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Abstract

The recently proposed quadratic configuration interaction (QCI) method is com-

pared with the more rigorous coupled cluster (CC) approach for a variety of chemical

systems. Some of these systems are well represented by a single-determinant reference

function and others axe not. We consider the infinite-order singles and doubles cor-

relation energy, the perturbational triples correlation energy, and a recently devised

diagnostic for estimating the importance of multireference effects. We have also calcu-

lated the spectroscopic constants of Cutt, the equilibrium structure of cis-(NO)2 and

the binding energies of Be3, Be4, Mg3 and Mg4 using both approaches. The diagnostic

for estimating multireference character clearly demonstrates that the QCI method be-

comes less satisfactory than the CC approach as non-dynamical correlation becomes

more important, in agreement with a perturbational analysis of the two methods and

the numerical estimates of the triple excitation energies they yield. The results for

Cull show that the differences between the two methods become more apparent as

the chemical system under investigation becomes more multireference in nature and

the QCI results consequently become less reliable. Nonetheless, when the system of

interest is dominated by a single reference determinant both QCI and CC give very

similar results.
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Introduction

There has been considerable controversy surrounding the quadratic configuration

interaction (QCI) electron correlation method suggested by Pople, Head-Gorclon and

Raghavachaxi 1 (PHR) in 1987. PHR derived their method from the singles and doubles

configuration interaction (CISD) equations by adding the minimum number of terms

which ensure exact size-consistency at the singles and doubles level (denoted QCISD).

The resulting equations have the following form:

(_ol_ - El(1 + T1+ T2)¢o) = 0 (1)

(¢_1_ - +El(1+ T1+ T2+ T,T2)_o) = 0 (2)

(@i_biH -- El(1 -t- T1 -t- T2 -t- (1/2)T_)@0) = 0 (3)

Here _/o is the Haxtree-Fock determinant, and T1 and T2 axe cluster operators gen-

erating singly- and doubly-excited configurations _ and @i_b multiplied by cluster

amplitudes t_ and t_. Perhaps the least atipealing aspect of the QCISD method is

the fact that because the singles and doubles equations (2) and (3) axe modified in

different ways, there is no formally defined wave function associated with QCISD. This

has little consequence in practice_ however, as molecular properties may be determined

efficiently as analytical energy derivatives.

Several papers 2-5 have appeared recently pointing out that QCI theory can be

obtained from coupled-cluster theory (CC) by omission of terms from the coupled-

cluster singles and doubles (CCSD) equations

(4)

(_?IH - El(1 + Tx ÷ T2 + (1/2)T_ + T_T2 + (1/3!)T_a)_0) = 0 (5)

(+_bl_ - EI(I + T_+ T: + O/2)T_ + T,T: + 0/3!)T?
(6)

÷ (1/2)T_ ÷ (1/2)T_T2 -t- (1/4!)T_)_o) -- 0

As Bartlett has discussed 5 , the use of an exponential cluster ansatz for the wave func-

tion guarantees size-extensivity (correct scaling), and this property is then unaffected

by the omission of specific contributions like those by which QCISD and CCSD differ.

In fact, QCI limited to double excitations is identical to CC theory limited to doubles
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(referred to as CPMET 6 or CCD), as was pointed out by PHR and as is easily seen

by comparing (1) and (3) with (4) and (6) after omitting terms in Ta. Furthermore,

it has been shown 2 that all computational expressions of order n 6 (where n is the

number of orbitals) that appear in CCSD theory also appear with the same coefficients

in QCISD, so that the ultimate computational cost of efficient implementations of the

two methods will be virtually identical. This is what is observed when an efficient,

vectorized CCSD code 7 is modified to perform QCISD calculations. Which method is

used would then seem to be largely a matter of taste unless the terms in CCSD which

are omitted in QCISD cause the CCSD procedure to give superior (or inferior) results.

There has been dissension about this last point. In response to comments as-

serting that the CCSD approach was more securely founded than QCISD 3 , Pople and

coworkers 4 expressed the opinion that as long as both approaches are exact for the

two-electron problem, and are size-consistent, there is no reason to favor one approach

over the other. More recently, however, Raghavachari et al. s have performed a per-

turbational analysis of the QCI and CC methods, following the earlier perturbational

analysis of CC methods by Kucharski and Bartlett 9 and found that CCSD is more com-

plete than QCISD at fifth-order in M¢ller-Plesset perturbation theory (MPS). MP5 is

the lowest order in which QCISD and CCSD differ, although neither method is fully

correct to fourth order in perturbation theory (MP4) as the contribution of connected

triple excitations is not included. Hence there is at least agreement that from the point

of view of a perturbation theory analysis CCSD (or CC theory in general) is the more

complete method. 2-°

One important aspect of a reliable single-reference correlation treatment is that

it should be possible to determine when multireference effects become large enough

to compromise the results. We have recently introduced for this purpose a diagnostic

denoted Ta, defined by 1°

= Ilhll/N _/2 (7)

where _1 is the vector of single excitation amplitudes determined by solving (4)

through (6) and N is the number of electrons correlated in the CCSD treatment.

Our previous investigation 1° showed that a Ta value of 0.02 or greater indicates a de-

gree of multireference character large enough to cast serious doubt on the reliability

of single reference correlation treatments. We also observed this diagnostic to be a
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_J more reliable measure of multireference character than either the reference function

weight or individual excited configuration weights in a singles and doubles CI (CISD)

treatment. In the present work we shall investigate the qCISD analog of Ta, denoted

Q1 and obtained from the formula (7) and the amplitudes from eqs. (1) through (3).

In addition to the QCISD method, PHR also introduced a size-consistent, per-

turbational approach designed to incorporate the major effects of connected triple

excitations and to correctly account for disconnected triple excitations. This method

is similar to the +T approach suggested by Bartlett and co-workers 11d2 for CCSD

except that an additional term arising from MP5 is also included. The MP5 term

involves the interaction of singles and disconnected triples and its inclusion is argued

to be a more consistent treatment of triple excitations. We discuss several approaches

for including the effect of triple excitations in the next section: these approaches can

be applied in either CCSD or QCISI) calculations, s

The central theme of the present study is a numerical investigation and compar-

ison of the QCISD and CCSD methods and the various ways of including the effects

of triple excitations. PHR presented some comparisons of QCISD with CCSD and full

CI (FCI) benchmarks, but the latter are available for a rather limited range of bond-

ing situations and only total energies were compared. We have investigated a large

number of molecules (and atoms) which vary from being strongly dominated by the

Hartree-Fock reference configuration to exhibiting a large degree of multireference be°

havior. Our study includes the binding energies of Be and Mg trimers and tetramers,

computed with the QCI and CC methods and compared with accurate multireference

CI (MRCI) values. In addition, we have determined the equilibrium bond length and

harmonic frequency of Cull and the equilibrium structure of cis-(NO)2 at various levels

of theory.

The next section contains a brief summary of the theoretical methods used to-

gether with a more detailed discussion of the various corrections for triple excitations.

The results, including discussion, are presented in the third section and our conclusions

in the final section.

Computational methods

Most of the chemical systems considered in this study have been investigated
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previously and full references to the basis sets and geometries are given in Tables I and

2. The reader is referred to the earlier work for a detailed description of basis sets and

geometries. We include here only a brief description of these data. Table 1 gives the

size of the primitive and contracted basis, our designation and the reference from which

the orbital exponents and contraction coefficients may be obtained. In forming the

designation for each basis two rules have been followed. First, a generally contracted

atomic natural orbital (ANO) basis set is is denoted by square brackets, e.g., [4321],

containing the number of contracted s, p, d and f functions, respectively. Second, a

basis set constructed using a segmented contraction scheme is designated as 7s3p2dlf,

for example. In most cases where a segmented contraction is used, the contraction

has been performed over the core atomic orbitals, allowing maximum flexibility in

the valence region. For those cases where the polarization function orbital exponents

are not given in the appropriate earlier reference the exponents are listed in Table 1.

Where more than one level of polarization function has been included (e.g., 7s3p2d

Be) the exponents for each level are separated by a semicolon.

Only the valence electrons were correlated in the CC and QCI procedures. For

segmented contracted basis sets virtual molecular orbitals that are core counterparts

were deleted from the correlation procedure. The molecular orbitals were taken from

a closed-shell Hartree-Fock calculation. The diagnostic Ta 1° and the QCISD analog

(_1 were defined in the Introduction.

An estimate of the energy lowering due to connected triple excitations was

evaluated using the CCSD+T(CCSD) ax (or QCISD+T(QCISD)) and CCSD(T) 8 (or

QCISD(T) a) approximations. For simplicity we abbreviate CCSD+T(CCSD) to

CCSD+T, and likewise QCISD+T. These +T methods involve using the converged t2

amplitudes from the CCSD (or QCISD) equations in evaluating the connected triples

contribution to fourth order in perturbation theory a4 , denoted MP4(T). The CCSD(T)

and QCISD(T) approaches include an additional term, denoted MP5(ST), arising in

fifth order of perturbation theory and involving the interaction of triple excitations

with singles 1,s . This term is included in the CCSDT-1 method and other more elab-

orate CC treatments al'l_-

The formula for E(T) (the CCSD(T) triples energy) has been given previously

in a spin-orbital basis 8 , but not in a spin-adapted form for the closed-shell case. We

5



x_j k therefore present the necessary equations here in order to aid future implementations.

1

E(T) = _ E E [TXTab¢ T/-abe_,.,_"ijk + "ijk 1^

ijk "*be

( , _xr_bc W_b_ Txr_b_ _ 4 w_b_ T_b_ rAr_b_ / n_b_
-z,,ijk _- kij "4- " jki kji -- "" ikj -- "'ilk )/s'ijk

(8)

where vab_ and R,-abc given by• ijk ,, ijk are

,r=b= _ (jb]kc)t? + (ialkc)t_ + (ialjb)t t"ijk (9)

wiabe _abc['_ "_ • e yji, = ijk t/.._ (*albf)tlO - _ (ialjrn)t_J,],

y m

Dabe
and the permutation operator _ O'k is defined by

(10)

eiabcfabe_ fabe_ (bae_ [cba\ [acb_ [cab_ /bea_
jk kijk ] : kijk ) _- kjik ] q- kkji ] "_ _ikj ] "3L kkij ] _- k jki ]" (11)

Dabc
ijk is the triples energy denominator

Dabe
= f. + fjj + Ykk-- -- Ybb-- Ac. (12)

The matrix dements flt etc are diagonal dements of the closed-shell Fock operator,

and the t_, t_ amplitudes are those defined by Scuseria et al. 15 In the above

equations indices i, j and k refer to occupied spatial orbitals while a, b and c refer to

unoccupied orbitals. E+T -- the MP4(T) energy expression -- is obtained by omitting

"[Ta bc
Tribe from equation (8). The QCISD(T) triples energy is obtained by replacing "_jk• ijk

in equation (8) with 2V_ _ and using the QCISD rather than the CCSD amplitudes in

equations (9) and (10). This factor of 2 appears because while part of the disconnected

triples contribution to the MP5 energy is included in the CCSD equations, this is not

true for the QCISD equations. We note that equation (10) for grab_ leads directly to
"" i_k

the spin-adapted form of _abe presented by Noga and Bartlett le and Scuseria and
_'ijk

Schaefer lr for the CCSDT-1 method.

The CC and QCI energies were determined with VCCSD, a vectorized closed-

shell CCSD program, r The integral and SCF calculations and integral transformations

were performed with MOLECULE-SWEDEN is . All calculations were performed on

the NASA Ames ACF and NAS Facility CRAY ¥-MP/832 computers.
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Results and Discussion

A. Total Energies

The geometries and basis sets used for the systems studied here are listed in

Table 2. The unique bond length is specified for the Bes, Mgs, Be4 and Mg4 clusters.

The trimers form an equilaterai triangle and the tetramers adopt a tetrahedral struc-

ture. The pentamers, Bes and Mgs, adopt a trigonal bipyramidal structure and their

geometry is specified by two bond lengths. The fLrst refers to the distance between

equatorial atoms and the second gives the distance from an apical atom to an equa-

torial atom. The bond lengths and bond angles for FOOF, (NO)2 and FNNF are the

DZP MP2 structures reported in Ref. 19. Total energies for all systems considered are

listed in Table 3.

We consider first the CCSD and QCISD correlation energies in Table 3. It is

apparent from the results that the terms present in CCSD but missing in the QCISD

procedure reduce the magnitude of the corrdation energy: in all cases reported here the

QCISD correlation energy is larger in magnitude than the CCSD corrdation energy.

It is noteworthy that the difference between the two methods is smallest for those

systems strongly dominated by a single reference configuration (that is, those that

have the smallest values of _ or Q1). Clearly, the terms in eqs (5) and (6) that are

missing in eqs (2) and (3) become more important as the dominance of the single

reference configuration is reduced. For example, the CCSD and QCISD correlation

energies for Ar are very close, at -0.23426 and -0.23428 Eh respectively, but for

Os (where the SCF configuration is a much poorer reference) the difference between

the QCISD correlation energy of -0.59237 Eh and the CCSD value (-0.58861) is

two orders of magnitude larger. This observation is consistent for all of the systems

included in Table 3, so that the better the SCF wave function approximates the true

wave function, the better the agreement between the QCISD and CCSD correlation

energies. Where they disagree, the QCISD value is larger in magnitude than the CCSD

result.

A similar trend is found when comparing the MP4 part of the triples energy,

MP4(T), obtained with the CCSD and QCISD amplitudes. The energy lowering due

to the connected triples is always larger in absolute value when determined with the

QCISD doubles amplitudes. Note that the MP4(T) contribution is necessarily negative

7



(provided that the occupied orbitals are lower in energy than the virtual orbitals).

Conversely, the fifth-order contribution MPb(ST) is observed to be positive for all

the systems studied here (although there is no formal reason for this to be so), and

it is also larger when evaluated with the QCISD amplitudes than with the CCSD

amplitudes. There is no doubt that for the MP5 term much of the difference between

QCI and CC is due to the factor of two difference in the energy contribution discussed

above, but this alone does not explain the larger QCI MP5 term for any of the systems

investigated here.

Since the MP4(T) term is negative and the MPb(ST) term is observed to be

positive, and given that these are both larger in magnitude when evaluated with the

QCISD amplitudes than when determined with the CCSD amplitudes, it is not certain,

a priori, which method will yield the larger E(T). In fact, in all cases the total energy

lowering due to triple excitations is always greater when evaluated with the CCSD

amplitudes rather than with the QCISD amplitudes. However, since the QCISD en-

ergy is lower than the CCSD energy, the QCISD(T) energy is usually lower than the

CCSD(T) value. As a consequence of the cancellation discussed above the energy

differenceECCSD(T) --EQClSD(T) issmaller than ECCSD --EQclsD.

The T1 and Q1 diagnostics reported in Table 3 follow the same trend as the singles

and doubles correlation energy. Thus the two diagnostics are very similar for those

molecules which are well represented by a single determinant reference wave function

(i.e., for those cases where T1 and Q1 are small s) but begin to exhibit differences as

the multireference nature of the chemical system increases. For example_ the T1 and

Q1 diagnostics for Ar are both 0.0025 (Q1 is actually slightly larger than T1 in the

fifth decimal place) but for FOOF T1 and Q1 are 0.0308 and 0.0345, respectively. It is

also important to note that in all cases investigated here Q1 > _ demonstrating that

QCISD results will deteriorate faster than CCSD results as non-dynamical correlation

becomes more important. Up to diagnostic values of 0.02 (our suggested threshold

for the onset of important non-dynamical correlation effects), or even somewhat larger

values for the Be and Mg clusters, the similarity of the Q1 and T1 results suggest that

Q1 should provide a useful criterion for the adequacy of a single reference treatment.

However, Q1 will become somewhat too pessimistic (i.e. will increase too rapidly) as

the multireference character increases: the best numerical example of this is given by



_j Cull, where _ and _a have the values 0.0356 and 0.0557, respectively. In the next

section we will discuss what effect this has on computed spectroscopic constants.

B. CuH

It has been shown 2° that Cull is a difficult system to describe correctly because

of the strong mixing of different atomic asymtoptes of Cu in the molecule. Since the

results for Cull exhibit the largest differences between the QCI and CC approaches, it

is of interest to investigate this molecule in more detail. Table 4 lists the equilibrium

bond length and harmonic frequency obtained from a parabolic fit in 1/r of three

points around the minimum. Comparing the SCF results with those from QCI and

CC it is evident that electron correlation shortens the Cull bond length and increases

the harmonic frequency. On examining the CCSD, CCSD_-T and CCSD(T) values a

consistent picture is obtained: the CCSD re value is shorter than the SCF result, while

we is larger; the CCSD-{-T bond length is even shorter than the CCSD value and the

CCSD+T harmonic frequency is correspondingly larger. As expected, the MP5(ST)

term somewhat reduces the effect of the triples (consistent with the behavior of the

total energy), and the CCSD(T) spectroscopic constants liebetween the CCSD and

CCSD+T values.

The QCI procedure, on the other hand, does not yield a consistent picture

of the effects of including electron correlation. Specifically, re decreases in the

order SCF > QCISD > QCISD+T > QCISD(T) and we increases in the order

SCF < QCISD(T) < QCISD < QCISD+T, so there is no one-to-one correspondence

between changes in bond length and changes in frequency. In addition, the changes to

we are much larger in magnitude than was the case for the CC procedure: the effect

of the MP5(ST) term is -149 cm -1 using the QCISD amplitudes but only -33cm -1

using CCSD amplitudes. Such large effects at higher orders of perturbation theory

suggest that the domain in which the QCI-based expansion can be safely applied is

much smaller than for CCSD. It certainly appears that neither QCISD nor the ver-

sions that include perturbational triples are capable of treating the non-dynamical

correlation effects in Cull adequately.

C. Energy DifFerences

Table 5 presents a comparison of the CCSD(T), QCISD(T) and MRCI binding

energies for the Ben and Mg_ (n : 3,4) clusters and a comparison of the CCSD(T) and

9



QCISD(T) estimatesof the barrier to inversion of CH_-. The MRCI results are taken

from Ref. 21, where it was also shown that the CCSD procedure was incapable of pre-

dicting accurate binding energies for small Be and Mg clusters. Such clusters represent

sometMng of a spedal case since in the dissociation limit, assuming only the valence

electrons are correlated, a size-consistent, infinlte-order singles and doubles procedure

(such as CCSD or QCISD) represents a full CI. As the atoms begin to interact these

procedures are, of course, no longer equivalent to a full CI and consequently there is a

bias towards the dissociation limit in the description of bond formation. The binding

energies of these systems are thus usually underestimated by the more elaborate singic-

reference correlation treatments, and this is well illustrated in Table 5 by comparing

the CCSD and QCISD results with those obtained from MRCI wave functions. On

the other hand, the CCSD(T) and QCISD(T) methods reproduce the accurate MRCI

values very well, and there is little difference between the CC and QcI approaches

for these systems. The CCSD(T) and QCISD(T) binding energies of the trimers are

still about 2 kcal/mole too small, but for Mg4 the CCSD(T) and QCISD(T) binding

energies are nearly equal to the MRCI value and for Be4 they are actually larger than

the MRCI value. We may therefore draw two conclusions from these results: for small

Be and Mg clusters there is little difference between the CCSD(T) and QCISD(T)

energies and, more importantly, these procedures appear to yield very good binding

energies for small Be and Mg clusters. We should note here that this conclusion does

not apply to the very smallest clusters, the dimers, for which only the MRCI treatment

is satisfactory. Bonding in the higher ollgomers of Be and Mg is quite unlike that in

the dimers, and it is difficult to draw any conclusions about bonding in the former

from calculations on the latter. Thus Sosa et al. 22 have shown that the full triples

contribution T3 from CCSDT strongly affects the results for Be2, but the significance

of this for the higher ollgomers is not clear.

The excellent Be and Mg cluster binding energy predictions from CCSD(T) and

QCISD(T) are somewhat unexpected, and merit further consideration. Given the

large degree of non-dynamical correlation in Be and Mg clusters, it is not clear why

even a very elaborate single-reference correlation treatment should be appropriate.

The importance of connected triple excitations for metallic systems has been known

for some time 23 , though there is no published evidence that a simple perturbation
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theory estimate of their energy contribution would be adequate, and in any event it

is not clear how relevant considerations based on metallic systems are to these small

clusters. While the MP4(T) energy contribution is large, as can be seen from the total

energies of the clusters given in Table 3, the MP5(ST) contribution is much smaller

(by some two orders of magnitude). It would therefore appear that the disconnected

triple excitation contribution is small, suggesting that whether it is partly included (as

would be the case for CCSD) or neglected, as in QCISD, makes little difference. This

is again rather surprising: in view of the large non-dynamical correlation effects and

strong orbital relaxation indicated by the T1 and Q1 diagnostics, disconnected triples

might have been expected to be important in describing these clusters. In fact, the

ratio of the MP4(T) and MP5(ST) contributions is larger than for any other system

in Table 3 except for the argon atom, and the latter is the system most strongly

dominated by the SCF reference configuration of any in the table. What makes this

ratio so large is that the MP4(T) energies for the Be and Mg clusters are much larger

than for other systems with the same number of electrons correlated. Overall, the

results presented here support the rather surprising conclusion that a perturbation

theory estimate of the energy lowering due to triple excitations works very well for

small Be and Mg clusters. It is possible that this is due to a cancellation between

the omission of terms in connected quadruple and higher excitations and the omission

of terms in higher orders of perturbation theory involving connected triples, but this

is beyond the scope of the present work. Whatever the cause_ if the perturbational

triples estimate works well for a variety of cluster sizes it will allow the determination

of accurate binding energies and structures for larger Be and Mg clusters, for which the

MRCI procedure used for the trimers and tetramers becomes impractically expensive.

The barrier to planarity in CH s is found to be 2.3 kcal/mole using both the

CCSD(T) and QCISD(T) methods. This value is slightly less than the CCSD estimate

(2.4 kcal/mole). Thus triple excitations affect the barrier to planarity very little, and

the CC and QCI approaches yield essentially identical results. This is consistent with

the value for the T1 and Q1 values given in Table 3, which suggest that non-dynamical

effects are relatively unimportant for describing the inversion process.

D. cis-(NO)2

Our final comparison concerns the equilibrium structure of cis-(NO)2, which is

11



\J not known reliably, although there has been a recent determination of the vibrationally

averaged rotational constants. 24 The two gas-phase structural determinations which

have been published differ substantially in the N-N distance and the NNO angle. 2s,26

The results of several theoretical studies 19'27-2g also yield equilibrium structures with

large differences. In a recent study 19 a range of single-reference correlation treat-

ments, including perturbation theory and the CCSD method, were used to compute

equilibrium structures. The predictions showed a marked variation with the type of

correlation treatment, but little variation with respect to the one-particle basis set

(provided this was of at least DZP quality). In view of the strong dependence of the

predicted geometry on the correlation treatment, it is of interest to investigate how

the CCSD and QCISD results (with and without triple excitations) compare. A full

comparison of computed and experimentally deduced structures would require anhar-

monic force field data for vibrational averaging, but here we are concerned only with

the relative performance of the QCI and CC approaches.

Comparison of the QCISD and CCSD equilibrium structures of Table 6 shows

relatively small differences, with the CCSD N-N distance being slightly longer and

the NNO angle slightly smaller. The QCISD(T) and CCSD(T) equilibrium structures

are also similar, although the differences between the CC and QCI values for the N-N

distance and the NNO angle are somewhat larger when the triples are included. This

is probably related to the importance of non-dynamical correlation for cis-(NO)2. The

effect of triple excitations themselves is much larger than any difference between the

QCI and CC results. The CCSD(T) N-N distance is much longer than the CCSD value

and the CCSD(T) NNO angle is 6.8 ° smaller than the CCSD result. As with Cull,

the correlation effects on the structure from higher than double excitations augment

the effects clue to single and double excitations: there is no cancellation between the

various contributions.

Conclusions

Comparison of the singles and doubles electron correlation energy for several

molecules demonstrates that the QCISD correlation energy is larger in magnitude

than the CCSD correlation energy. Conversely, the sum of the MP4(T) and MPS(ST)

energy, when evaluated with the CCSD t[ and t_ amplitudes, is generally larger in
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x._J magnitude than when evaluated with the corresponding QCISD amplitudes. As a

result, it is not obvious how the QCISD(T) and CCSD(T) correlation energies will

compare: our observation is that for all systems we have studied, other than Cull,

the QCISD(T) total correlation energy is larger in magnitude than the CCSD(T)

result. A very significant observation is that the inclusion of triple excitations generally

reduces substantially the difference between the CC and QCI treatments: the difference

EGOSD(T) -- EQOISD(T) is usually smaller than the difference ECCSD -- EQOISD.

The only exception is again Cull, for which the triples energy evaluated using the

QCISD amplitudes is only half that given by the CCSD.

The T1 and Q1 diagnostics demonstrate conclusively that the QCI method is less

able to describe non-dynamical electron correlation than the CC method, at least at

the level of single and double excitations. Perturbational inclusion of triple excitations

assists to some extent, but even here QCI is less stable than CC for extreme cases like

Cull. While inclusion of still higher excitations would presumably improve the stability

of both CC and QCI methods, this seems to be impractical at present. The diagnostic

suggested in Ref. 10 allows an easy identification of troublesome cases, and correlates

well with the stability of the QCI method: as the value of the diagnostic _ becomes

larger, the the difference between the QCI and CC results becomes greater, and the

QCI values become less satisfactory. Conversely, where T1 is small the system is well

described by a single reference configuration and the differences between the QCI and

CC results are small.

% .

Somewhat surprisingly, the CCSD(T) and QCISD(T) methods both give very

good binding energies for the Bea, Be4, Mga and Mg4 clusters as determined by com-

parison with very accurate MRCI results. Our previous study of these systems shows

that the correlation effect on binding is entirely due to dynamical correlation, but that

since non-dynamical correlation effects on the total energy are large and must be ac-

counted for properly in order to describe the dynamical correlation accurately, reliable

binding energies require an accurate treatment of both non-dynamical and dynamical

correlation. With large non-dynamical correlation effects it is not surprising that triple

excitations are very important in a single-reference-based treatment, but it is surpris-

ing that the perturbation theory estimates are so good. It is conceivable that there is

a cancellation between the (neglected) infinite-order effects of triples and the effects of

13



connected quadruple and higher excitations, but at present CCSD(T) appears to offer

the best prospect for obtaining reliable structures and binding energies for Be and Mg

pentamers and larger clusters.

In answer to the question of which method, QCISD or CCSD, should be used, our

numerical investigations suggest that where the wave function is dominated by a single

reference configuration there is little difference between the results of the two methods,

and so there are only formal reasons for preferring CCSD. Commonly, the effects of

including triple excitations bring the two sets of results into even better agreement.

The _ and Q1 diagnostics provide a useful guide to increasing importance of non-

dynamical correlation effects (although the former diagnostic seems more reliable than

the latter), and to situations where neither CCSD or QCISD are suitable. In cases in

which non-dynamical correlation is beginning to influence the results, QCISD seems

to be less widely applicable, in terms of showing erratic behavior, than CCSD. This

cannot always be corrected by including triple excitations, at least not at the level of

perturbational inclusion of triples, so that in such cases the CC-based methods would

be preferable.
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V

Table 1

Basis set designations and definitions used in this study.

Atom PHmitive Basis Designation Reference Polarization

Exponents

H 4s DZP 30,31 0.75

H 6s2p TZ2P 30,33 1.0,0.33

H 8s6p [32] 13

He 8s2p 6s2p 32 1.0,0.33

Li 9s4p 4s3p 32

Be 12s5p2d 7s3p2d 32 0.3,0.1

Be 12sTp4d2f [5321] 21

C 10s6p2d TZ2P" 30,33 1.5,0.35

C lls7p4dlf TZ4Pf+diffuse b 30,33 2.25,0.75,0.25,0.06;0.8

N 9s5pld DZP 30,31 0.80

N 10s6p2d TZ2P" 30,33 1.5,0.35

O 9sSpld DZP 30,31 0.85

O 10s6p2d TZ2P" 30,33 1.5,0.35

F 9sSpld DZP 30,31 1.0

F 10s6p2d TZ2P" 30,33 1.5,0.35

Ne 10s6p2d TZ2P = 32 4.5,1.3

Mg 12s9p2d 6sSp2d 34 0.3,0.1

Mg 20s15pSd [531] 21

Mg 21s16pSd6f [7631] 21

Ar 17s12p8d6f [8753] 13

Cu 14sllp6d3f 8s6p4dlf 35

a The 5s3p contraction of reference 33 was used.

b The 5s4p contraction of reference 33 was used.

c A 5s3p contraction, similar to those given in reference 33, was constructed.
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Table 2

Basis sets and molecular geometries '_.

Molecule Basis Set Geometry Reference

Cull b 2.850 20

Bea 7s3p2d 4.273 21

Be4 7s3p2d 3.915 21

Be5 c 7s3p2d 3.831,3.929 21

Mga 6s5p2d 7.522 21

Mg4 6s5p2d 6.102 21

Mg5 c 6s5p2d 5.967,6.667 21

FOOF DZP d 19

(NO)2 DZP d 19

cis-FNNF DZP d 19

trans-FNNF DZP d 19

TS-FNNF _ DZP d 19

Oa DZP 2.406,117.1 ° 36

Ctt_- TZ4Pf+diffuse 2.070,110.8 ° 7

p-CtI_- f TZ4Pf+diffuse 2.044 7

HF TZ2P 1.734 -

H20 TZ2P 1.809,104.8 ° -

CH4 TZ2P 2.052 -

Ne TZ2P - -

Ar [8753] - -

a Bond lengths are in atomic units, a0.

b The Cu basis from Table 1 and the [32] hydrogen ANO basis set.

c Tdgonal bipyramidal. The first distance corresponds to a side of the triangular base

and the second to a side of the pyramid.

d The MP2/DZP equilibrium structures of Ref. 19.

Transition state of cis-trans isomerization.

f Planar Ctt_- ; Dab symmetry.
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Table 3

Comparison of the _, QI diagnostics and the various

CC and QCI correlationenergiesa.

Molecule

CuH 0.0356 -0.43617 -0.02153 0.0557 -0.44247 -0.02683

0.00477 0.01711

Be3 0.0360 -0.15322 -0.01390 0.0370 -0.15334 -0.01411

0.00018 0.00041

Be4 0.0318 -0.21197 -0.02488 0.0337 -0.21267 -0.02548

0.00056 0.00128

Be_ 0.0290 -0.28023 -0.03796 0.0313 -0.28125 -0.03864

0.00086 0.00199

Mga 0.0127 -0.10740 -0.00297 0.0128 -0.10742 -0.00297

0.00002 0.00005

Mg4 0.0204 -0.16172 -0.01386 0.0214 -0.16215 -0.01404

0.00033 0.00072

Mgs 0.0226 -0.20338 -0.01797 0.0241 -0.20397 -0.01828

0.00046 0.00103

FOOF 0.0308 -0.81039 -0.05186 0.0345 -0.81574 -0.05542

0.00480 0.01194

(NO)2 0.0209 -0.71363 -0.03960 0.0225 -0.71855 -0.04114

0.00409 0.00929

cis-FNNF 0.0182 -0.69366 -0.02780 0.0200 -0.69805 -0.02917

0.00319 0.00729

trans-FNNF 0.0163 -0.69131 -0.02670 0.0176 -0.69536 -0.02773

0.00293 0.00655

TS-FNNF 0.0251 -0.70960 -0.03611 0.0311 -0.71652 -0.04056

0.00505 0.01381
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Table 3 continued

Molecule _ EccsD E b 21 EQCISD E b

r

O_ 0.0284 -0.58861 -0.03501 0.0309 -0.59237 -0.03709

0.00311 0.00760

CH_ 0.0139 -0.22726 -0.01009 0.0144 -0.22777 -0.01018

0.00039 0.00079

p-CH_ 0.0111 -0.22737 -0.01017 0.0113 -0.22786 -0.01023

0.00036 0.00074

HF 0.0104 -0.23704 -0.00562 0.0107 -0.23774 -0.00573

0.00046 0.00097

H20 0.0096 -0.24139 -0.00693 0.0098 -0.24190 -0.00700

0.00031 0.00064

CH4 0.0073 -0.20143 -0.00567 0.0074 -0.20168 -0.00569

0.00018 0.00035

Ne 0.0065 -0.23922 -0.00349 0.0066 -0.23955 -0.00352

0.00022 0.00046

Ar 0.0025 -0.23426 -0.00803 0.0025 -0.23428 -0.00803

0.00002 0.00005

All correlated wave functions are based upon SCF molecular orbitals. Only valence

electrons have been included in the correlation procedure. Correlation energies are in

atomic units, Eh.

b The upper value corresponds to the MP4(T) term and the lower value corresponds

to the MP5(ST) term. All triples energies were evaluated with the converged singles

and doubles amplitudes. See the text for further details.
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Table 4

The equilibrium bond distance and harmonic frequency of Cur. _

Method r, Cao) to,(cm -1)

SCF 2.952 1687

QCISD 2.830 1830

QCISD+T 2.813 1948

QCISD(T) 2.803 1799

CCSD 2.835 1781

CCSD+T 2.807 1852

CCSD(T) 2.814 1819

a The basis set described in table 3 was used.
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Table 5

Comparison of QCISD(T) and CCSD(T)

in determining energy differences2

Molecule Basis Set Geometry AEcc AEqcz AE_RcI

Be3 [5321] 4.199 c 20.4(11.3) 20.5(11.4) 22.4

Be4 [5321] 3.900 c 79.4(63.5) 79.8(64.0) 77.3

Mg_ [7631] 6.373 c 5.7(1.7) 5.8(1.8) 6.3

Mg4 [531] 6.102 c 15.9(8.1) 16.0(8.3) 16.2

Ctt 3 TZ4Pf+diffuse d 2.3(2.4) 2.3(2.4)

° For the Be and Mg clusters AE refers to the dissociation energy whereas for CH_" it

is the barrier to planarity. Bond lengths given in atomic units and energy differences

in kcal/mole. Values in parentheses axe the singles and doubles results.

b Taken from Ref. 21.

c Optimized MRCI geometries from Ref. 21.

d Geometries for the planar and pyramidal Ctt_- given in table 2.
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Table 6

The equilibrium structure of cis-(NO)_, a

Parameter CISD QCISD CCSD QCISD(T) CCSD(T)

Energy -259.111315 -259.173099 -259.168101 -259.208994 -259.208030

T1 or _1 0.02281 0.02094 0.02218 0.02111

rN-N 1.742 1.927 1.931 2.319 2.354

rN-O 1.164 1.181 1.177 1.181 1.180

LNNO 106.4° 102.2° 102.1° 95.8° 95"3°

. r

The DZP basis set described in table 1 was used. The CISD results are taken from

reference 19. Energies are in Hartrees, Eh, and bond lengths are in ._.
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