [0, T ]

(20)

This is the adjoint equation that will be solved to obtain λj . Using the boundary
and initial conditions for δρj and λj , we can now compute the gradient of the cost
function:

∇mij
H = −

m+n
∑

j=m+1

m
∑

i=1

vi(Li)ρi(Li, ·)λj(0, ·)

At each iteration, we solve the original and adjoint equations using an upwind
finite difference scheme and modify the descent direction accordingly using the
gradient computed above, which gives the increment in mij(·). The gradient of the
cost functional is used as input in a nonlinear optimization method. A number
of nonlinear optimization software are available, for example KNITRO, MINOS,
NPSOL, SNOPT, with the first one being used for this article.

The following algorithm was implemented and converged to a minimum of the
optimization program:

1 Solve the partial differential equations for the density on each link.

2 Solve the adjoint equations.

3 Evaluate the gradient of the cost functional.

4 Use this result in a nonlinear optimisation method.

5 Return to step 1 until numerical convergence.

We implement this optimization method on the network represented in Figure 9;
the links are taken from the high altitude en route jetways between Salt Lake City
and Oakland International Airport. We use jetways J56, J58-80, J84, J148, J156,
J158, J198, and J199. The input is constructed using ASDI/ETMS data.
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Figure 10. Evolution of the aircraft flow in aircraft per hour along
the final link at instants t = 1h, t = 2h, t = 3h in the absence of
control; the doted line represents the threshold flow. As can be
seen this limit is exceeded on several occasions.

Figure 11. Evolution of the aircraft flow in aircraft per hour along
the final link at instants t = 1h, t = 2h, t = 3h with an optimal
control strategy. The flow remains below the limit at all times.

We use the previous method for congestion mitigation, more precisely, we try
to keep the aircraft flow on the final approach link to Oakland TRACON under a
threshold value of 20 aircraft per hour. We represent the flow at the downstream
boundary of the final link at time intervals: 1 hour, 2 hours and 3 hours. The
flows in Figure 10 represent the flows without any control being applied, while the
flows in Figure 11 are obtained after using the continuous adjoint method. We note
that without control, the flows are often above the desirable threshold whereas we
manage to maintain the flow under the limit at all times by applying the optimal
control strategy. The method used here consists in finding an optimal routing
through the coefficients of the allocation matrix that will prevent sudden jumps in
aircraft density. These coefficients are automatically adjusted in order to allow the
best repartition of aircraft on the network; if a given link is becoming congested,
the allocation coefficient that regulates the inflow on this link will decrease and
correspondingly the other coefficients at this junction will increase, thus redirecting
the aircraft on less congested links. Thus, we are able to maintain a regular spacing
between the aircraft even if sudden increases in aircraft density are registered at
the entrance of the network. In the absence of control, these jumps in aircraft
density are not mitigated and eventually allow the aircraft flow to exceed the limit
(Figure 10).

5. Comparison of the four models’ performance. When we compare the pre-
dictive capabilities of the four models, it can be seen that the four models differ in
accuracy. From the validation performed in Section 3 (see Figure 8 in particular),
we can see that the PDE model displays the best prediction capabilities among all
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the models. As can be seen in Figure 8, the sector count prediction of the PDE
model is closer to the recorded ASDI/ETMS data, compared with the other three.
In comparing the four models, we will quantify each model’s error as well as its
computational efficiency.

5.1. Error analysis. The error analysis involves two comparisons: cumulated oc-
currence of sector count error breach (S), and the instantaneous sector count error.
Following the article [29], S is defined as the summation of time intervals under the
condition that difference of sector counts between the simulation and ASDI/ETMS
data is greater than or equal to a user-specified capacity limitation within a certain
time window, which is similar to a cumulative distribution function in statistics.
This is summarized in equation (21):

S =

T
∑

k=1

I{|ysim(k)−yASDI/ETMS (k)|≥Cs} (21)

where I represents the indicator function. The sector count is denoted by y(k),
ASDI/ETMS and simulated. The constant Cs is a user-defined threshold. The
time window we choose in our simulation is 1440 minutes (24 hours), i.e. T = 1440.
To measure the similarity in the simulation and the ASDI/ETMS data, different
values of Cs are used, and plots of percentage of breaches versus Cs are shown in
Figure 12. For example, if we choose Cs = 3, the percentage of breaches of the
MMM in sector ZOA32 is 15%, which means the predicted sector counts in ZOA32
by the MMM differ from the ASDI/ETMS data by at least three aircraft for 15%
of the time. As the value of Cs increases, the breach length for each model tends
to zero. This is because Cs is the aircraft count error limit. The PDE model is
close to zero breach when the aircraft count error limit is less than five, which has
the best predictive performance. The aircraft count error limits which bring the
CTM(L) and the MMM to zero breach are higher than the PDE model, while the
MM2D requires the largest aircraft count error to bring zero breach.

Figure 12. Cumulative distribution of breach of sector count error
for high load sector ZOA33 (unit is % of the time).

The instantaneous sector count error analysis is performed as well. This error
is the difference between the models’ aircraft count and the actual aircraft count
for each sector computed from the recorded ASDI/ETMS data at each time step in
the simulation. The corresponding relative error is the ratio between the absolute
instantaneous error and the actual count. Statistics of the absolute instantaneous
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error and relative instantaneous error for sector ZOA33 as a function of time for a
day are presented in Table 2.

Number 1 2 3 4 5

Name ZOA13 ZOA14 ZOA15 ZOA31 ZOA32

Number 6 7 8 9 10

Name ZOA33 ZOA34 ZOA35 ZOA36 ZOA43

Table 1. Indices for a portion of the considered sectors in Oakland
Center (numbers refer to Figure 13).

Absolute error (aircraft) Mean Max Variance

MMM 1.5456 9 2.4695

MM2D 3.5241 15.8750 12.4788

CTM(L) 1.2373 7 1.7758

PDE 0.7119 5 0.6328

Relative error Mean Max Variance

MMM 0.2706 2.5000 0.0933

MM2D 0.5204 2.3105 0.1579

CTM(L) 0.2000 3 0.0669

PDE 0.1160 2 0.0288

Table 2. Instantaneous error (absolute error and relative error)
statistics for high load sector ZOA33 on January 1st, 2005.

Figure 13 shows a summary of the max/mean error of the sector counts, and the
error variance as well. From Figure 13 we can see that the PDE model exhibits less
error and less variance than the other three.

The MM2D model has the largest predictive errors among the four, for two
major reasons: (i) The fineness of MM2D depends on the SEL size, a 1◦ × 1◦

latitude-longitude tessellation in [24], which is coarse compared with other models.
With smaller SEL size, MM2D has more states which increases the computational
complexity of the model. (ii) The parameters of MM2D (a and β) are assumed
constant, which usually differ from the actual parameters in the time of interest in
the real system.

5.2. Computational efficiency. The respective performance of the models are
compared (forward simulation). This enables us to assess their computational
tractability. For models based on the network graph (the CTM(L), the MMM
and the PDE model), it takes approximately 45 minutes to convert the aggregate
traffic flow graph model referred to in Section 2.5 according to each model’s spec-
ifications 2, while the MM2D model needs approximately three days to identify
the system parameters (a and β) using a full year of ASDI/ETMS data. Table 3
lists the CPU time and memory usage for the four models to predict sector counts.
The analysis is done for 75 high altitude sectors in Figure 3. The computations
are performed on a 1.6 GHz CPU, 2 GB RAM PC running Linux, using the c++
programming language. The CTM(L) has the fastest running time (20 minutes),
which is about 10 times faster than the PDE model and 15 times faster than the
MMM. The running time of the MM2D is relatively faster than the PDE model

2Constructing the graph model alone needs four days, using a full year of ASDI/ETMS data.



592 D. SUN, I. S. STRUB AND A. M. BAYEN

Figure 13. Left: Summary of the absolute instantaneous error of
aircraft sector count. Right: The relative error summary. Num-
bers on the y-axis correspond to the sectors listed in Table 1.

and the MMM. The difference between the CTM(L) and the PDE model is that the
time increments required for a PDE model simulation are smaller than the delay
unit used in the CTM(L). The reason why the MMM has the largest running time
is because the MMM must keep track of all the merge diverge nodes in the system,
for which a number of matrix multiplications are needed for all merge and diverge
nodes at each time step. For the PDE model and the CTM(L), the aircraft count
updates are based only on the previous counts and the path length (see Section 2.5).
Since the MM2D is based on a different modeling structure, i.e., by partitioning the
airspace into small blocks (see Section 2.4; in this study, a 1◦×1◦ latitude-longitude
tessellation is applied), the number of states of the MM2D is smaller than those of
the PDE model and the MMM, but larger than that of the CTM(L). This is why
the MM2D has comparable computational efficiency to the CTM(L).

6. Conclusion. Four Eulerian models were implemented and compared in our
study. We started with the Large-capacity Cell Transmission Model, and then
presented a modified version of the Menon model adapted to fit a general network
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Models CTM(L) PDE MMM MM2D
CPU time (minutes) 20 224 310 45

Max RAM usage (MB) 759 1262 697 732

Table 3. Computational efficiency (runs performed on a 1.6 GHz
CPU, 2 GB RAM PC running Linux, using c++).

topology. We also presented a new application of the Lax Wendroff scheme to a par-
tial differential equation representing air traffic flow. Finally, we implemented the
two-dimensional Menon model. The models were applied to high altitude traffic for
six Air Route Traffic Control Centers in the National Airspace System. Each model
was used for simulation over an entire day. Compared to flight data, the models
show accurate predictive capabilities. The models were also compared in terms of
their computational time and memory requirements. Control strategies were de-
signed and implemented on similar benchmark scenarios for two of the models, and
compared as well.

Future work will include using a full year of Aircraft Situation Display to Indus-
try, Enhanced Traffic Management System data to study hourly/weekly patterns
of air traffic flows to show how using these patterns can improve the respective
predictive capabilities of each of the models. More simulations, including different
days and controlled experiments, will be run in order to underline the strengths
and weaknesses of each model. Finally, the models will be used to help designing
new features of the Next Generation Air Transportation System. In an ongoing col-
laboration with Metron Aviation, we will use the Large-capacity Cell Transmission
Model to design efficient traffic flow management schemes, in particular, Airspace
Flow Programs. The Large-capacity Cell Transmission Model is the most computa-
tionally tractable model among the peer models shown in this study. Based on this
model, dual decomposition method is currently used for optimization of traffic flows
for the full National Airspace System. We will also interface the models with Future
ATM Concepts Evaluation Tool to perform automated bottleneck identification, to
better understand the effect of weather on traffic flow patterns, in particular, in
light of seasonal patterns.
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