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S U M M A R Y

Robust event detection and picking is a prerequisite for reliable (micro-) seismic interpreta-

tions. Detection of weak events is a common challenge among various available event detection

algorithms. In this paper we compare the performance of two event detection methods, the

short-term average/long-term average (STA/LTA) method, which is the most commonly used

technique in industry, and a newly introduced method that is based on the power spectral

density (PSD) measurements. We have applied both techniques to a 1-hr long segment of

the vertical component of some raw continuous data recorded at a borehole geophone in a

hydraulic fracturing experiment. The PSD technique outperforms the STA/LTA technique by

detecting a higher number of weak events while keeping the number of false alarms at a

reasonable level. The time–frequency representations obtained through the PSD method can

also help define a more suitable bandpass filter which is usually required for the STA/LTA

method. The method offers thus much promise for automated event detection in industrial,

local, regional and global seismological data sets.

Key words: Time-series analysis; Fourier analysis.

1 I N T RO D U C T I O N

Microseismic monitoring is a term commonly used to refer to meth-

ods that include the acquisition of continuous seismic data for locat-

ing and characterizing microseismicity induced by oilfield comple-

tion and production processes. This information can further be used

for monitoring resulting reservoir changes and understanding the

associated geomechanical processes in the subsurface. It is not only

considered as the only technology for hydrofracture monitoring, but

is also known to have proven useful for geothermal studies, reser-

voir surveillance, and monitoring of CO2 sequestration (Phillips

et al. 2002; Maxwell et al. 2004; Warpinski 2009; van der Baan

et al. 2013). Here the term ‘microseismicity’ is defined as seismic-

ity of magnitude less than 0 (Maxwell et al. 2010) and should be

distinguished from the terms ‘microtremor’ or ‘microseism’ that

commonly refer to more or less continuous motion with a period of

4 to 20 s in the Earth that is unrelated to an earthquake (Ewing et al.

1957; Lee 1935).

One of the main processing steps that is of paramount impor-

tance for accurately monitoring spatio-temporal distribution of mi-

crofractures is in fact to first detect these events. Since microseismic

data are mostly acquired continuously they usually comprise large

volumes. Likewise, earthquake monitoring can lead to large data

volumes simply because many instruments can be operational over

a long time span. Such large volumes of data call for an automatic

event detection algorithm to replace manual detection, which is

highly subjective and time consuming. Numerous automatic trigger

algorithms are available which are generally characterized into time

domain, frequency domain, particle motion processing, or pattern

matching (Withers et al. 1998). They are all either based on the

envelope, the absolute amplitude, or the power of signals in the

frequency or time domains.

Although there are many sophisticated trigger methods they usu-

ally require complicated parameter adjustments to reflect actual

signal and noise conditions at each seismic site. Finding suitable

parameters has proven unwieldy and subject to error. Therefore, in

practice, only relatively simple trigger algorithms have been really

broadly accepted and can be found in seismic data recorders in the

market and in most real-time processing packages. Among all, the

short-term average/long-term average (STA/LTA) technique (Allen

1978) continues to remain as the most popular method in which

the ratio of continuously calculated average energy (or envelope or

absolute amplitude) of a recorded trace in two consecutive moving-

time windows, a short-term window and a subsequent long-term

window (STA/LTA ratio), is used as a criterion for picking. How-

ever, this method has also its own disadvantages. For instance, it

requires careful setting of parameters (Trnkoczy 2002) including

a trigger threshold level and two window lengths (both short- and

long-term windows). A low threshold can lead to many false trig-

gers (false positives) while a high threshold may result in missing

weak events (false negatives).

High sensitivity to the signal-to-noise ratio (S/N) level is a com-

mon shortcoming among various event detection algorithms. This

may cause the weak events whose energies and amplitudes are
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comparable to the background noise to be obscured in the presence

of strong noise and go untriggered. In this paper, we have compared

the performance of two event detection methods, a modified version

of the power spectral density (PSD) technique introduced by Vaezi

& van der Baan (2014) and the STA/LTA algorithm, when applied

to 1-hr long single-trace data recorded by the vertical channel of

a geophone in a borehole array in a microseismic experiment. We

conclude that compared to the STA/LTA method, the PSD technique

not only detects a larger number of weak events at a still tolerable

number of false triggers, but also helps design a more suitable band-

pass filter for further analysis of microseismic data, whereas the

STA/LTA method usually requires the data to be bandpassed prior

to event detection. We also suggest that the PSD method would

perform relatively better in triggering emerging events where the

gradual amplitude increase can cause the STA/LTA method to fail.

2 M E T H O D O L O G Y

The idea behind the STA/LTA method is simple; the STA/LTA ratio

is calculated continuously at each time t for every kth data channel

xt as R = STA
LTA

, where

STA =
1

NS

NS
∑

n=1

yk,n, (1)

and

LTA =
1

NL

0
∑

n=−NL

yk,n . (2)

The STA is the NS-point short-term average and the LTA is

the NL-point long-term average. Note that we have considered

non-overlapping STA and LTA windows. The parameter yt is

the characteristic function (CF) yt = g(xt), which is devised in

such a way that it enhances the signal changes. The common CF

choices include energy (yt = x2
t ) (McEvilly & Majer 1982), abso-

lute value (yt = |xt|) (Swindell & Snell 1977) and envelope function

(yt =
√

xt
2 + h(xt )

2, where h denotes Hilbert transform) (Earle &

Shearer 1994). The STA measures the instantaneous amplitude level

(or other CF) of the seismic signal and watches for events while the

LTA takes care of the current average seismic noise amplitude (or

other CF). When the ratio (R) of yt exceeds a predetermined (user-

selected) threshold τ , a detection is declared. The trigger is active

until the ratio falls below a detrigger threshold (Trnkoczy 2002).

Although they can be different, the trigger and detrigger thresholds

are commonly taken to be equal and are simply called the detection

threshold (τ >1). The most important STA/LTA trigger algorithm

parameters are thus the STA and LTA window lengths (NS and NL),

and the detection threshold (τ ).

For an event to be detected by the STA/LTA method, its energy

(amplitude) should be adequately higher than that of the background

noise. This simply may not be always true for weak events. Also

the STA/LTA method is commonly applied to data which are band-

passed over a frequency range where signal dominates with respect

to the background noise. But in general, for energy detectors (such

as STA/LTA method) no single filter will be optimal for a large

variety of signals in a dynamic noise environment.

An alternative to this problem is to analyse the time-series in the

frequency domain. In order to detect events in a relatively stationary

noise condition, Vaezi & van der Baan (2014) use the fact that the

microseismic events typically represent stronger spectral content

over a frequency band (narrow or wide, depending on the nature

of the event) than that of the background noise. The main steps

involved in this technique are described here.

Assume a continuous data record x(t) that is stationary with

average x = 0. First the average PSD of the seismic background

noise, P SD( f ), is estimated using a Welch method (Welch 1967;

McNamara & Buland 2004), which is known to reduce the variabil-

ity of spectral estimates. By removing the energetic events, tran-

sients and any types of noise bursts we consider only the noise

at quiet times, x′(t), to calculate the average noise PSD (Peterson

1993). A quiet version of the data record can be roughly obtained

by discarding samples of absolute amplitudes greater than a mul-

tiple of the original record’s root-mean-square (RMS) amplitude

(Fig. 1). The quiet noise record is divided into M overlapping seg-

ments, x ′
m(tl ), each of length L, with m = 1, 2, ..., M and l = 1, 2,

..., L, using windowing tapers of length L. The total average PSD is

then calculated by averaging the one-sided PSD estimates over all

the individual background noise segments:

P SD( f ) =
1

M

M
∑

i=1

PSD′
m( f ), (3)

where PSD′
m( f ) stands for the PSD estimate of the mth noise seg-

ment as a function of frequency f given by:

PSD′
m( f ) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

a|
∑L

l=1 x ′
m(tl )w(tl )e

− j2π f l |
2

fs LU
if f = 0, fNyq

2a|
∑L

l=1 x ′
m(tl )w(tl )e

− j2π f l |
2

fs LU
if 0 < f < fNyq

m = 1, 2, ..., M, (4)

where a is a scale factor that accounts for variance reduction which

depends on the type of the taper w, fNyq is the Nyquist frequency in

Hz, fs is the sampling frequency in Hz, j =
√

−1 and U is the win-

dow normalization constant that ensures the modified periodograms

are asymptotically unbiased and is given by

U =
1

L

L
∑

i=1

w(ti )
2
. (5)

The standard deviations are also calculated at each frequency

of the average PSD. As there are no redundant components in the

Fourier transforms at the frequencies of 0 and fNyq, the PSD esti-

mates at these frequencies do not double in eq. (4) when converting

the two-sided PSD estimates to one-sided PSDs, as opposed to those

in the frequency range of 0 < f < fNyq.

In the next step, the original data x(t) are similarly divided into N

overlapping segments of length L. In other words, a rolling window

of predetermined length L is used to compute the PSD for each

windowed segment throughout the original data x(t):

PSDn
t ( f ) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

a|
∑L

l=1 xn(tl )w(tl )e
− j2π f l |

2

fs LU
if f = 0, fNyq

2a|
∑L

l=1 xn(tl )w(tl )e
− j2π f l |

2

fs LU
if 0 < f < fNyq

n = 1, 2, ..., N . (6)

The purpose of using tapers is to suppress side-lobe spectral leak-

age and also reduce the bias of the spectral estimates. However, they

increase the width of the main lobe of the spectral window, therefore

reducing the resolution. There is always a trade-off between vari-

ance reduction and resolution as long as single data tapers are used

for spectral estimations (Park et al. 1987). There are several types

of tapers available with different variance and resolution properties
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Figure 1. The Z-component of a 1-hr long segment of the raw continuous microseismic data and its zoomed view in which four events E and two background

noise segments N are denoted by red and green boxes, respectively. The PSD estimates of these features are compared with the average PSD in Fig. 2. Only the

data in the region between the two red dashed lines (here with an absolute amplitude of five times the root-mean-square amplitude) are used when calculating

the average noise PSD.

(Harris 1978). The Hanning and cosine tapers are the two most

commonly used tapers. In this paper we use Hanning taper which

has a relatively high variance but with very good spectral leakage

properties (Park et al. 1987). Although applying moving average

filters to single-taper spectral estimates reduces the variance, it ad-

versely increases the bias of the estimate due to short-range loss of

frequency resolution (Park et al. 1987). However, instead of single-

taper estimations which suffer from relatively high variance, one

can use the multitaper spectral estimation method to provide a more

consistent estimate with lower variance. In this technique, a single

spectral estimate is formed by combining several eigenspectra ob-

tained by taking discrete Fourier transform of the product of several

leakage-resistant tapers with the data (Thomson 1982; Park et al.

1987). However, even multitaper analysis cannot fix the variability

caused by non-stationary noise components of high amplitudes that,

if present, may obscure the variability due to single data tapers.

The average PSD is then subtracted from all individual PSDs:

misfitn
t ( f ) = PSDn

t ( f ) − P SD ( f ), (7)

where misfitn
t( f ) stands for the PSD difference at each time t as-

sociated with the middle point of the nth segment as a function of

frequency f, which is hereafter denoted by misfitt( f ) for simplicity,

PSDn
t( f ) denotes the individual PSD at the corresponding time and

P SD( f ) is the calculated average PSD. These differences are then

divided by standard deviations at each frequency to calculate the

normalized PSDs ut( f ) as:

ut ( f ) =
misfitt ( f )

std ( f )
, (8)

where std( f ) is the standard deviation at frequency f computed from

the PSDs of each noise segment PSD′
m( f ) analogous to eq. (3). The

resulting time–frequency representation highlights then all signals

that stand out in a statistical sense from the reference spectrum, in

this case the background noise. The ratios that are below 1 are set

to zero to have a clearer depiction of the events:

Ŵt ( f ) =

{

ut ( f ) if ut ( f )> 1

0 otherwise
. (9)

In other words, Vaezi & van der Baan (2014) suggest that any

short time segment with a PSD statistically larger than the average

PSD by some likelihood threshold includes a potential event. Both

transient and persistent events are detectable by this method. This

method can also be used for detecting individual frequency bands

that are statistically above the average threshold, and subsequently

determining suitable bandpass filters. In the next step, an averaged

PSD criterion is calculated by summing the computed quantities

Ŵt( f ) over all frequencies and dividing them by the number of

frequencies:

�PSD (t) =
∑ fNyq

f =0 Ŵt ( f )

N f

, (10)

where �PSD(t) is the averaged version of the PSD detection criterion

as a function of time, fNyq represents the Nyquist frequency and Nf

is the total number of frequencies. Another alternative approach is

to use the average of Ŵt( f )2s as the triggering criterion:

�PSD (t) =
∑ fNyq

f =0 Ŵt ( f )2

N f

. (11)

When the �PSD(t) (or �PSD(t)) becomes larger than a predeter-

mined value, say λPSD (or φPSD), an event is declared. Assuming

a Gaussian distribution, for any selected λPSD, the probability in
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Table 1. The parameters used for the STA/LTA and PSD detection methods.

STA/LTA parameters PSD parameters

STA window length 30 ms (120 samples) PSD window length 0.25 s (1000 samples)

LTA window length 100 ms (400 samples) Window overlap 50 per cent

Minimum event separation 0.5 s Minimum event separation 0.5 s

Minimum event duration 50 ms

STA/LTA detection threshold 2.00 PSD detection threshold 0.065

percentages that a trigger with a measured averaged PSD criterion

of �PSD(t) at time t is due to noise can be calculated by:

Pr{�PSD is noise|�PSD = �PSD (t)}

=
1

2

(

1 − erf

(

�PSD (t) − μ

σ
√

2

))

× 100 per cent, (12)

where μ and σ are the mean and standard deviation for the �PSD(t)

and erf(x) is the error function (Andrews 1997) defined as:

erf(x) =
2

√
π

∫ x

0

e−t2

dt . (13)

3 DATA S E T

The data set we have used for this study consists of a 1-hr segment

out of 44-hr long continuous borehole microseismic data which were

acquired to monitor multistage fracture treatments taking place at

two horizontal wells for the purpose of increasing the formation

permeability of a tight gas reservoir. The borehole array consists

of 12 triaxial conventional 15-Hz geophones deployed in a vertical

monitoring borehole, which is located between the two injection

wells (Eaton et al. 2014). The sampling time interval is 0.25 ms.

For simplicity we have considered the vertical component of the

shallowest receiver (receiver 1) only. Fig. 1 shows the data segment

used for the current analysis.

4 R E S U LT S

The parameters shown in Table 1 are used to calculate the STA/LTA

ratios and the PSD criterion (Vaezi & van der Baan 2014). The

detection thresholds in both methods are selected in such a way

that they give the best balance between the false alarms and missed

events. The minimum event separation specifies the minimal time

length between the end of the previous active triggering and the

beginning of the current triggering. When two detections are very

close in time, this parameter decides if they should be considered as

two separated phases or not. The minimum event duration for the

STA/LTA method is the minimal time length between the time of

an event triggering and the time of detriggering. In other word, this

parameter specifies the minimum duration of a seismic phase to be

detected. If this parameter is very small, it becomes increasingly

possible to misidentify an instrument glitch (a spike) as a seismic

phase.

The average PSD is calculated using the same PSD window

length and overlap as in Table 1 via a modified Welch method

(McNamara & Buland 2004). In order to prevent the energetic

events, transients and any types of noise bursts to bias the average

noise PSD estimation, we simply removed the samples with absolute

amplitudes greater than five times the RMS amplitude of the entire

raw trace (red dashed lines in Fig. 1). Therefore, we roughly consider

only the noise at quiet times to calculate the average noise PSD.

Fig. 2 shows the average PSD curve (P SD( f ) in eq. 3) in black

along with the calculated standard deviations at each frequency

(std( f ) in eq. 8) in red bars. To better show how the PSD method

works, this figure shows also the PSD estimates for four different

microseismic events (red boxes in Fig. 1) and two noise segments

randomly selected from some quiet region of the data (green boxes

in Fig. 1) in different colours. Note that all event PSDs exceed the

average PSD, especially at the frequencies below 120 Hz, while

the sample noise PSDs lie mostly within one standard deviation.

This property is used to detect microseismic events using the PSD

technique. The spectral peaks observed at the frequency of 60 Hz

and its multiples are related to the 60-Hz electric noise and its

harmonic overtones. A frequency tolerance equal to two times the

Rayleigh resolution (Harris 1978) for the Hanning tapers used in this

analysis is considered to discard the PSD ratios calculated around

these frequencies and also to account for slight variability in the

frequencies at which the harmonics are expected to appear.

Fig. 3(a) shows the time–frequency representation of the calcu-

lated ut( f ) (eq. 8). Fig. 3(b) shows the thresholding function Ŵt( f )

(eq. 9) where the microseismic events are more evident, particularly

in the frequency band of [0 120] Hz. Figs 4(a) and (b) show the

calculated STA/LTA ratios and PSD criterion using the parameters

listed in Table 1, respectively. The detection thresholds are plotted

as red dashed lines in each figure.

The PSD method is applied to the raw data in Fig. 1 and the

STA/LTA technique is applied to the same data filtered with two nar-

row notch filters implemented at the frequencies of 60 and 120 Hz.

The total number of triggered events by the PSD technique is 897,

which is more than two times the total number of events triggered

by the STA/LTA method that is 412 events. All the events triggered

by both techniques are manually inspected in order to separate the

false alarms (false positives) from the true positives (real events)

and to statistically compare the performance of the two detection

algorithms. In addition to microseismic events, any other coherent

features recorded along the borehole array that may be of interest to

an interpreter, such as low-frequency signals within regional events

(small earthquakes) or long-period long-duration (LPLD) events

(Das & Zoback 2013; Caffagni et al. 2015), are also considered

as true positives. Here, we refer to all these types of real events as

‘master events’.

The first two rows in Table 2 compare the number of master events

(microseismic or regional events), false alarms and missed events in

the two detection methods when applied to the corresponding data.

Here, since all the master events detected by the STA/LTA method

are also detected via the PSD technique, the latter is assumed to have

detected all the master events present in the data, and is considered

as the reference standard (zero missed events). Out of 897 events

detected by the PSD method only 8 are false alarms and the rest are

master events, of which 796 are identified as microseismic events

and 93 as coherent signals mainly related to regional events (small

earthquakes and their aftershocks) (Caffagni et al. 2015), as shown,

for instance, in Fig. 5. The STA/LTA method, on the other hand,

has detected 399 master events, consisting of 364 microseismic

events and 35 coherent signals related to regional events, which
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Average PSD
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Error bar

Figure 2. The average PSD curve (black) along with its standard deviations at each frequency (red bars), and the PSD estimates for four microseismic events

E denoted by red boxes and two sample noise recordings N denoted by green boxes in the zoom-in view in Fig. 1.

only account for approximately 44.8 per cent of the total number of

master events (that are assumed to have all been detected by the PSD

method). There are a total number of 490 events that are missed by

the STA/LTA method but detected by the PSD technique. Moreover,

out of 412 events triggered by the STA/LTA algorithm 13 are false

alarms, which are more than the number of false alarms in the PSD

method. Therefore, the ratio of detected events over false triggers

is improved significantly in the PSD method when compared to the

STA/LTA technique.

Figs 6(b) and (e) show two raw segments of the vertical compo-

nent data each including a potential weak microseismic event in the

middle, which are obscured by the background noise. Therefore,

they are not detectable by the STA/LTA technique even when ap-

plied to the data filtered with notch filters at the frequencies of 60

and 120 Hz. On the other hand, the modified PSD detection method

has successfully detected these events due to their anomalous PSD

estimate over some frequency band compared to the average noise

PSD, as indicated by the time–frequency representations of the

above-unity PSD misfit ratios (eq. 9) at the corresponding times

shown in Figs 6(a) and (d), respectively. In order to ensure these are

indeed microseismic events they are bandpassed over their domi-

nant frequency band, [5 55] Hz, deduced from their time–frequency

representations at the times of their existence. Figs 6(c) and (f) show

the corresponding bandpassed Z-component time-series at all the

geophone levels (RCV1 is the shallowest receiver and so on). The

apparent velocities associated with these events are estimated to be

around 3280 m s−1 and 3340 m s−1, respectively, which are similar

to the available average sonic P-wave velocity in the formations

surrounding the monitoring well (Eaton et al. 2014). Therefore,

their apparent velocities and their coherencies at all geophone lev-

els confirm that they are microseismic events. The times at which

these detections are made via the PSD method on the shallowest

receiver are denoted by red arrows. Filtering the data over the fre-

quency range of [5 55] Hz causes these events to stand out of the

background noise. Therefore, when applied to the data filtered in

this frequency range, the STA/LTA method succeeds in detecting

these two events.

These two events have PSD criteria that are larger by 2 and

1.8 times the standard deviation of the noise model within this fre-

quency range, respectively. Assuming a Gaussian probability dis-

tribution, this quantifies to probabilities only from 2.27 per cent to

3.6 per cent that these are due to random noise fluctuations (eq. 12).

The time–frequency representation of the measured PSD ratios

for the whole 1-hr long segment (Figs 3a and b) shows that the fre-

quency band over which the microseismic events are significantly

dominant with respect to the noise is [5 55] Hz. The detected mi-

croseismic events have mostly PSD ratios between 2 and 8 in this

frequency range that translate into 2.27 to 6.18E-14 per cent prob-

ability that they are due to noise (eq. 12). This can also help in

designing suitable bandpass filters in order to better identify and

analyse microseismic events.

The third row in Table 2 provides the number of master events,

false alarms and missed events in the STA/LTA method when ap-

plied to the data filtered in the frequency range of [5 55] Hz deduced

from the PSD technique. The performance of the STA/LTA method

has been significantly improved when implemented to the data fil-

tered over this frequency range. The number of detected master

events has increased from 412 to 554, while the number of false

alarms and missed events has reduced from 13 to 9 and from 490 to

335, respectively. The pronounced increase of number of detected

coherent signals is mainly due to the fact that the dominant fre-

quency band of the regional events that encompass most of these

types of signals is [2 25] Hz. Therefore these events are enhanced

significantly and stand out clearly after applying the optimal filter,
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Figure 3. (a) The time–frequency representation of raw PSD ratios calculated using eq. (8). (b) The same as (a) for PSD ratios calculated using eq. (9). The

microseismic events appear dominantly at the frequencies below 120 Hz. 120-Hz line is the first overtone of the removed 60-Hz electric noise.

resulting in a higher number of detected coherent signals. Despite

improvements in the STA/LTA method after applying an optimal

bandpass filter to the data, the number of detected master events

only account for approximately 62.3 per cent of the total number of

master events detected by the PSD technique when applied to the

raw data. Also, the PSD technique still provides a marginally lower

number of false alarms and a smaller number of missed events.

Therefore, the PSD technique remains as the superior event detec-

tion algorithm although implemented on the unfiltered data.

Fig. 7 shows an example of a weak event that has been detected

by the PSD method but is missed by the STA/LTA method applied to

both the data filtered using notch filters at the frequencies of 60 and

120 Hz and the data bandpassed in the frequency range of [5 55] Hz.

The comparable amplitude of the event with the background noise,

even when the data are bandpassed between 5 and 55 Hz, causes

the STA/LTA method to fail in detecting this event. However, the

elevated spectral content of the event with respect to that of the

background noise makes the PSD method succeed in detecting this

weak event. An apparent velocity of 3450 m s−1 and coherency of

the waveforms along the receiver array confirm that this is an event.

5 D I S C U S S I O N S

Our suggested event detection method uses a similar number of

parameters as in the STA/LTA technique, namely a sliding window

of pre-determined length and a detection threshold. As the PSD

technique is based on the time–frequency representations, a trade-

off between temporal and spectral resolutions should be considered

when choosing the window length (Tary et al. 2015). The window

length should be large enough to adequately account for long-period

components of the signals and small enough to be able to make a

distinction between closely-spaced events. In the PSD method, one

could choose an absolute pre-set threshold for triggering (eq. 10

or 11) or a statistical one, in the sense that an event is triggered at

any specific time once its likelihood to be due to noise only is less

than a pre-selected value (eq. 12).

The PSD method can also be utilized for designing a more suitable

bandpass filter for further microseismic data analyses whereas the

STA/LTA method usually requires bandpassed data prior to event

detection. The PSD algorithm is also insensitive to variations in

the signal frequency content. However, it does assume stationary

background noise conditions (Vaezi & van der Baan 2014).
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(a)

(b)

Figure 4. (a) The STA/LTA ratio calculated using the parameters listed in Table 1. (b) The PSD detection criterion calculated by eq. (10) using the parameters

listed in Table 1. The red dashed lines represent the detection threshold for each method.

Table 2. The number of master events, false alarms and missed events in the PSD method when applied to the raw data

shown in Fig. 1 (first row) and the STA/LTA method when applied to the same data filtered with two narrow notch filters

at the frequencies of 60 and 120 Hz (second row). The third row presents similar variables for the STA/LTA method

when applied to the same data filtered in the frequency band of [5 55] Hz. Compared to the STA/LTA method, the PSD

method not only detects more events but also provides less false alarms and missed events. Bandpassing the data over the

frequency band deduced from the PSD method improves the performance of STA/LTA method.

Master events

Microseismic events Other coherent signals False alarms Missed events

PSD method (raw data) 796 93 8 0

STA/LTA method (notch-filtered data) 364 35 13 490

STA/LTA method (filtered data) 475 79 9 335

Both the STA/LTA and PSD techniques can be applied in a

multichannel strategy in which a voting scheme is used to trig-

ger events (Trnkoczy 2002). This way an event is declared once

the total number of votes (weights) exceeds a given pre-set value.

The spectral characteristics of the two horizontal channels may be

significantly different from that of the vertical channel. Therefore,

it is suggested that the PSD method is first applied separately to

different components before combining the votes from different

channels.

Both methods are incoherent (with respect to the background

noise) energy detectors, meaning that triggered events may not cor-

respond to microseismic events but other incoherent signals or even

incoherent noise (e.g., spikes, bursts) which represent locally inco-

herent amplitudes (or energy or envelope) in the STA/LTA method

or display sufficiently elevated spectral content over a frequency

range in the PSD method. Therefore, a manual quality control is

required to ensure that the declared events are indeed microseismic

events as well as discard the false triggers. The reduced number of
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Figure 5. (a) The time–frequency representation of the above-unity PSD misfit ratios (eq. 9) around some low-frequency signals that are detected by the PSD

method. These signals are interpreted to arise mostly from small regional earthquakes observed in the data. (b) The associated raw data. (c) The same data after

applying a bandpass filter over the frequency range of [2 25] Hz. The master events detected by the PSD method at the time of appearance of these regional

earthquakes are dominated by those of discriminating frequencies (Dis. Freq.) below 25 Hz (red stars). The detected events of discriminating frequencies in the

range of [25 55] Hz and above 55 Hz are mostly observed before and after these earthquakes and are denoted by black crosses and green squares. Compared

with the STA/LTA method, the PSD method is significantly more sensitive to the coherent signal portions of length 0.25 s within such events and detects a

greater number of such signals (93 coherent events). This is because their PSDs are sufficiently stronger than the average PSD over their dominant frequency

range. The STS/LTA, however, is only sensitive to abrupt amplitude changes and detects only 35 energetic signals within these events.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 6. (a,d) The time–frequency representation of the above-unity PSD misfit ratios (eq. 9) in the proximity of two events detected by PSD method and

missed by the STA/LTA method when the latter is applied to the data filtered with notch filters at the frequencies of 60 and 120 Hz. These events are also

detected by the STA/LTA method applied to the data bandpassed between [5 55] Hz. The events are detected to be in the middle of these time windows. (b,e)

The corresponding raw (unfiltered) waveforms of these two events on receiver 1. (c,f) The corresponding filtered time-series over the frequency range of [5 55]

Hz at all geophone levels. The red arrows show the detection times obtained by the PSD technique.

false alarms for the PSD method is important since it reduces the

time spent on manual quality control.

Although the PSD method outperforms the STA/LTA method in

detecting a higher number of weaker events, there are situations in

which the PSD method may lead to false positives. An example

of such situations is the occurrence of transient or time-varying

noise which cannot be captured by the stationary background noise

assumption. These can be caused by diurnal variations in the en-

ergy levels or originate from ambient noise sources (e.g. traffic,

etc.). Electric noise (spikes in the signal) also lies in this category

(Figs 8a–c). A possible remedy for the case of diurnal variations

is to analyse the daily and nightly data separately by calculating

separate average PSDs for each case and, therefore, setting different

PSD ratio thresholds, respectively. Another example where the PSD

method may result in false event declarations is when a local energy

increase either related or unrelated to microseismic activities is de-

tected on one receiver which may not be consistent with the records

on other receivers in the array, or it is observed on a single receiver
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(a)

(b)

(c)

Figure 7. (a) The time–frequency representation of the above-unity PSD misfit ratios (eq. 9) in the proximity of an event detected by PSD method and missed

by the STA/LTA method, no matter whether the latter is applied to the data filtered with notch filters at the frequencies of 60 Hz and 120 Hz or to the data

filtered over the frequency range of [5 55] Hz. The event is detected to be in the middle of this time window. (b) The corresponding raw (unfiltered) waveform

of this event on receiver 1. (c) The corresponding filtered time-series over the frequency range of [5 55] Hz at all geophone levels. The red arrow shows the

event detection time obtained by the PSD technique.

only (Figs 8d–f). As the events are visually inspected using the array

records, such detections due to locally elevated spectral energy lev-

els only on an individual receiver are deemed false alarms as well.

Furthermore, unusually large noise fluctuations are also undesired

for the PSD method.

Among the 8 false alarms detected by the PSD method ap-

plied to our 1-hr long data set one is related to a transient

(burst) noise and seven are related to features such as microseis-

mic events or non-stationary noise which are detected on a single

receiver only. Figs 8(a)–(c) show the burst, where its high am-

plitude and anomalously strong spectral content, especially over

the frequency range of [7 200] Hz, causes it to be detected as an

event via the PSD technique. However, the visual inspection using

geophones at all levels (Fig. 8c) shows that this feature appears
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 8. (a–c) Time–frequency representation of the PSD ratios, associated raw data on receiver 1 and the corresponding time-series filtered between 7 and

200 Hz on all geophones, respectively, for a spiky noise feature. The PSD technique picks up this false alarm due to this coherent nature. (d–f) Time–frequency

representation of the PSD ratios, associated raw data on receiver 1 and the corresponding time-series filtered between 10 and 50 Hz on all geophones,

respectively, for a second false alarm. Manual inspection on all geophone levels and lack of coherency along the array records suggests that this feature is most

likely related to a local non-stationary energy variation as opposed to a microseismic event.

almost instantaneously on all geophones with differing polarities

that can be due to instrument glitches or of other sources. There-

fore, it is discarded as a false alarm during the manual quality

control.

Figs 8(d)–(f) show an example where the PSD method detects an

event when applied to the data on receiver 1. However, the manual

quality control of this feature on geophone array shows no coherency

along the array but only some local non-stationary increase in the

energy level on other geophones. Therefore, this feature is also

considered as a false alarm.

In this paper we focused on event detection. We did not inves-

tigate how suitable the PSD technique is for onset-time picking.

Onset-time picking and event detection are two different concepts.

The former includes specifying the exact arrival time of the events,

whereas the latter only quantifies the likelihood of the presence of

events. When its parameters are well set, the STA/LTA technique

seems to better determine the onset times, while the PSD method

works best in identifying the presence of an event. On the other

hand, the PSD method is likely to perform better in detection of

emerging events where the gradual amplitude increase often makes
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Subset 2

Subset 1

Subset 3

Figure 9. The discriminating frequencies corresponding to each master event detected by the PSD technique. The events can be categorized into three different

event subsets based on the value of their discriminating frequencies, subsets 1 to 3, associated with events with discriminating frequency below 20 Hz, between

20 and 55 Hz and above 55 Hz, respectively.

the STA/LTA method fail. This can be explained by the fact that

the PSD method is insensitive to the phase of the event, that is, an

event can be detected as long as its spectral content is statistically

large enough compared with the average PSD estimate, no matter

whether the event is a minimum-, maximum- or a zero-phase event

(that is, has a front-loaded, end-loaded or symmetric waveform).

The STA/LTA method, on the other hand, is generally a minimum-

phase event detector (that is, with most energy at the start of the

arrival). One possible scheme to ensure superior performance is thus

to start with the PSD technique for triggering, use the detected fre-

quency range for bandpass filtering and then employ the STA/LTA

or another picking method to detect the arrival onsets.

The PSD technique also provides useful information for event

classification or identification since it explicitly reveals the signal

frequency content. Fig. 9 shows the ‘discriminating frequencies’ for

each of the 889 master events detected by the PSD method. The dis-

criminating frequency of an event is here defined as the frequency

at which the normalized PSD (ut( f ) in eq. 8) has its maximum value

at the corresponding time of the event. Three different event subsets

associated with three distinct ranges of discriminating frequencies

can roughly be identified: low-frequency events at the frequencies

below 20 Hz which are mostly related to regional events (Fig. 5),

intermediate-frequency microseismic events in the frequency range

of [20 55] Hz which include the majority of detected master events

and high-frequency microseismic events at the frequencies above

55 Hz. Therefore, we propose that the PSD method can further be

used for event cluster analysis and phase identification (Shumway

2003; Fagan et al. 2013; Anderson et al. 2010; Langer et al. 2006;

Scarpetta et al. 2005). Note that the short-wavelength step-wise

fluctuations observed in the discriminating frequencies are approx-

imately equal to 4 Hz, which is the frequency step in the PSD

technique, as we have used 0.25 s long moving windows.

6 C O N C LU S I O N S

The PSD technique outperforms the STA/LTA method by detecting

a higher number of weak microseismic events that are obscured by

the background noise. When applied to the unfiltered data, the PSD

method not only detects approximately 55.2 per cent more master

events than the STA/LTA method applied to the data filtered by notch

filters at the frequencies of 60 Hz and 120 Hz, but also reduces the

number of false alarms and missed events. The PSD method has

the advantage over the STA/LTA method that no prior bandpass

filtering is required to enhance the S/N and also permits detection

of signals with characteristically different frequency contents if

the background noise spectrum is stationary. Even if the STA/LTA

technique is applied to optimally filtered data, the PSD method

still detects approximately 37.7 per cent more master events with a

similar number of false alarms. Therefore, the PSD method remains

as the superior event detection algorithm to the STA/LTA technique.
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