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Viet Thuy Vu , Member, IEEE, and Hans Hellsten

Abstract— The aim of this letter is to compare two incoherent
change-detection algorithms for target detection in low-frequency
ultrawideband (UWB) synthetic aperture radar (SAR) images.
The considered UWB SAR operates in the frequency range from
20 to 90 MHz. Both approaches employ a likelihood ratio test
according to the Neyman–Pearson criterion. First, the bivariate
Rayleigh probability distribution is used to implement the like-
lihood ratio test function. This distribution is well known and
has been used for change-detection algorithms in low-frequency
UWB SAR with good results. Aiming to minimize the false alarm
rate and taking into consideration that low-frequency UWB
SAR images have high resolution compared to the transmitted
wavelength, the second approach implements the test by using
a bivariate K-distribution. This distribution has scale and shape
parameters that can be used to adjust it to the data. No filter
is applied to the data set images, and the results show that with
a good statistical model, it is not needed to rely on filtering
the data to decrease the number of false alarms. Therefore,
we can have a better tradeoff between resolution and detection
performance.

Index Terms— Change detection, likelihood ratio test, synthetic
aperture radar (SAR).

I. INTRODUCTION

T
HE extraction and analysis of information from radar

images have several important applications. For example,

one can consider the surveillance of large forest areas, where

targets can be concealed by foliage and the tree canopy [1], [2].

In this area, change-detection methodology, which concerns

the problem of detecting targets, has been well established by

many publications (see [3]–[6]). The methodology remains a

subject of interest to many experts because of different appli-

cations of target detection. A summary of change-detection

methodology is given in [7]–[10]. Generally, the solutions

work well, but the problem is not observed from the resolution

cell perspective. Therefore, few works have implemented and

compared multivariate probability density functions (PDFs)
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to take into account the clutter correlation in high-resolution

systems and, in particular, in low-frequency ultrawideband

(UWB) synthetic aperture radar (SAR), where the scatterers

are stable between illuminations and the radar resolution cell

contains only a few scatterers. The decision rule in several

change-detection algorithms is a statistical hypothesis test. The

decision of whether a change has occurred at a given pixel

corresponds to choosing between two competing hypotheses,

i.e., the null hypothesis and the alternative hypothesis, which

correspond to no change and change decisions, respectively.

Knowing the conditional joint PDF enables the selection of

the hypothesis that best describes the intensity change via

hypothesis testing [3], [4], [11].

In this letter, the main goal is to compare two different

statistical models that can be used in a likelihood ratio test for

change detection. One model uses the bivariate Rayleigh dis-

tribution to model the clutter on the reference and surveillance

SAR images; the other employs the bivariate K-distribution.

In general, the bivariate Rayleigh distribution is based on

the assumption that the scattered return from clutter comes

from a large number of scatterers [3]. Therefore, according to

the central limit theorem, the appropriate statistical model for

clutter approximates a Gaussian model, and its amplitude is

well represented by the Rayleigh distribution. However, taking

into account the cell resolution, the clutter statistics for many

modern SAR systems cannot be considered to be Gaussian

distributed. Instead, due to random fluctuations in the number

of scatterers, the clutter distribution can be approximated by

the K-distribution, and it is very important to consider this

fact in a UWB SAR system, where the high resolution in the

azimuth and range can be achieved simultaneously. In this

case, a lower false alarm rate (FAR) is expected from the

detection algorithm due to the heavy-tailed characteristic of

the K-distribution.

To present and compare the results from applying the

two distributions, this letter is organized as follows. Initially,

Section II presents a succinct statistical analysis related to

the distribution of SAR image amplitudes. Section III is

dedicated to the mathematical formulations used to imple-

ment change detection. In Section IV, the likelihood func-

tion for the bivariate Rayleigh distribution is presented.

The bivariate K-distribution from spherically invariant ran-

dom processes (SIRPs) is described in Section V. The

tests and experimental results are presented and discussed

in Section VI. Finally, concluding remarks are given in

Section VII.
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Fig. 1. SAR image from the data collected by CARABAS [5]. A rectangle
is used to point out the target regions in the image.

Fig. 2. Histogram of the SAR image and PDF of the Rayleigh distribution
and K-distribution.

II. SAR IMAGE STATISTICS

A histogram can provide information about the shape of the

distribution of SAR image amplitudes. The histogram of the

image in Fig. 1 is presented in Fig. 2. As observed in Fig. 2,

the distribution of SAR image amplitudes is close to the

PDF of the Rayleigh and K-distribution. This characteristic

indicates that these two distributions could be suitable models

of the amplitude distribution of SAR images. However, note

that the histogram is made over the whole SAR image; there-

fore, different areas with entirely different clutter statistics are

added together in the histogram. The K-distribution can handle

these global statistics better than can the Rayleigh distribution,

as shown in Fig. 2. In this letter, however, the statistical tests

are conducted locally over a local image.

The PDF for the Rayleigh distribution, as exemplified

in Fig. 2, is expressed by the following equation:

f (h; σ) = h

σ 2
exp

(

− h2

2σ 2

)

(1)

where h denotes the image amplitude, and σ > 0 is the

scale parameter of the PDF. There are several methods to

estimate the scale parameter of a Rayleigh distribution, such

as the maximum likelihood method, method of moments, and

local frequency ratio method of estimation [3], [12]. The latter

was used since the image histogram provides the frequencies

required by the method [12]. The K-distributed envelope

PDF is defined by

f (h) = b(bh)ν Kν−1(bh)

2ν−1Ŵ(ν)
u(h) (2)

where ν is the shape parameter of the distribution, b denotes

the scale parameter of the distribution, KN is the N th-order

modified Bessel function of the second kind and u(h) is

the unit step function. Ŵ(·) is the Gamma function that

generalizes the factorial function to nonintegral, negative, and

complex arguments [13]. The shape and scale parameters were

calculated by using higher order and fractional moments [14].

III. MATHEMATICAL FORMULATION

A similar nomenclature as that used in [5] is adopted here to

formulate the expressions for the implemented likelihood ratio

test. Let the subscripts x and y stand for reference and sur-

veillance SAR images, respectively. Hence, the corresponding

pair of target, clutter, and noise signals could be denoted by

the complex vectors

�s =
[

sx

sy

]

�c =
[

cx

cy

]

�n =
[

nx

ny

]

. (3)

Using (3), two hypotheses are taken into account: the null

hypothesis (H0), which considers no changes in the two SAR

images being analyzed, and the alternative hypothesis (H1),

which considers the occurrence of changes in the SAR images.

These changes can be related to the existence of targets in a

SAR image. H0 and H1 are expressed as follows:

H0 : �z0 =
[

x0

y0

]

=
[

cx + nx

cy + ny

]

H1 : �z1 =
[

x1

y1

]

=
[

sx + cx + nx

sy + cy + ny

]

(4)

where �z0 and �z1 are the complex vectors. The subscript “0”

indicates the null hypothesis, and the subscript “1” indi-

cates the alternative hypothesis. Each of the vectors �z0

and �z1 contains a reference and a surveillance SAR image

denoted by x and y, respectively. A statistical model for the

two hypotheses is implemented by using a likelihood ratio

test [11], [13] according to the Neyman–Pearson criterion

�(z) = P(�z1|H1)

P(�z0|H0)

H0

≷
H1

λ (5)

where P is the conditional probability under hypothesis

H0 or H1, and λ is the threshold value determined according

to a required probability of false alarm. �(z) is the likelihood

ratio test that is applied considering incoherent change detec-

tion since only amplitude SAR image data are included in the

data set. Thus, the phase of the complex numbers in (4) is not

available.

In this letter, a probability distribution of targets in

SAR images is not assumed. The statistics related to only the

background of the image [3], [11] are taken into account for
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the conditional probability under H1 in (5). Thus, hypothe-

sis H1 should be verified by subtracting the target signal �s
from the SAR images. To compute the test statistic, the target

signal sx is assumed to be zero. The reverse triangle inequality

for complex numbers, |y1 − sy | ≥ |y1| − |sy|, is observed to

obtain an estimate for sy , denoted as s̃y

|y1| − |s̃y | = |y1 − sy |. (6)

Since |y1 − sy | is a positive value, 0 ≤ |s̃y | ≤ |y1|.
IV. BIVARIATE RAYLEIGH DISTRIBUTION

Since the new likelihood ratio test is dedicated to amplitude-

only data [3], the conditional probability under H0 is formu-

lated by using the Rayleigh distribution [15] as follows:

P(|�z0| | H0) = 4|x0||y0|
�x�y(1 − ρ2)

× exp

{

− (|x0|/
√

�x)
2 + (|y0|/

√

�y)
2

(1 − ρ2)

}

×I0

(

ρ

1 − ρ2

2|x0||y0|
√

�x�y

)

. (7)

Since the target distribution is not known, the statistics related

to only the background of the image [3], [11] are consid-

ered to obtain the expression for the conditional probability

under H1

P(|�z1| | H1)

= 4|x1 − sx ||y1 − sy|
�x�y(1 − ρ2)

× exp

{

− (|x1 − sx |/
√

�x)
2 + (|y1 − sy |/

√

�y)
2

(1 − ρ2)

}

×I0

(

ρ

1 − ρ2

2|x1 − sx ||y1 − sy |
√

�x�y

)

. (8)

In (7) and (8), ρ is the power correlation coefficient, �x =
|x |2, �y = |y|2, and x and y are the reference and surveillance

images, respectively. I0 is the modified Bessel function of

the first order. The signals sx and sy are related to target

backscattering and are estimated a priori by using known

target amplitudes. sx is assumed to be zero since the reference

image is considered to have no targets. The estimate for target

signal sy , i.e., s̃y , is the effective target amplitude used to

evaluate the PDF performance. To evaluate the performance of

the implemented approaches, the data provided by CARABAS,

i.e., experimental data collected during the measurement cam-

paigns in Sweden [2], are used in this letter. Thus, under the

assumption of a bivariate Rayleigh PDF, the test according

to (5) can be expressed by

�(�z) = |y1 − sy |
|y0|

× exp

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(

|y0|√
�y

)2

1 − ρ2
−

(

|y1−sy |√
�y

)2

1 − ρ2

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

×
I0

(

ρ
1−ρ2

2|x1||y1−sy |√
�x �y

)

I0

(

ρ
1−ρ2

2|x0||y0|√
�x �y

) . (9)

V. K-DISTRIBUTION FROM SIRP

When the radar range resolution is increased, the back-

ground clutter may no longer be modeled accurately as a

Gaussian random variable. If the clutter is non-Gaussian and

correlated, many different joint PDFs of the clutter samples

can result in the same set of marginal distributions having the

specified non-Gaussian character. The specification of the mul-

tivariate PDF is generally a nontrivial problem with no simple

best solution [16]. The theory of SIRPs provides a mechanism

to obtain the joint PDF of the correlated, non-Gaussian clutter

samples. [16] and [17] show that the corresponding general

expression for the N th-order PDF of an SIRP, whose envelope

is K-distributed, is obtained by

fN (x) = |C|− 1
2 (π)−

N
2 Ŵ−1 (ν)ν− N

2 2(1−ν)

× (
√

2νq)ν− N
2 Kν− N

2
(
√

2νq) (10)

where µ and C are the mean and covariance matrix of a

complex or real vector �x = [x1, x2, . . . , xN ]T , N > 1, called

a spherically invariant random variable, whose characteristics

are shown in [17]. Taking into account the null hypothesis,

the following expression represents the conditional probability

under H0 when using the K-distribution according to (10):

P(|�z0| | H0) = |C|− 1
2 (π)−

N
2 Ŵ−1(ν)ν− N

2 2(1−ν)

× (
√

2νq0)
ν− N

2 Kν− N
2
(
√

2νq0) (11)

where q0 = (|�z0| − �µ)T C−1 (|�z0| − �µ), �µ is the mean vector,

and C is the covariance matrix. ν is the shape parameter, which

is estimated from the reference image used to implement the

test presented by (5). The method used to estimate ν is the

higher order and fractional moments [14]. The corresponding

equation for conditional probability under H1 is expressed by

P(|�z1| | H1) = |C|− 1
2 (π)−

N
2 Ŵ−1(ν)ν− N

2 2(1−ν)

× (
√

2νq1)
ν− N

2 Kν− N
2
(
√

2νq1) (12)

where q1 =
[

(|�z1| − �s) − �µ
]T

C−1
[

(|�z1| − �s) − �µ
]

. Thus,

under the assumption of a bivariate K-distributed enve-

lope PDF, the test according to (5) can be expressed by

�(�z) =
(q1)

ν
2 −N Kν− N

2
(
√

2νq1)

(q0)
ν
2 −N Kν− N

2
(
√

2νq0)
. (13)

VI. COMPARISON TESTS

The likelihood ratio test using the bivariate Rayleigh dis-

tribution is expressed by (9), and (13) expresses the test

when using the K-distribution. Both equations are imple-

mented by observing the condition in (6) since amplitude-only

data are available. These equations are applied to subimages

resulting from segmenting the SAR image into blocks of

100 × 100 pixels. Therefore, ρ, �x , and �y from (9) and C

and �µ from (13) characterize a specific region of the SAR

image since they are estimated using data from a specific

block. The target signal s̃y is evaluated for values ranging

from 0.3 to 2.25 in steps of 0.01. The threshold λ from (5) is

observed for values ranging from 1 to 100 in steps of 10 and

from 102 to 1025 with exponent steps of 1.
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TABLE I

FALSE ALARM COMPARISON BASED ON THE

DETECTION RESULTS FOR s̃y = 1.25

A. Database Description

The data set consisting of 24 magnitude SAR images is a

subset of the data collected during a flight campaign held in

northern Sweden in 2002 [2], [5]. Each image corresponds

to a rectangle of the same area of 3 km × 2 km. The

illumination of the radar was done using three different flight

tracks given three image stacks containing eight images in

each stack. The targets are 25 terrain vehicles, which were

deployed at the upper left or lower right of the ground scene

and concealed by foliage. In Fig. 1, as an example, we indi-

cated the target positions with a rectangle. The images were

taken by CARABAS II, the second-generation UWB SAR

mounted on a Sabreliner airplane. The system was operated

in the frequency range of 20–90 MHz, with corresponding

wavelengths between 3.3 and 15 m. The resolution of the

radar is approximately 2.5 × 2.5 m, and each pixel in the

image corresponds to an area of 1 m × 1 m on the ground.

Therefore, the resolution is smaller than the wavelength.

More details can be found in [2]. The images are used as

surveillance or reference images, as presented in Table I.

B. Test Performance

We do not use a multilooking approach nor filter the data

set images to decrease the number of false alarms. Therefore,

we can have a better tradeoff between resolution and detection

performance. It also gives a more fair comparison between the

distributions. Hence, after applying the likelihood ratio test,

the resulting image is binarized according to the threshold λ.

Receiver operating characteristic (ROC) curves are used to

verify the algorithm performance. The probability of detec-

tion (Pd ) and FAR are calculated as explained in [5].

Fig. 3 presents the results for tests based on the Rayleigh

distribution. The best result is obtained for effective target

s̃y equal to 1.25. The probability of detection decreases for

s̃y �= 1.25. Thus, regarding the values attributed to s̃y in Fig. 3,

s̃y = 1.25 represents the best approximation to the real

Fig. 3. Select ROC curves obtained by the method based on the Rayleigh
distribution.

Fig. 4. Select ROC curves obtained by the method based on the
K-distribution.

value of the target amplitude, as a consequence, the best

probability of detection is obtained. Target detection (5) is also

implemented using the test derived for the K-distribution (13).

The test is done in the similar way to that of the Rayleigh

distribution by using an effective target amplitude s̃y = 1.25.

The results are presented in Fig. 4. Again, the probability of

detection decreases for observed values of s̃y �= 1.25.

C. Comparison of the Rayleigh and K-Distributions

Table I compares the results of the implementation of (5)

employing the Rayleigh and K-distributions. The comparison

takes into account an equal number of total detections for

the two distributions. s̃y = 1.25 was selected since that

value produced the best results for the total number of detec-

tions, i.e., 568 for the Rayleigh distribution and 570 for the

K-distribution, when applying thresholds of 1012 and 20,

respectively. Thus, the total number of false alarms for test

statistic based on the Rayleigh distribution was 3594. For

the K-distribution, a total of 100 false alarms occurred. The

K-distribution presents the best results for the probability of

detection versus FAR. Figs. 3 and 4 show that for a rate of one

false alarm per km2, the corresponding probability of detection

is approximately 96%. For the same probability of detection,

the Rayleigh distribution presents a rate of approximately 32

false alarms per km2. Table I, where nd is the number of

detections and n f a is the number of false alarms, shows the

highest number of false alarms resulting from the test of the
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surveillance image for mission 5 and pass 5 and the reference

image for mission 3 and pass 5 when using the K-distribution.

Both images are responsible for 69% of the false alarms,

which could be a consequence of the way the images were

collected. According to [2], both images were collected with a

flight heading of 230◦, which positioned the antenna main lobe

toward a TV transmitter located next to the test area. Hence,

high radio frequency interference was received, deteriorating

the quality of the referred pair of images.

VII. CONCLUSION

In this letter, two approaches to a likelihood ratio test for

incoherent change detection in SAR images are analyzed. The

first approach employs a circular bivariate Rayleigh distri-

bution, and the second uses a K-distribution based on the

theory of SIRPs. The results indicate that the K-distribution

presents the best probability of detection and the lowest FAR,

which agrees with Fig. 2, where the pixel distribution of the

SAR image is better characterized by the K-distribution PDF

envelope. In addition, Fig. 3 indicates that the likelihood ratio

test using the Rayleigh distribution presents small variations

in detection probability for different values of s̃y , which

characterizes the robustness of the methodology. Table I shows

that when considering an approximately equal number of total

detections for the two distributions, the total number of false

alarms is much smaller for the K-distribution than it is for

the Rayleigh distribution, indicating that the K-distribution is

more appropriate for the pixel distribution of SAR images.

Table I presents the results for an effective target amplitude

s̃y = 1.25. This value of s̃y was chosen because it produced

the best values for the total number of detections, i.e., 568 for

the Rayleigh distribution and 570 for the K-distribution, when

applying thresholds of 1012 and 20, respectively.

REFERENCES

[1] Y. Huang, L. Ferro-Famil, and A. Reigber, “Under-foliage target detec-
tion using multi-baseline l-band polinSAR data,” in Proc. IGARSS,
Jul. 2013, pp. 2353–2356.

[2] M. Lundberg, L. M. H. Ulander, W. E. Pierson, and A. Gustavsson,
“A challenge problem for detection of targets in foliage,” Proc. SPIE,
vol. 6237, p. 62370K, May 2006.

[3] C. Oliver, Understanding Synthetic Aperture Radar Images. Norwood,
MA, USA: Artech House, 1998.

[4] R. J. Radke, S. Andra, O. Al-Kofahi, and B. Roysam, “Image change
detection algorithms: A systematic survey,” IEEE Trans. Image Process.,
vol. 14, no. 3, pp. 294–307, Mar. 2005.

[5] L. M. H. Ulander, M. Lundberg, W. Pierson, and A. Gustavsson,
“Change detection for low-frequency SAR ground surveillance,”
IEE Proc.-Radar, Sonar Navigat., vol. 152, no. 6, pp. 413–420,
Dec. 2005.

[6] M. Gong, Z. Zhou, and J. Ma, “Change detection in synthetic aperture
radar images based on image fusion and fuzzy clustering,” IEEE Trans.
Image Process., vol. 21, no. 4, pp. 2141–2151, Apr. 2012.

[7] R. Vijayalakshm and K. M. Kumar, “Analysis of SAR images with
various change detection techniques,” Int. J. Emerg. Technol. Eng.,
vol. 1, no. 2, pp. 52–58, Mar. 2014.

[8] H. Aghababaeea, J. Amini, and Y. C. Tzengb, “Improving change
detection methods of SAR images using fractals,” Scientia Iranica,
vol. 20, no. 1, pp. 15–22, Feb. 2013.

[9] O. A. Ajadi, F. J. Meyer, and P. W. Webley, “Change detection in
synthetic aperture radar images using a multiscale-driven approach,”
Remote Sens., vol. 8, no. 6, p. 482, Jun. 2016.

[10] B. Cui, Y. Y. L. Zhang, and X. Cai, “A SAR intensity images change
detection method based on fusion difference detector and statistical
properties,” in Proc. ISPRS Ann. Photogram., Remote Sens. Spatial Inf.

Sci., Wuhan, China, Sep. 2017, pp. 439–443.
[11] W.-S. Chen and I. S. Reed, “A new CFAR detection test for radar,”

Digit. Signal Process., vol. 1, no. 4, pp. 198–214, Oct. 1991.
[12] A. Moya, J. C. Suárez, P. J. Amado, S. Martin-Ruíz, and R. Garrido,

“Frequency ratio method for seismic modeling of γ doradus stars,”
Astron. Astrophys., vol. 432, no. 1, pp. 189–198, 2005.

[13] A. Papoulis and S. U. Pillai, Probability, Random Variables and Sto-

chastic Processes (Electrical Engineering. Communications and Signal
Processing), vol. 576, 2nd ed. New York, NY, USA: McGraw-Hill,
1984.

[14] D. R. Iskander and A. M. Zoubir, “Estimation of the parameters of the
K-distribution using higher order and fractional moments [radar clutter],”
IEEE Trans. Aerosp. Electron. Syst., vol. 35, no. 4, pp. 1453–1457,
Oct. 1999.

[15] M. K. Simon and M.-S. Alouini, Digital Communication Over Fading
Channels. Hoboken, NJ, USA: Wiley, 2005.

[16] M. Rangaswamy, “Spherically invariant random processes for radar
clutter modeling, simulation and distribution identification,” Ph.D. dis-
sertation, Dept. Elect. Comput. Eng., Syracuse Univ., Syracuse, NY,
USA, Dec. 1992.

[17] E. Conte and M. Longo, “Characterisation of radar clutter as a spher-
ically invariant random process,” IEE Proc. F-Commun., Radar Signal
Process., vol. 134, no. 2, pp. 191–197, Apr. 1987.


