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Abstract.

bandpass correction in spectrometer measurements using monochromators is
often necessary in order to obtain accurate measurement results. The classical
approach of spectrometer bandpass correction is based on local polynomial
approximations and the use of finite differences. Here we compare this approach
to an extension of the Richardson-Lucy method, which is well known in image
processing, but has not been applied to spectrum bandpass correction yet. Using
an extensive simulation study and a practical example, we demonstrate the
potential of the Richardson-Lucy method. In contrast to the classical approach,
it is robust w.r.t. wavelength step size and measurement noise. In almost all cases
the Richardson-Lucy method turns out to be superior to the classical approach
both in terms of spectrum estimate and its associated uncertainties.

submitted to: Metrologia

1. Introduction

In photometry and radiometry, broad-band (e.g. temperature radiators) as well as
narrow-band (e.g. LEDs) spectral power distributions have to be measured using array
spectrometers and (grating) monochromators. The observed spectral responsivity
can be modeled as the convolution of the spectrum of the light source with the
instrument’s line spread function (the mirrored bandpass function), multiplied by the
detector’s spectral responsivity [1-4]. In order to achieve a higher signal-to-noise ratio
(SNR) on the detector, it is often necessary to widen the monochromator slit, thereby
increasing the spectral bandwidth of the monochromator. However, this reduces
the spectral resolution and can cause spectral distortions. A deconvolution, based
on the monochromator bandpass function, is therefore often applied to reconstruct
the underlying spectrum of the light source from the measured data. The need for
correction of deviations caused by bandpass functions is not limited to photometric or
radiometric measurements, but can be found also in neutron spectrometry [5], X-ray
spectroscopy [6], gamma-ray spectroscopy [7] and other applications.

There is a strong demand for practical guidance on bandpass correction in metrological
and industrial applications, and the International Commission on Illumination has
set up the Technical Committee TC2-60 [8] with the aim of creating corresponding
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guidelines. To this end, a particular recommendation has been made in [4]. The
method recommended in [4] generalizes an approach proposed in the late 1980s. It
is based on local polynomial approximations of the sought spectrum as well as the
use of finite differences and has been put forward by several authors [1-3]. We call
this method the classical approach. In [4] potentials and drawbacks of this approach
are assessed in terms of an extensive simulation study. As a result, application of the
method is recommended for general bandpass functions over a wide range of spectrum
shapes and wavelength steps. However, the method is sensitive to measurement noise,
and it does not exclude unrealistic negative values of the spectrum.

A situation similar to that of spectrometer bandpass correction can be found in the
reconstruction of images [9]. There the reconstructed function has to be positive as
it encodes intensities. One iterative approach popular in the reconstruction of images
is the Richardson-Lucy method [10, 11]. This method dates back to the 1970s and
has been studied rigorously by many authors since then [9, 12-16]. The corresponding
algorithm is easy to implement, can be applied with general bandpass functions and
proves to be rather insensitive to measurement noise when applied together with a
suitable stopping criterion. Moreover, positivity of the solution is ensured provided
that the initial estimate is positive. To our knowledge, the Richardson-Lucy method
has not yet been applied to spectrometer bandpass correction.

In this paper we propose the application of the Richardson-Lucy method also to
spectrometer bandpass correction and we compare the performance of this method
with the classical approach [4]. The comparison is made in terms of simulated
spectrometer measurements for which the underlying spectrum is known. In addition,
both methods are compared in terms of their application to actual monochromator
measurements. Measurement uncertainty is a key issue in metrology, and we hence
apply the GUM [17] and its Supplement 2 [18] to calculate uncertainties associated
with the results of both methods. In doing so we assume that the methods do not
introduce systematic errors. The obtained uncertainties will also be considered in the
comparison of the two methods.

The results of our investigations suggest that the iterative Richardson-Lucy method
provides more accurate spectra and that it is less sensitive to noise in the measurements
than the classical approach. Uncertainties obtained for the former method tend to
be smaller than those achieved for the latter. For a wide range of conditions the
calculated uncertainties appear to be adequate. However, in some (extreme) cases
the methods introduce significant systematic errors which are not covered by our
uncertainty analysis. A disadvantage of the Richardson-Lucy method is that it is
iterative and that its results may depend on the number of iterations employed. For
these reasons we propose an automatic stopping criterion that proved robust and
which was applied throughout all our calculations.

The paper is organized as follows. In section 2 we outline the background of
spectrometer bandpass correction and put it into the context of deconvolution
problems. Deconvolution is a wide-spread task and many methods are available for its
treatment. We therefore briefly address these approaches and justify the choice of the
Richardson-Lucy method given the particular properties of our task. We then outline
the classical approach in section 3 and the Richardson-Lucy method in section 4.
For both methods we describe the determination of uncertainties. In section 5 we
compare the two methods in terms of extensive simulations covering a wide range of
relevant applications. We also apply both methods to monochromator measurements
and discuss the results obtained. We finally conclude with some recommendations
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for spectrometer bandpass correction motivated by our findings. Technical support
for implementing the methods and some additional comparison results are given
in the Appendix. Furthermore, MATLAB® software implementing the proposed
Richardson-Lucy method is provided in an electronic supplement to this paper.

2. Background and assumptions

2.1. Spectrometer measurements

The relation between the sought spectrum S(A) and the (noise-free) measured output
M () of a spectrometer is given by

M(\) = /S(:\)b(;\ — N dX, (1)

where b denotes the bandpass function characterizing the measurement device [4]. We
restrict ourselves to the often relevant case where the bandpass function depends on
the difference A — A only, in contrast to the more general case of wavelength dependent
bandpass function considered, for instance, in [19].

The bandpass function generally introduces an increase in the width of absorption lines
and a decrease in amplitude. Figure 1 illustrates these effects for a common bandpass
function of a triangular shape. It is obvious that proper bandpass correction is needed
in order to enable accurate spectrum measurements. Note that asymmetric bandpass
functions additionally result in a wavelength shift of the measured spectrum.
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Figure 1. Left: true spectrum (black) and simulated ”‘measured”’ spectrum

(blue). Right: bandpass function.

2.2. Bandpass correction

bandpass correction aims at reconstructing the spectrum S(A) from M(A), given
relation (1) and the bandpass function b(X — A). However, (1) is a Fredholm integral
equation of the first kind and the reconstruction task is generally an ill-posed inverse
problem [20]. That is, although model (1) is always bounded for bounded spectra
S(M\) and bandpass functions with bounded support, the inverse of (1), taken to
reconstruct S(\), is generally unbounded. The treatment of ill-posed inverse problems
is challenging and requires some form of regularization. There are different ways to
tackle such problems, examples comprise the (local or global) approximation of S(\) by
some parametric model [5, 21], or the application of classical regularization approaches
such as Tikhonov regularization [20].
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Another ansatz is to view the measurement model (1) as a convolution. This
follows directly from replacing the bandpass function in (1) by its reversed version

B A= 1) = b(h— \):
M) = (S5 B)(\) = / S() b (A= A)di. @)

Hence, the task of bandpass correction is a deconvolution problem for which a large
variety of methods is available, see for example [5, 22, 23] and references therein.
For linear estimation, the well-known Wiener deconvolution method is optimal in a
root-mean-squared error sense provided that the measured and sought spectrum can
be modeled as stationary stochastic processes with known power spectral densities
[23, 24]. However, when these assumptions are not (fully) met, other methods can
be superior to the Wiener filter [13]. Often deconvolution filters are designed as a
combination of an inverse filter and some suitable low-pass filter [25, 26]. Yet we
found such an approach less efficient in our task as the required filter order turned
out to be too high to be practical. The reason for the required large filter order is
probably the non-smooth behavior of the bandpass function.

Deconvolution problems involving non-smooth functions and the requirement of
positivity are also met in the reconstruction of images for which corresponding methods
have been developed for a long time [9]. One such method which proved to be very
efficient in our studies is the Richardson-Lucy method [10, 11].

2.3. Assumptions

We assume that K measurements (1) are given according to
M(Ag) :/S(X)b(x—xk)dﬂek k=1,...,K, (3)

where e, denote the measurement errors. We assume that these errors can be modeled
as realizations of zero-mean Gaussian random variables Fjy,..., Fx with a known
covariance matrix Vg. In addition to the measurements in (3) information about the
bandpass function shall be given in terms of the estimates

b(A]):b(A])+eb,] j:_N17"'7N27 (4)
where e ; denotes the error in the given estimate E(Aj). We model ey, ; as realizations of
zero-mean Gaussian random variables Ej 1, ..., B v with a known covariance matrix
Vg,. The entries of this matrix are the covariances of the measured bandpass function

values at different wavelengths. Knowledge about M and b is assumed to be obtained
independently.

3. The differential operator approach

3.1. Method

In [4] an approach for spectrometer bandpass correction based on differential operators
is derived as a generalization of the method proposed in [27]. The derivation is based
on local Taylor series expansion around the individual A

SN = S(k) + (A= X)S" (M) + %(/\ S )28 ) £ - (5)
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By plugging (5) into the measurement model (1) and using the notation

I, = / AB(A)dA, (6)

the following expression for the measured spectrum M (A) in the neighborhood of A
is obtained

M(A) = IoS(Ae) + (A = Xe) 18" (M) + %(A — )2 LS () + -+ (7)

For the derivation of a general expression for the estimate S()\) equation (1) can be
written in operator form as M = (1 + C)S with the differential operator C' and the
inverse operator F so that in line with [4]

S(/\k) = FM()\k) = QOM(/\k) + 91M/(/\k) + QQMN()\](;) +.... (8)

In [4] the usage of finite differences is employed for the calculation of the derivatives,
with finite differences chosen as compatible to the polynomial order. For a sufficiently
small polynomial order, the formula for the calculation of the estimate S (Ag) is then
obtained by simple algebra.

Final formulae are provided in [4] when approximating M (A) with local polynomial
orders of 2 and 4, resulting in a 3-point and 5-point correction formula, respectively.
The estimate S(\;) is then calculated by one of the following formulae

S3( M) = az 1 M_1 + az oMo + az 1 M, 9)
Ss( M) = as, oM 5+ as,_1M_1 + a5 oMo + as1 My + a5 oM, (10)

where My, = M (A £ gon) with dps the wavelength step in the measurement, and
and the a;; depend on the moments of the bandpass function and on the measurement
step size dp7. In the remainder of this paper we will refer to the application of these
formulae as the DO3 and DO5 method, respectively.

Note that the above differential operator approach is not a regularization method [20].
In the original approach proposed in [27] the wavelength step size was determined
by the bandwidth of the bandpass function. In the generalized differential operator
approach proposed in [4], the interval for the polynomial approximation is determined
by the wavelength step size and the chosen finite difference scheme. As a result,
the local polynomial approximation is applied to a region around A\, which shrinks
when d); becomes finer. While for finite 3; the method locally restricts the form
of the spectrum (and thus induces a kind of regularization), this holds no longer as
dp — 0. Consequently, as the problem is ill-posed, the method then fails. Actually,
the coefficients a;; grow without bound as 6y — 0, and this implies amplification
(without bound) of errors in the measurements. This has been mentioned in [4], and
accordingly pre-smoothing of the measurements or the use of a larger wavelength step
size for the polynomial approximation is recommended. Another approach would be
to extend the differential operator approach so that the polynomial approximation is
carried out on an interval determined by the bandwidth of the bandpass function as
in the original approach. An analysis of the properties of such an extension will be
presented elsewhere.

3.2. Uncertainty evaluation

Let M}, denote the measured value M (\;) at wavelength A, for k = 1,..., K. The
model of evaluation for the application of bandpass correction using the DO3 method
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is given by
S(A2) My ... Mg_»o
Ss=| : =| My ... Mg_, |-a3z, (11)
S()\Kfl) Ms ... Mg
and that for the DO5 method is given by
My ... Mg_4
S()\3) M2 A MK_3
Ss =1 : =| M3 ... Mg_o |-as, (12)
S()\K72) M4 e MK71
Ms ... Mg

where the coefficient vectors as and a; are calculated from knowledge about the
bandpass function b and ;. The coefficients are independent of the actual
measurement. Note that S3 contains the reconstructed spectrum at As,..., Ax_1, and
S5 at As,...,Ax—2. For subsequent calculations and comparisons we will therefore
consider only the wavelengths As,...,Ax_2. Note further that the above models
assume that the reconstruction errors introduced by the differential operator approach
are negligible. If this is not true, calculated uncertainties are underrated. In that case
the models would need to be augmented by correction terms whose estimation requires
additional knowledge about the sought spectrum, cf. [28].

Knowledge about the input quantities is assumed to be given as described in
section 2.3. Following [18] we assign multivariate normal distributions N (b, Vg, )
and N (1\7[, Vi) to model our state of knowledge about the values of b =
(bA_n,)y - b(AN,))T and M = (M(\1),...,M(Ag))T, respectively. Since we
assume the covariances to be zero, the covariance matrices are diagonal with (Vg, );; =
var(Ep,;) and (Vg)i = wvar(E;), respectively. Note that, strictly speaking, the
above multivariate normal distributions are truncated to account for non-negativity.
Knowledge about the input quantities is assumed to be obtained independently,
and hence the joint distribution of the input quantities has the density p(b, M) =
p(b)p(M). Note that in equations (11) and (12) the M}, as well as the a; are uncertain.
The a; are calculated from the bandpass function values and the wavelength step size
using the nonlinear equations provided in [4]. An uncertainty evaluation in line with
GUM [17] for equations (11) and (12) thus requires a propagation of the uncertainty
associated with the values of b to an uncertainty associated with the values of the
a;j. This uncertainty propagation can be carried out easily by using the Monte Carlo
technique described in [18].

We propose that the evaluation of measurement uncertainty is carried out as a
propagation of probability distributions through the corresponding model of evaluation
using the Monte Carlo technique described in [18]:

(i) Draw samples b() and M®) from p(b, M).
(ii) Calculate the vector of coefficients a(®).
(iii) Apply the DO estimation formula (11) or (12) to calculate the estimate S().

The above steps are carried out L times, with L being sufficiently large to achieve a
sought accuracy [18, 29]. The multivariate PDF p(S), from which the S() constitute
independent draws, then encodes the state of knowledge about the measurand S. The
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estimate and its associated covariance matrix are calculated from the K samples S()
as

1 L
§ = 7 > s® (13)
(=1
1 & - N
Va=1—> (s¥-8)(s®-8). (14)

=1

The diagonal elements of Vg are the squared standard uncertainties associated with
the corresponding element of S. In addition, coverage intervals for single elements of S
can be calculated from the Monte Carlo samples as described in [18]. In some cases the
sought accuracy may require a very large number of Monte Carlo runs (=~ 10°) which
may be impossible on standard computers due to memory issues. To this end, efficient
updating formulae for the mean, covariance and approximate point-wise histograms
or a sequential application of Monte Carlo can be carried out instead [30].

4. The Richardson-Lucy method

The Richardson-Lucy method is an iterative deconvolution method originally
developed in the field of astronomical image restoration [10, 11]. The starting point
is the observation that the convolution (2) results in a signal M (A) which deviates
from the original signal S(\) due to the properties of b(X — ). This deviation can be
expressed, for instance, in terms of a difference M (\) —S(X) or a quotient M (X)/S()).
The difference is the basis for the so called Van-Cittert method and its extensions
[9, 31]. The quotient is the starting point for multiplicative correction methods like
the so-called Gold’s method [32] or the Richardson-Lucy method [10, 11] considered
here. We implemented [9-11, 31, 32] and found the Richardson-Lucy method to be
superior for our application.

Convergence of the Richardson-Lucy method to a maximum-likelihood solution has
been proven for Poisson-distributed measurement noise [12, 16]. However, for
deconvolution tasks the maximum-likelihood solution is not desirable and some
regularization is required [9, 11]. To this end, the Richardson-Lucy method is generally
not iterated until convergence, but stopped earlier. This premature stopping then
acts as a kind of regularization. Strictly viewed it is not the Richardson-Lucy method
(applied until convergence) but the iterative Richardson-Lucy update scheme together
with a stopping rule (and, actually, the initial estimate) that we consider. Nonetheless,
we will loosely refer to the method as the Richardson-Lucy method.

4.1. Iteration scheme

-
The convolution (b *S) can be implemented either as quadrature formula for the

approximation of the convolution integral or as a convolution of the vectors E and
S. Note that in the latter case the (continuous) bandpass function values b(\) have
to be replaced by the discrete function values b¥(\y) = db(\x) with &, denoting
the wavelength step size. This corresponds to an application of the impulse invariance
technique for the discretization of LTI systems [33]. Let b? = (b2 Nyveoos b‘fv2)T denote
the discretized bandpass function. We assume that d, = dp;, which can be achieved,
for instance, by interpolation of the measured spectrum M (A) if necessary, cf. the
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Appendix. The Richardson-Lucy update scheme can then be outlined as follows using
the measured spectrum M (A) as the initial estimate S.

(i) With S as the estimate of the spectrum S, calculate the estimated measured
spectrum

Ny

~ ~ <~ ~

M) = (S b)(M) = Y Spjbt, k=1,.. K,
.

where ; the mirrored bandpass function and S'k_j = 5’()% — jorr) with dps the
wavelength step size for M, S and b.

(ii) Calculate the correction factor as the quotient of the actual measurement and the
estimated measurement

M(A
Q\) = ) k=1,...,K
M (Ag)
(iii) Convolve the correction factor @ with b(\), resulting in the damped correction

term

N2
RO = (b+Q () = S Quojbt k=1, K.

j=—N1

(iv) Multiply the damped correction term with the current estimate S to obtain the
updated estimate
St =SOw)-RO) k=1,...,K.
This process is carried out iteratively with new estimate in the first step being the
updated estimate obtained in the last step. This results in the calculation scheme

N.
STHL(AL) = ST\ - be M 15
( k)_ ( k) Z i N1 Cir d ) ( )
j=—N: I=—Ng Sk—j—10Zy

with r denoting the iteration number.

Note that, in practice, calculation of the correction factor may result in division by
zero or very small values. As a safeguard, one may then set the corresponding ratio
to zero, assuming that the spectrum has zero value at this wavelength. A tolerance
value 7 (for the denominator) may be chosen as the machine precision of the employed
computer.

For our calculations we used — as an initial guess — the measured spectrum, i.e. S® = M.
Since the bandpass function b is non-negative, the Richardson-Lucy method preserves
non-negativity. In our case non-negativity of the reconstructed spectrum is thus
ensured by the fact that the measured spectrum, i.e. the initial estimate of the
spectrum, is non-negative.

4.2. Stopping rule

Several approaches have been proposed to determine an automatic stopping criterion,
see, e.g., [12, 16]. From our investigations, the following criterion, which is similar to
the so-called L-curve method [34] in classical regularization, proved to work well in
our applications. The criterion is illustrated in Fig. 2 and is described in detail below.
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Figure 2. Example of evolution of the convergence criterion (16) and the
curvature of that curve.

We consider the measure

Qr 1 . Qr Qr—1 2
8557 = K;(S ) — S (/\k)) (16)

for the change in the estimated spectrum during one iteration versus the iteration
number (lower curve in Fig. 2). The first part, constituting the initial iterations,
indicates rapid changes in the estimates which improve the fit of significant features
in the measurements. These iterations are thus expected to improve the estimates.
In the second part the changes significantly slow down and appear to fit the noise
rather than existing features in the measurements. Thus, this curve resembles an
L-curve, having two parts. The goal is to determine that iteration which separates
these two parts. As in classical regularization, this point is the one of maximum
curvature [34]. Thus, we calculate the curvature of the criterion (16) for a certain
number of iterations (see upper curve in Fig. 2) and choose the solution S()) for that
iteration which maximizes this curvature. The robustness and good performance of
this criterion for the considered bandpass correction problem is demonstrated by the
positive results obtained for the extensive simulations carried out for varying scenarios.

4.3. Uncertainty evaluation

The evaluation of measurement uncertainty for the Richardson-Lucy method is carried
out in the same way as for the DO methods:

(i) Draw samples b and M® from p(b, M).
(ii) Calculate the estimate S().
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These steps are carried out L times. The multivariate PDF pg(S), from which the
S constitute independent draws, then encodes the state of knowledge about the
measurand S. The estimate and its associated covariance matrix are calculated from
the L samples S according to (13) and (14). Note that the automatic selection of
the number of iterations (15) was applied in each single Monte Carlo run.

When the wavelength step size, at which the bandpass function and the measured
spectrum are given, differ, interpolation (on one of them) is needed to apply the
Richardson-Lucy iteration scheme. In that case, the applied interpolation needs to be
included into the steps of the Monte Carlo procedure as well, i.e. for each run the
interpolation scheme is employed.

5. Comparison

5.1. Stmulations

For our simulations the variances of the errors ey and ep ; in equations (3) and (4)
were chosen as shown in Fig. 3, and all covariances were set to zero. The employed
variances reflect variations typically observed in repeated measurements.

Measured spectra and bandpass functions were simulated for equidistantly chosen
wavelengths. The application of the Richardson-Lucy method requires that the
wavelength step sizes dj; and J, for the measurement and the bandpass function
are equal. Where necessary, we ensured this by an interpolation of the ” ‘measured”’
spectrum.
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Figure 3. Relative standard deviations for the measured spectrum in Fig. 1 (left)
and for the estimate of bandpass function in Fig. 1 (right).

Throughout all simulations the Gaussian spectrum and the symmetric bandpass
function shown in figure 1 were used as the starting point. A single simulation
was carried out as follows: first a ”‘clean measured”’ spectrum was generated using
(2) for a Gaussian spectrum and a triangular (symmetric) bandpass function. To
this ”‘clean measured”’ spectrum Gaussian errors were then added with the realistic
variances indicated in Fig. 3. The resulting ”‘measured”’ spectrum was provided for
the analysis, along with an uncertain bandpass function. The uncertain bandpass
function was obtained by adding Gaussian errors to the underlying bandpass function
with the realistic variances also indicated in Fig. 3. The data, i.e. the simulated
measured spectrum and the uncertain bandpass function, were then analyzed by both
methods. Figure 4 shows the results of a single simulation. When no correction is
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applied, significant differences between the ”‘measured”’ and the underlying spectrum
are observed. For the Richardson-Lucy method the differences between the estimated
and the underlying spectrum are smaller and well covered by calculated uncertainties.
The results for the DO methods are somewhat in between, i.e. they improve the
measurement, but associated uncertainties do not fully cover the differences.
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Figure 4. Top-left: ”‘measured”’ spectrum (dotted magenta) and underlying
spectrum (black), together with the reconstructed spectra obtained by the
Richardson-Lucy method (blue), the DO3 method (green) and the DO5 method
(red). Top-right: bandpass function used for simulation of measurement. Bottom-
left differences between ”‘measured”’ spectrum and underlying spectrum (black)
and between Richardson-Lucy estimate and simulated spectrum (blue). Bottom-
right: differences between the DO estimates (DO3: green, DO5: red) and the
simulated spectrum. All differences are accompanied by 95 % coverage intervals.

In order to cover different scenarios, both the Gaussian spectrum and the bandpass
function, were generated using various full-width-half-maximum (FWHM) values.
Note that for triangular bandpass functions the FWHM value is equal to the half-
width of the triangle base. Altering of the FWHM values was done by varying
the corresponding width, i.e. the standard deviation of the Gaussian spectrum
or the slope of the flanks of the bandpass function, respectively. Note that the
corresponding variances (Fig. 3) were accordingly adjusted. Figure 5 shows the
corresponding summarized results. That is, each point in Fig. 5 corresponds to one
analyzed spectrum. The summarized results contain the rms error of the reconstructed
spectrum

K- 2

L
> w - 50w)%, (17)

= k=3

rms =

s
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where L denotes the number of Monte Carlo trials and K the number of measured
spectrum values. The value (17) indicates the accuracy that can be expected in the
reconstruction of the underlying spectrum. In addition, the mean uncertainty

K-2

" (Va), (18)
k=3

1
Umean =
K—-14

was calculated. Ideally, the ratio of the rms errors and mean uncertainties should
be in the order of 1. Values smaller than 1 indicate that uncertainties are larger
than the root-mean-squared reconstruction errors. Larger values, on the other hand,
indicate that uncertainties are underrated, for instance, due to systematic method
errors neglected in the uncertainty analysis.

The results of the methods, and in particular those of the DO methods, depend on
the chosen wavelength step size, dy;. We chose dp; as 0.3 - FWHM where FW HM
refers to the underlying spectrum. The rationale is that d;; should be chosen so as
to be small enough to enable detection of structures. On the other hand, the DO
methods deteriorate when d5; decreases. The chosen d); hence balances between the
capability of reconstructing existing features of the spectrum and not penalizing the
DO methods. Thus, different d5; are underlying the results shown in Fig. 5. However,
for each FWHM value, the same d); has been applied for all correction methods to
ensure that all methods rely on the same measurement information.

The results in Fig. 5 show root-mean squared reconstruction errors (17) and the
quotient of rms errors and calculated mean uncertainties (18). In figure 5 the dark red
color indicates large errors and underrated uncertainties, respectively. The dark blue
color correspondingly indicates small errors and reliable uncertainties, respectively.
From Fig. 5 it can be seen that the reconstruction methods improve the ”‘measured”’
spectrum over a large range of FWHM values. Mean uncertainties match rms
errors best for the Richardson-Lucy method and worst when no correction is made
(right column in Fig. 5). For the latter case uncertainties were simply taken as the
uncertainties associated with the ”‘measured”’ spectrum. Interestingly, while the
DO3 method appears to give results similar to the DO5 method, mean uncertainties
obtained for the latter method better match rms errors than those obtained for
the former. Note further that for all methods, except DO5, mean uncertainties do
not match rms errors when the FWHM of the spectrum is small compared to the
FWHM of the bandpass function. The reason is that in this case systematic errors
of the methods, which are not accounted for by the calculated uncertainties, become
dominant. Uncertainties for the DO5 methods for these cases are very high due to
noise amplification and thus systematic errors do not dominate. Noise attenuation
by the application of larger wavelength step sizes, on the other hand, would in these
cases strongly violate the sampling theorem of signal processing [33]. Hence, although
uncertainties are not underrated for the DO5 method its result is worse than that for
the other two reconstruction methods.

In order to investigate the influence of the wavelength step size dps, Fig. 6 shows
the results when §); is varied together with the FWHM of the underlying spectrum.
When no correction is applied no dependence on d,; is observed, as expected. A
similar behavior can be seen for the Richardson-Lucy method. The results for the DO
methods, on the other hand, depend on dy;. The reason is that when d); becomes
small these methods strongly amplify errors in the ”‘measured”’ spectrum. Note
that this effect is significantly more pronounced for the DO5 method. Altogether,
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Figure 5. Left: rms errors in dependence on FWHM of underlying spectrum and
bandpass function for the following estimation procedures: no bandpass correction
(top), Richardson-Lucy method (2nd row), DO3 method (3rd row) and DO5
method (4th row). Right: ratio of rms errors and mean uncertainties.

the Richardson-Lucy method again yields the best reconstruction accuracies, and its
results always improve the ” ‘measured”’ spectrum. Interestingly, this does not hold
for the DO methods which can, for small §,;, worsen the ” ‘measured”’ spectrum; this
result is in accordance with observations made in [4]. Further comparison results are
given in the Appendix.

5.2. Monochromator measurements

Fig. 7 and 8 show the results for monochromator measurements together with a
reference measurement of the spectrum. The reference measurement was obtained
from a different setup for which a monochromator slit width had been used which is
smaller by a factor of 10. The FWHM value of the corresponding bandpass function
is smaller by a factor of 4, see Fig. 7. Therefore, that measured spectrum is expected
to be (much) closer to the true underlying spectrum.

From the results of Fig. 8 we conclude that bandpass correction is necessary here, i.e.
all methods appear to improve the measured spectrum significantly. By looking at
the differences between the estimates and the reference spectrum one may conclude
that the Richardson-Lucy method (rms = 0.011) performs better than both the
DO3 (rms ~ 0.018) and the DO5 method (rms =~ 0.016). However, even the
Richardson-Lucy method shows significant deviations from the reference spectrum
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Figure 7. Left: measured spectrum (dotted magenta) and reference spectrum
(black), together with the reconstructed spectra obtained by the Richardson-
Lucy method (blue), the DO3 method (green) and the DO5 method (red). Right:
normalized bandpass function estimate for reference measurement (green) and for
the actual measurement (blue).

at some wavelengths. One reason may be that this situation already corresponds
to one where systematic errors of the estimation method not accounted for in the
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Figure 8. Left: differences between measured spectrum and reference spectrum
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Right: differences between the DO estimates (DO3: green, DO5: red) and the
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calculated uncertainties become relevant. For instance, the underlying spectrum may
have FWHM value much smaller than that of the bandpass function. Due to the
presence of measurement noise, the Richardson-Lucy method can thus not reconstruct
the underlying spectrum correctly and a systematic error remains. Another reason
for the deviations seen in Fig. 8 might be that uncertainties associated with the
employed bandpass function or the measured spectrum are underrated. Note that the
reconstruction carried out by the DO methods used only a suitably chosen fraction
of the measured spectrum in order to keep noise amplification small. In contrast, the
Richardson-Lucy method uses all measured points.

6. Conclusions

bandpass correction in spectrometer measurements is often necessary in order to obtain
accurate measurement results. A classical method in the field of monochromator
measurements is the method of local polynomial approximation and the use of finite
differences. Here we compared this approach to an iterative deconvolution method,
the so-called Richardson-Lucy method, which originates in image reconstruction. A
difficulty in the application of iterative deconvolution methods is the number of
iterations. To this end, we proposed an automatic stopping criterion, which in our
studies turned out to be very robust. A limitation of the Richardson-Lucy method
compared to the classical approach is that it requires the wavelengths step sizes in the
bandpass function values and the measured values, respectively, to be equal. To this
end, we propose an interpolation of the measured values such that the interpolated
values match the wavelengths step size of the bandpass values.

We assessed performance of the bandpass correction methods by means of extensive
simulation studies covering a wide range of practical aspects. In addition we
compared both approaches using actual monochromator measurements. From our
studies we conclude that the Richardson-Lucy method is superior to the classical
differential operator approach in almost all cases. Moreover, we found the Richardson-
Lucy method together with the proposed stopping rule more robust with regard to
measurement, noise than the classical approach. As a result of its robustness with
regard to measurement noise, the Richardson-Lucy method almost always improves
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the measured spectrum. This does not hold for the differential operator approach.
In our simulations we found the uncertainties, neglecting errors of the methods, to
be adequate for a wide range of situations. However, this holds no longer when the
FWHM value of the underlying spectrum is very small compared to both the FWHM
of the bandpass function and the chosen wavelength step size in the measurement. The
differential operator approach breaks down for small values of the wavelength step size
dps due to the resulting noise amplification. In contrast, the Richardson-Lucy method
appears to be rather insensitive to the value of the wavelength step size as long as the
sampling theorem of signal processing is not violated strongly.

As a conclusion from our findings we recommend the Richardson-Lucy method for
spectrometer bandpass correction.

7. Appendix

7.1. Further comparisons

In order to improve comparability to the results for the DO methods presented in [4],
we also calculated the ”‘modulated transfer function”’ using sinusoidal signals and
compared the amplitude quotient of the reconstructed sinus, cf. [4]. The result is
shown in Fig. 9, where it can be seen that the Richardson-Lucy method performs
significantly better than the DO methods. However, usage of sinusoidal signals for
symmetric bandpass functions does not provide a realistic assessment of a bandpass
correction method, since the drop in reconstruction quality at normalized frequency
equal to 1 is solely due to the symmetry of the bandpass function. To this end, one
may compare the methods in the Fourier domain. Therefore, in Fig. 9 also shows the
amplitude of the Fourier transform of the reconstructed signal for a scenario similar
to that in Fig. 1 with a FWHM value of 20 nm for the bandpass function and 8 nm for
the Gaussian-shaped input spectrum and with the simulated measurement noise as
shown in Fig. 3. From Fig. 9 it can be seen that the Richardson-Lucy method results
in less noise amplification and significantly better reconstruction quality.
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Figure 9. Left: result of the sine wave peak amplitude reconstruction. Frequency
has been normalized to the bandwidth of the employed symmetric bandpass
function. Right: amplitude of the DFT of simulated input spectrum, simulated
measurement and the reconstructed spectra. Frequency has been normalized to
half the sampling frequency (Nyquist).
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7.2. Interpolation and sub-sampling

The application of the Richardson-Lucy method requires the wavelength step size in
the measurement of the bandpass function and the spectrum itself to be equal, i.e.,
oy = 0p. The result of the DO methods on the other hand can often be improved
by considering only a sub-sample of the measured values for the reconstruction. This
may require interpolation and sub-sampling of measured values, respectively. Both
are standard procedures in the literature. However, measurement uncertainty has
to be propagated through this process as well. According to GUM-S2 [18] state of
knowledge about the measured values is expressed in terms of an assigned state-
of-knowledge probability distribution. For the multi-dimensional cases considered
here this is a multivariate distribution. Sub-sampling of the measured values then
corresponds to a reduction of dimension and calculation of the marginal multivariate
distribution. For a multivariate normal distribution this can be carried out simply by
canceling the corresponding elements of the mean vector and the covariance matrix.
In general, sub-sampling of a random vector X can be achieved by sampling from

the full multivariate distribution px(x) for x = (z1,...,zx)' resulting in samples
(argé), e x%))T for £ =1,...,L. The marginal multivariate distribution of the sub-

sampling is then obtained by leaving out the corresponding entries of the multivariate
samples x". Note that in order to avoid aliasing effects due to the sub-sampling
of signals a low-pass filtering may be required before the actual sub-sampling [33].
Evaluation of uncertainty then has to be carried out using Monte Carlo simulations [18]
to propagate uncertainty also through the application of the low-pass filter.

For interpolation, uncertainty evaluation is also most conveniently carried out by using
the Monte Carlo technique described in GUM-S2 [18] with the measurement model
given by the process of interpolation. However, for some specific cases formulae for the
application of linearized uncertainty evaluation in line with GUM [17] can be found,
for instance, in [35, 36].

Acknowledgments

We gratefully acknowledge funding of this research by the BMWi MNPQ grant 04/09.

References

[1] Y. Ohno. A flexible bandpass correction method for spectrometers. Proc. AIC
Colour, pages 697—700, 2005.

[2] J. L. Gardner. Bandwidth correction for LED chromaticity. Color Res. Appl.,
31:374-380, 2006.

[3] C. Oleari. Deconvolution of spectral data for colorimetry by second order local
power expansion. Color Res. and Applic., 35:334—-342, 2010.

[4] E.R. Woolliams, R. Baribeau, A. Bialek, and M. G. Cox. Spectrometer bandwidth
correction for generalized bandpass functions. Metrologia, 48:164-172, 2011.
[5] M. Reginatto and A. Zimbal. Bayesian and maximum entropy methods for fusion

diagnostic measurements with compact neutron spectrometers. Review of Scie.
Instr., 79, 2008.



REFERENCES 18

[6]

P. Sievers, T. Weber, T. Michel, J. Klammer, L. Bliermann, and G. Anton.
Bayesian deconvolution as a method for the spectroscopy of X-rays with highly
pixelated photon counting detectors. Journal of Instrumentation, 7:P07011, 2012.

L. J. Meng and D. Ramsden. An inter-comparison of three spectral-deconvolution
algorithms for gamma-ray spectroscopy. IEEE Trans. Nuclear Scie., 47:1329-
1336, 2000.

CIE TC2-60: Effect of Instrumental Bandpass Function and Measurement
Interval on Spectral Quantities, 08 2012. http://div2.cie.co.at/?i_ca_id=
757.

P. A. Jansson. Deconvolution of Images and Spectra. Academic Press, 1996.

W. H. Richardson. Bayesian-based iterative method of image restoration. Journal
of the Optical Society of America, 62:55-59, 1972.

L. B. Lucy. An iterative technique for the rectification of observed distributions.
Astronomy Journal, 79:745-754, 1974.

L. B. Lucy. Astronomical inverse problems. Reviews in Modern Astronomy,
7:31-50, 1994.

A. M. Deshpande and S. Patnaik. Comparative study and qualitative-quantitative
investigations of several motion deblurring algorithms. Proceedings of the 2nd
Intern. Conf. and Workshop on Emerging Trends in Technol., 1:27-34, 2011.

Z. Zhao and R. E. Blahut. On the I-divergence demodulation of the nonnegative
impulse response ISI channel.  Proceedings of the IEEE Intern. Conf. on
Communications, 7:2969-2975, 2006.

Z. Zhao, Y. Ding, J. Dong, Y. Hao, S. Wu, L. Cao, and Y. Pu. Richardson-
Lucy method for decoding X-ray ring code image. Plasma Phys. Control. Fusion,
49:1145-1150, 2007.

H. Bi and G. Borner. When does the Richardson-Lucy deconvolution converge?
Astron. Astrophys. Suppl. Series, 108:409-415, 1994.

BIPM, IEC, IFCC, ISO, TUPAC, TUPAP, and OIML. Guide to the Expression
of Uncertainty in Measurement. International Organization for Standardization,
Geneva Switzerland, 1995.

BIPM, IEC, IFCC, ISO, ITUPAC, TUPAP, and OIML. Evaluation of Measurement
Data - Supplement 2 to the ”‘Guide to the FExpression of Uncertainty in
Measurement”’ - Extension to any number of output quantities. Joint Committee
for Guides in Metrology, Bureau International des Poids et Mesures, JCGM 102,
2011.

S. Nevas, G. Wiibbeler, A. Sperling, C. Elster, and A. Teuber. Simultaneous
correction of bandpass and stray-light effects in array spectroradiometer data.
Metrologia, 49:543-547, 2012.

A. N. Tikhonov and V. Y. Arsenin. Solution of ill-posed problems. John Wiley &
Sons Inc. New York, 1977.

Albert Tarantola. Inverse Problem Theory. Society for Industrial and Applied
Mathematics, 2005.

S. M. Riad. The deconvolution problem: an overview. IEEFE proceedings, 74:82—
85, 1988.



REFERENCES 19

23]

L. M. Surhone, M. T. Timpledon, and S. F. Marseken. Wiener Deconvolution:
Mathematics, Wiener Filter, Noise, Deconvolution, Frequency Domain, Signal-
to-Noise Ratio, Norbert Wiener, Convolution, Impulse Response, LTI System
Theory. Betascript Publishing, 2010.

N. Wiener. Extrapolation, Interpolation and Smoothing of Stationary Time Series.
New York: Wiley, 1949.

R. Pintelon, Y. Rolain, M. Vanden-Bosche, and J. Schoukens. Towards an ideal
data acquisition channel. IEEFE Trans. Instrum. Meas., 39:116—-120, 1990.

R. Vuerinckx, Y. Rolain, J. Schoukens, and R. Pintelon. Design of stable IIR
filters in the complex domain by automatic delay selection. IEEE Trans. on
Signal Proc., 9:2339-2344, 1996.

E. I. Stearns and R. E. Stearns. An example of a method for correcting radiance
data for bandpass error. Color. Res. Appl., 13:257-259, 1988.

S. Eichstddt. Analysis of Dynamic Measurements - Evaluation of Dynamic
Measurement Uncertainty. PhD thesis, TU Berlin, PTB report IT-16 ISBN 978-
3-86918-249-0S, 2012.

G. Wiibbeler, P. M. Harris, M. G. Cox, and C. Elster. A two-stage procedure for
determining the number of trials in the application of a Monte Carlo method for
uncertainty evaluation. Metrologia, 47:317-324, 2010.

S. Eichstadt, A. Link, P. Harris, and C. Elster. Efficient implementation of
a Monte Carlo method for uncertainty evaluation in dynamic measurements.
Metrologia, 49:401-410, 2012.

P. H. Van Cittert. Zum Einfluf} der Spaltbreite auf die Intensitatsverteilung in
Spektrallinien ii. Zeitschrift fir Physik, 69:298-308, 1931.

R. Gold. Mathematics and computer research and development report. Argonne
National Laboratory, 1964.

A. V. Oppenheim and R. W. Schafer. Discrete-Time Signal Processing. Prentice
Hall, 19809.

P. C. Hansen. Regularization tools: A MATLAB package for analysis and solution
of discrete ill-posed problems. Numerical Algorithms, 46:189-194, 2007.

M. G. Cox. The area under a curve specified by measured values. Metrologia,
44:365-378, 2007.

J. L. Gardner. Uncertainties in interpolated spectral data. Journal of Res. of
NIST, 108:69-78, 2003.



