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ABSTRACT

Context. The structure and dynamics of small vertical photospheric magnetic flux concentrations has been often treated in the frame-
work of an approximation based upon a low-order truncation of the Taylor expansions of all quantities in the horizontal direction,
together with the assumption of instantaneous total pressure balance at the boundary to the non-magnetic external medium. Formally,
such an approximation is justified if the diameter of the structure (a flux tube or a flux sheet) is small compared to all other relevant
length scales (scale height, radius of curvature, wavelength, etc.). The advent of realistic 3D radiative MHD simulations opens the
possibility of checking the consistency of the approximation with the properties of the flux concentrations that form in the course of
a simulation.
Aims. We carry out a comparative analysis between the thin flux tube/sheet models and flux concentrations formed in a 3D radiation-
MHD simulation.
Methods. We compare the distribution of the vertical and horizontal components of the magnetic field in a 3D MHD simulation with
the field distribution in the case of the thin flux tube/sheet approximation. We also consider the total (gas plus magnetic) pressure in
the MHD simulation box.
Results. Flux concentrations with super-equipartition fields are reasonably well reproduced by the second-order thin flux tube/sheet
approximation. The differences between approximation and simulation are due to the asymmetry and the dynamics of the simulated
structures.

Key words. magnetohydrodynamics (MHD) – Sun: magnetic fields – Sun: photosphere

1. Introduction

Much of the solar photospheric magnetic flux exists in the form
of discrete concentrations in intergranular lanes having a field
strength of 1−2 kG (Stenflo 1973; Wiehr 1978; Rüedi et al. 1992;
Rabin 1992; Martínez Pillet et al. 1997), for reviews see Solanki
(1993); Solanki et al. (2006).

Theoretical models of these flux concentrations have widely
used the concept of the flux tube: a bundle of field lines with
circular cross-section separated from the non-magnetic environ-
ment by a tangential discontinuity (see e.g. Schüssler 1992).
Such a structure can be described, under certain conditions, by
the so called “thin flux tube approximation”. In its simplest form,
the axial component of the magnetic field is assumed to be con-
stant across the tube’s cross-section, while the radial compo-
nent is a linear function of the radial coordinate (Defouw 1976;
Roberts & Webb 1978, 1979). The thin flux tube approximation
can be formally justified if the diameter of the flux tube is suf-
ficiently small compared to variations of the relevant physical
quantities (such as pressure, density, etc.) along the tube’s cross-
section (Spruit 1981; Schüssler 1992).

The equations describing a thin flux tube can be obtained by
writing all physical quantities (magnetic field, temperature, pres-
sure, etc.) in terms of a Taylor expansion in the radial distance
from the axis, and inserting them in the MHD equations. By col-
lecting terms of similar order one obtains a hierarchy of equa-
tions (Ferriz-Mas & Schüssler 1989). Truncating this hierarchy

after the 1st order allows the 0th-order approximation introduced
above to be obtained.

Extensions of the thin flux tube approximation to higher or-
ders have been given in the literature. By retaining second-order
terms Pneuman et al. (1986) have included in their modelling
the effects of field line curvature, internal structures, twist, and
the merging of flux tubes with their neighbours. A derivation of
linear wave modes of a flux tube up to second order has been
carried out by Ferriz-Mas et al. (1989).

There is a large body of work in the literature based upon
the thin flux tube approximation. This includes theoretical work
(structure of flux concentrations, equilibrium, oscillations/wave,
stability, etc.) and interpretation of observations (for reviews, see
Solanki 1993; Solanki et al. 2006). Various aspects of the thin
tube approximation have been compared to observational data
(e.g. Zayer et al. 1989; Bruls & Solanki 1995; Solanki et al.
1996), but its validity has not been tested on the basis of the
most advanced numerical simulations.

In the last two decades, the possibilities to self consistently
model magneto-convection at the solar photosphere using the
full set of MHD equations including radiative and convective
energy transport (e.g. Nordlund 1983; Stein & Nordlund 1998;
Bercik 2002; Stein & Nordlund 2003; Vögler & Schüssler 2003;
Vögler et al. 2005) have greatly improved. The structure of flux
concentrations in such MHD simulations appears rather com-
plex, owing to their interaction with convection and energy ex-
change with the neighbouring plasma.
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We aim to evaluate to which extent the magnetic structures
forming in 3D MHD simulations can be described using the thin
flux tube/sheet approximation.

2. A series expansion of the thin flux tube/sheet

equations

We consider a magnetic flux tube to be a bundle of magnetic
field lines with a circular cross section, which is separated from
its non-magnetic surroundings by a tangential discontinuity with
a surface current. For an axisymmetric vertical flux tube, we
adopt cylindrical coordinates (r, θ, z), with the z-axis pointing in
the vertical direction. Physical quantities are regular at the axis
(r = 0), so that they can be described in terms of a Taylor ex-
pansion in the radial coordinate (Roberts & Webb 1978; Spruit
1981; Pneuman et al. 1986; Ferriz-Mas et al. 1989; Ferriz-Mas
& Schüssler 1989)

The properties of the axisymmetric MHD equations (Ferriz-
Mas & Schüssler 1989) imply that only even orders are non-
zero in the above-mensioned expansions for scalar quantities
(such as temperature or density) and for z-components of vec-
tors, whereas for the radial and θ-components of vectors only
the odd orders remain.

The three components of the magnetic field vector, the tem-
perature and the pressure can be written in a non-dimensional
way:

bz = h0 + h2x2 + h4x4 + ..., (1)

br = f1 x + f3x3 + f5x5 + ..., (2)

bθ = s1 x + s3 x3 + s5x5 + ... (3)

p = p0 + p2x2 + p4x4 + ... (4)

σ = σ0 + σ2 x2 + σ4x4 + ..., (5)

with p = P/P∗, σ = T/T ∗, b = B/B∗, x = r/H∗, y = z/H∗, H∗ =
kT ∗/(mpg) and α = 4πP∗/B∗2. Where Br, Bθ, Bz, represent the
three components of the magnetic field vector. P and T are the
gas pressure and temperature, respectively. The quantities with
an asterisk are defined at the tube’s axis (x = r = 0) and at a
reference height (z = y = 0). k is Boltzmann’s constant, mp the
mean particle mass, g the gravitational acceleration, and H the
scale height.

2.1. Bz and Br under the thin flux tube approximation

Following, e.g., Pneuman et al. (1986), in a static atmosphere,
we insert the expansions (1 to 5) in the three components of the
momentum equation and the solenoidality relation, and collect
terms of equal power in x into equations of corresponding order.
Considering equations including terms up to the third order, and
assuming that the flux tubes studied here have negligible twist,
we obtain the following relations (Pneuman et al. 1986):

h2 = −
1
4

h′′0 −
αp2

h0
, (6)

f1 = −
1
2

h′0, (7)

and

f3 = −
1
4

h′2, (8)

where the prime indicates a derivative with respect to y.

We can then deduce Bz up to the second order, and Br up to
the third order.

In order to close the above system it is necessary to con-
sider relations expressing magnetic flux conservation through
the tube’s cross-section and total pressure balance at the bound-
ary of the flux tube at any height (Ferriz-Mas & Schüssler 1989;
Ferriz-Mas et al. 1989). In addition to these relations, Ferriz-
Mas et al. (1989) have considered an energy equation, whereas
Pneuman et al. (1986) have chosen to prescribe two quantities,
such as σ0 and σ2, which allows more flexibility in defining the
atmosphere. In order to construct a thin flux tube which we will
compare with flux concentrations in MHD simulations, we take
h0 and p2 from the MHD simulations. Then Bz and Br are deter-
mined from Eqs. (6) to (8). The cross section of the flux tube is
determined through the magnetic flux conservation relation:
∫ x0

0
(h0 + h2x2)dx = Flux at base of tube = const., (9)

where x0 is the tube’s radius at a given height. The total pressure
balance can be expressed as:

(βpi + b2
i )|x=x0 = (8πPe + B2

e)/B∗2|x=x0 , (10)

where β = 8πP∗/B∗2, the suffixes i and e indicate internal and ex-
ternal quantities respectively and capital letters indicate dimen-
sional quantities.

Under the 0th-order approximation Eq. (10) reduces to:

(βp0 + h2
0)|x=x0 = (8πPe + B2

e)/B∗2|x=x0 , (11)

This relation does not depend on the radius of the flux tube. Thus
the total pressure at a given height under the 0th-order approxi-
mation is constant across the tube’s cross-section.

Under the 2nd-order approximation we get:

(βp0+h2
0)+ x2(βp2+ f 2

1 +2h0h2)|x=x0 = (8πPe+B2
e)/B∗2|x=x0 , (12)

In this case the total pressure varies inside the flux tube, but has
to match the external total pressure at the tube’s boundary.

2.2. Bz and Bx under the thin flux sheet approximation

A flux sheet is an elongated structure with a small width (which
we refer to as “W′′) compared to its length (“L′′) along the solar
surface, i.e. W ≪ L at the solar surface. A similar approach as
described in the previous section can be used to describe a thin
flux sheet. In this case the magnetic field component parallel to
L is constant, and thus plays no direct role in the hydrostatic
equilibrium. We can then adopt a Cartesian 2D geometry in the
x − z plane, where z is the vertical coordinate and x is the hori-
zontal coordinate perpendicular to the vector L.

In a similar way to Sect. 2.1, we can determine h2, f1 and f3
as functions of h0 and p2.

h2 = −
1
2

h′′0 −
αp2

h0
(13)

f1 = −h′0 (14)

and

f3 = −
1
3

h′2. (15)

Note the similarity between these equations and the ones de-
scribing the thin flux tube. The main difference (apart of the
geometry) is the numerical values of the constant coefficients
which affects, for instance, the expansion rate of the flux
tube/sheet with height.
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Fig. 1. Upper panel: vertical component of the magnetic field (Bz)
at a fixed geometrical height near the averaged visible solar surface
(τ5000 = 1). Lower panel: vertical component of the velocity (Vz) at
τ5000 = 1. Downflows are represented in red and upflows in blue. The
black contours outline regions where |Bz| > 500 G. The black vertical
lines indicate locations where we carry out a detailed analysis of mag-
netic elements in Sect. 5.

3. The radiative MHD simulations

Three dimensional radiation-MHD simulations of the solar pho-
tosphere have been described by (Nordlund 1983; Nordlund
& Stein 1990; Stein & Nordlund 1998; Bercik 2002; Stein &
Nordlund 2003; Vögler & Schüssler 2003; Vögler et al. 2005).

The simulation run used here has been obtained with the
fully compressible MURaM code (Vögler 2003; Vögler et al.
2005). It takes into account non-local and non-gray radiative
energy transport, and includes the effects of partial ionization.
The simulation box has a horizontal extension of 6 × 6 Mm2

and is 1.4 Mm deep. The grid cell size is 5 km in the horizon-
tal direction and 7 km in the vertical. The simulation run starts
from a plane-parallel atmosphere which extends from −0.8 Mm
below to 0.6 Mm above a reference 0, which is roughly situ-
ated −100 km below the average continuum optical depth unity
(τ5000 = 1, which corresponds to the solar surface at 5000 Å).
After convection has fully developed, a mixed-polarity magnetic
field configuration with zero net vertical flux is introduced. This
is done such that the simulation domain is divided into four parts
with vertical field of alternate polarities in a chessboard pattern.
We choose a representative snapshot for our analysis (see Fig. 1).
The mean unsigned field strength at optical depth unity is 200 G
for this snapshot.
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Fig. 2. Horizontal average of the plasma β, gas pressure and total pres-
sure as a function of height. Plotted are, the logarithmic values of the
gas pressure averaged over regions with field strength smaller than 50 G
(full line), the gas pressure averaged in magnetic flux concentrations
(dash-dotted line), the total pressure over magnetic flux concentrations
(dashed line) and the plasma β (squares; scale on the right).

4. Analysis of the total pressure in the whole

simulation domain

Figure 2 shows horizontally averaged gas and total pressures as
a function of height. The solid line represents the gas pressure
averaged over regions with field strength smaller than 50 G. The
dash-dotted line indicates the gas pressure averaged over mag-
netic regions. The threshold in |Bz| defining magnetic regions
varies linearly from 500 G at the bottom of the simulation box
to 300 G at the top. The dashed line represents the total pres-
sure (Ptot = P + B2/(8π)) averaged over magnetic regions. The
plasma β = 8πP/B2 for magnetic regions is indicated by square
symbols.

The difference between the gas pressures inside and outside
magnetic regions becomes smaller with depth. This is due to
the large values of the plasma β in the deep layers (e.g. below
−400 km) which indicate that the pressure balance between mag-
netic features and their surroundings is mainly ensured by gas
pressure. Above 300 km, the total pressure in magnetic features
shows an excess compared to gas pressure in nearly field-free
areas. This excess increases with height and is due to the ef-
fect of curvature forces. This implies that the 0th-order thin flux
tube/sheet approximation is not sufficient to describe the flux
concentrations in the upper part of the simulation box. The gas
pressure in nearly field-free regions is higher than the total pres-
sure in the flux concentrations in the height-range situated be-
tween 50 and 300 km. This slight pressure excess mainly results
from the fact that the gas pressure at equal geometrical height is,
on average, higher in the granular upflows than in the intergran-
ular downflow lanes, where the magnetic flux concentrations re-
side. In addition, a pressure deficit in the flux concentrations rel-
ative to their local environment could arise as the result of the
outward curvature force of the expanding tubes between 0 and
300 km height. Above 300 km, the sign of the curvature force
is reversed as a result of the wineglass shape of the flux tubes
caused by the presence of neighboring tubes (reflected in our
simulation by the vertical-field upper boundary condition). In
any case, the deviation from total pressure balance is very small
below 300 km height.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912390&pdf_id=1
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912390&pdf_id=2
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The total pressure balance between a magnetic flux concen-
tration and its non-magnetic surroundings results from the con-
tinuity of the normal stress at the boundary separating the flux
concentration from its surroundings. In the 0th-order approxima-
tion (Eq. (11)), Ptot not only matches the boundary value but is
also constant across the flux concentration. The presence of 2nd-
order terms (or higher-orders) produces higher or lower values
of Ptot at the center of flux concentrations (Eq. (12)) in compar-
ison to Ptot at the magnenic/non-magnetic boundary, which re-
mains equal to the external pressure. Thus the total pressure can
be used as diagnostic for determining whether a flux concentra-
tion has 0th or higher-order configuration. In order to illustrate
the distributions of pressures and magnetic field in the simula-
tion box, which includes different sizes and shapes of magnetic
concentrations, we show in Fig. 3 maps of the gas and total pres-
sures as well as Bz at three heights −98, 182 and 462 km, where
the reference height 0 is roughly situated −100 km below the
average continuum optical depth unity, τ5000 = 1.

The vertical component of the magnetic field at −98 km is
displayed in the lower left pannel of Fig. 3. Note that the flux
resides mainly in strong flux concentrations located in intergran-
ular lanes. The middle panel of the lower row in Fig. 3 repre-
sents gas pressure at −98 km. Locations where the magnetic flux
density is higher than 500 G are outlined by dark contours. The
gas pressure is higher at centers of granules comparing to in-
tergranules. This pressure excess drives the horizontal flows to-
wards the intergranular lanes (see e.g. Stein & Nordlund 2003).
Intergranular lanes display a mixed picture with high gas pres-
sure (which stops the horizontal flows) but also low pressure ar-
eas. The magnetic flux concentrations show lower gas pressure.

The total pressure inside flux concentrations at −98 km
(lower right panel of Fig. 3) is roughly close to gas pressure
outside, and does not vary significantly within individual flux
concentrations. Constant Ptot is a necessary condition (but not
sufficient) for the validity of the 0th-order thin flux tube/sheet
model.

The existence of 2nd-order terms (or higher-orders) in pres-
sure and magnetic field leads to higher/lower values of the total
pressure at the center of flux concentrations. So, one way of mea-
suring the importance of higher-order terms is to compute the
standard deviation and the mean value of the total pressure in-
side magnetic elements and compare them with the correspond-
ing values outside magnetic regions (see Table 1).

At an altitude of −98 km (Table 1), M is slightly lower than
NM because magnetic flux concentrations are located in inter-
granular lanes where the pressure at this altitude is slightly lower
than the average pressure over the simulation domain. σM/M

is larger than σNM/NM, this does not result from higher-order
terms, but rather indicates the presence of fluctuations inside
magnetic elements. This is due to the fact that the plasma beta
at this altitude is larger than unity (See Fig. 2) which indicates
that convection affects and perturbs the field’s regularity. Note
that locations with particularly low total pressure (e.g. the green-
colored ones) are generally unrelated to magnetic flux concen-
trations.

At a higher altitude (182 km) we see in Fig. 3 that mag-
netic structures have expanded. The gas pressure has, on av-
erage, lower values in intergranular lanes and particularly low
values inside magnetic elements. The total pressure is lower in
intergranular lanes even when there is no (or low) magnetic field,
e.g. in the region around the coordinates (3 Mm, 2.8 Mm). The
mean value NM is higher than M (Table 1). The normalized
fluctuations of Ptot inside and outside magnetic elements are

similar (σM/M ≈ σNM/NM). Hence there is little evidence for
a significant contribution from higher-order terms.

Near the top of the box, at a geometrical height of 462 km,
we notice that the total pressure (Fig. 3) increases towards the
center of flux concentrations. M > NM and σM/M > σNM/NM.
This indicates that the total pressure is not a 0th-order function.
This effect is more pronounced in large flux concentrations. The
plasma β is small at these heights (see Fig. 2), thus we expect a
nearly force-free equilibrium with a balance between curvature
force and magnetic pressure gradient. So the outward magnetic
pressure force will be balanced by the inward curvature force.
Thus the magnetic pressure (≃total pressure) has to increase in-
ward. Hence the increase of Ptot at the center of flux concentra-
tions in the upper right panel of Fig. 3.

5. Analysis of individual magnetic structures

The flat profiles of total pressure in the lower part of the atmo-
sphere are in favour of the applicability of the 0th-order thin flux
tube/sheet approximation. In the upper part of the atmosphere,
however, the magnetic features show a total pressure excess in
their center. This indicates that the 0th-order thin flux tube/sheet
approximation is not applicable, but possibly the extension of
the approximation to 2nd-order is sufficient to describe the force
equilibrium of the magnetic structures. For a quantitative inves-
tigation we select three flux concentrations in the MHD simula-
tion run according to their width and morphology. These will be
treated in the next three sub-sections.

5.1. Thin flux sheet

We compare the properties of a narrow flux sheet in the
MHD simulation (Fig. 1) with the thin flux sheet model pre-
sented in Sect. 2.2. Note that the flux tubes/sheets in a magneto-
convection simulation are not static (unlike the assumption made
in Sect. 2). They interact with the external plasma, and get dis-
torted by the granulation motion. They also exchange energy
(mainly by radiation) with the surroundings. In order to main-
tain the numerical stability of the simulation, the gradient of
any physical quantity cannot be too large between two neigh-
bouring grid cells. More specifically, the magnetic flux density
must not jump abruptly from the boundary of a flux tube to the
neighbouring non-magnetized plasma (Vögler 2003). Thus the
boundary layer separating a flux tube from the surrounding non-
magnetized plasma is a few grid points wide, unlike the tangen-
tial discontinuity in the case of an ideal flux tube. We wish to
see whether simulations and thin flux sheet/tube approximation
are consistent with each other in spite of the fact that MHD flux
tubes/sheets have finite boundary layers, internal and external
dynamics and deviate from an axi- or translationally symmetric
configuration.

We select a rather narrow sheet-like structure in the simu-
lation domain. A vertical 2D cut through the flux sheet (shown
in Fig. 4) at the location indicated by the dark line in the up-
per left corner of Fig. 1 reveals the morphology of the magnetic
field. The expansion of the flux sheet with height is mainly de-
termined by magnetic flux conservation with height and a hori-
zontal balance between the magnetic plus gas pressure inside the
sheet with the gas pressure outside.

Figure 5 shows profiles of gas pressure (full lines) and to-
tal pressure (triangles) along the 5 horizontal lines in Fig. 4.
The location of the magnetic flux concentration is reflected by
the lower gas pressure. The vertical dashed lines outline regions
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Fig. 3. Gas pressure, total pressure and vertical component of the magnetic field at three geometrical heights −98, 182 and 462 km. The reference
height “0” is located at −100 km below the average continuum optical depth unity at 5000 Å. A common color table is used for the three Bz maps.
At each height, the pressures share the same color table indicated on the right-side of the maps. The black contours enclose regions where |Bz| is
higher than 500 G at −98 km, higher than 400 G at 182 km and higher than 300 G at 462 km.

Table 1. Standard deviations and mean value of Ptot.

Altitude [km] –98 182 462
Standard deviation of Ptot in non-magnetic regions (σNM) [cgs] 27 703.0 9707.59 1055.04
Standard deviation of Ptot in magnetic regions (σM) [cgs] 32 709.4 7950.80 2151.41
Mean value of Ptot in non-magnetic regions (NM) [cgs] 254 220.0 57 750.9 4901.33
Mean value of Ptot in magnetic regions (M) [cgs] 249 696.0 47 409.8 8626.20
σNM/NM 0.108 0.168 0.215
σM/M 0.130 0.167 0.249

where Bz is higher than 0.75 of its maximum value. The pro-
files indicate that the flux sheet’s equilibrium in the lower panels
is consistent with balance of total pressure in the zeroth-order
thin flux sheet approximation (see Eq. (11), which is valid for
both flux tubes and flux sheets). In the top panel we see that
the total pressure increases somewhat towards the center of the
sheet, which indicates the necessity of extending the approxima-
tion to second- (or higher-) order (see Eq. (12)). At this height,

the plasma β has become so small that the internal equilibrium
becomes nearly force free, i.e., curvature forces and magnetic
pressure gradient balance each other.

Figure 6 shows the vertical component of the magnetic field
along the 5 horizontal lines in Fig. 4. The triangles represent Bz

in the case of a thin flux sheet in the second-order approxima-
tion. The solid curves represent Bz from the MHD simulations.
We note that Bz for the thin flux sheet at the two lower panels

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912390&pdf_id=3
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Fig. 4. Vertical 2D cut through the MHD simulation box at the location
shown by the black line at the upper-left corner in Fig. 1. The horizontal
lines indicate locations at which we plot profiles of various physical
quantities in Figs. 5 to 7.

is close to a constant (small contribution from the 2nd-order
terms), whereas in the three upper panels the second-order terms
become more important.

The 2nd-order approximation reproduces reasonably well
the overall Bz profiles obtained from the MHD simulations in
the higher layers of the atmosphere. The profiles of Bz from
the simulation exhibit some structures across the sheet’s cross-
section which are not reproduced by the thin sheet model. This
is because this latter model produces only symmetric profiles of
Bz (Ferriz-Mas & Schüssler 1989). The actual profiles of Bz are
asymmetric primarily in the sense that the left part exhibits larger
values than the right part. This is associated with lower values of
the pressure at these locations, so Bz has to increase in order to
keep Ptot balanced (see Fig. 5).

The distribution of the horizontal field component and its ap-
proximation with the thin flux sheet model are shown in Fig. 7.
Here Bx includes a third-order term (see Sect. 2.2). The profiles
of the actual field are smooth for the three upper panels (low β).
In the two lowest panel we notice some fluctuations mainly due
to perturbations by the external convection. The fit between the
simulation result and the thin sheet model is relatively good for
the three upper panels, and less good for the two lower ones. We
notice that for the three upper panels there is a systematic off-
set between the actual values and the thin sheet model. This is
due to the fact that the sheet is slightly inclined towards the right
(more positive Bx than negative in Fig. 7). This can also be seen
in Fig. 4 at heights above ≈150 km.

Bz and Bx for the thin flux sheet can be written in a dimen-
sional way (see also Eqs. (1) and (2)):

Bz = Bz0 + x2Bz2 + x4Bz4 + ... = B0 + B2 + B4 + ..., (16)

Bx = xBx1 + x3Bx3 + ... = B1 + B3 + ... (17)
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Fig. 5. Gas pressure (solid lines) and total pressure (triangles) along the
5 horizontal lines in Fig. 4. The vertical dashed lines outline regions
where Bz is larger than 75 percent of its maximum value.

We can compare the relative importance of successive terms in
these series expansions. Table 2 indicates that the average values
|B2| are significantly smaller than |B0|. The importance of |B2|
is more pronounced in the upper part of the atmosphere. This is
also noticeable in the upper panels of Fig. 6. In a similar way to
Sect. 2.2 we calculate 4th-order terms (see also Pneuman et al.
(1986) and Ferriz-Mas & Schüssler (1989)). Table 2 shows that
|B4| terms are very small compared to |B0|. Their relative im-
portance reaches its maximum in the top part of the atmosphere,
though they remain negligible in practical terms. Similarly, |B3|
terms are very much smaller than |B1|. Thus the influence of
successive terms in Eqs. (16) and (17) decrease with their order.
This is clearly seen in Figs. 6 and 7, and confirms that neglecting
the 4th-order terms in Bz is justified.

5.2. Analysis of a broad flux concentration

In this section, we compare Bz and Br from a thick flux concen-
tration with the thin tube model (Sect. 2.1). The criteria for the
choice of a flux tube in the MHD simulations are primarily its
width and a relative smoothness of Ptot across it. The selected
flux tube is located in the lower right part of Fig. 1 (crossed by
a dark line). The first thing to note is that the tube is split near
the solar surface, which probably results from the history of its
interaction with convection. We also notice that this “tube” has
a cross-section which deviates significantly from a circular area
(see Fig. 1).

Inspite of these facts, the thin flux tube model reproduces
reasonably well the overall shape of Bz given in the three upper
panels of Fig. 8. In the upper two, we notice the existence of a
region with smoother decrease of Bz at the left edge of the flux
tube. This results from a small neighbouring magnetic structure

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912390&pdf_id=4
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Table 2. Relative importance of the average values of the series expansion |B2|/|B0|, |B4|/|B0| and |B3|/|B1|
∗

.

Thin flux sheet: height from reference [km] –98 42 182 322 462
|B2|/|B0| 0.009 0.014 0.036 0.118 0.106
|B4|/|B0| 7.67 e-05 2.75 e-05 0.001 0.010 0.015
|B3|/|B1| 0.086 0.028 0.006 0.056 0.035

Thick flux tube: height from reference [km] –98 42 182 322 462
|B2|/|B0| 0.112 0.149 0.007 0.086 0.059
|B4|/|B0| 0.017 0.012 4.75 e-04 0.011 0.003
|B3|/|B1| 0.183 0.142 0.094 0.023 0.034

∗ Vertical bars indicate absolute values and overlines indicate horizontal average over the sheet’s cross-section.
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Fig. 6. Vertical component of the magnetic field, Bz, along the 5 hori-
zontal lines in Fig. 4 (solid lines). The triangles represent Bz resulting
from a 2nd-order thin flux sheet model.

that merges with the main flux tube. This structure is not visible
in the lower panels since at those heights it does not overlap the
dark line (Fig. 1). It appears at the highest panels because its
expansion with height makes it reach the location of the cut in
the MHD cube. We don’t aim to reproduce this neighbouring
structure, but only the main flux tube.

In the deeper layers of the photosphere (lower panels of
Fig. 8) the relatively thick flux tube splits down its center into
two parts. The two separate parts of the flux tube in the lower
photosphere merge while expanding with height. It is interest-
ing that such groups of flux concentrations tend to behave like a
single flux tube higher up in the atmosphere owing to expansion
and the decrease of β with height.

The splitting of the flux tube in the lowest panel leads to a
decrease of the horizontally averaged field strength at this height
compared to the second-lowest panel. It is seen in the framework
of the thin flux tube model as an expansion of the flux tube with
depth and produces positive values of h2 (Eq. (6)), clearly seen
in the lowest panel.

The radial component of the magnetic field fits reasonably
well with the thin flux tube model for the three upper panels
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Fig. 7. Full lines: horizontal component of the magnetic field, Bx, across
the flux sheet plotted along the 5 horizontal cuts in Fig. 4. The triangles
represents Bx resulting from a 2nd-order thin flux sheet model.

(Fig. 9), except at the left edge where the small magnetic feature
has merged with the main flux tube. In the two lower panels the
actual profiles of Br are disturbed by the double structure of the
flux tube. In this case the thin flux tube model cannot be expected
to reproduce the actual profiles. In the lowest panel, Br from the
thin flux tube model has a negative slope due to the expansion
of the flux tube with depth, which leads to negative values of f1
(Eq. (7)).

The 4th-order terms remain very small at all altitudes com-
pared to lower orders (Table 2). At the three upper altitudes, the
3rd-order contribution is clearly less marked than the 1st-order
one. The uneven flux distribution at the two lower altitudes re-
sults in somewhat higher contributions of the 2nd-, 3rd- and 4th-
orders compared to the situation at higher altitudes.

5.3. Very thin flux concentration

The thin flux tube/sheet model is generally thought to be best
suited to describe the smallest flux concentrations in the MHD

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912390&pdf_id=6
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Fig. 8. Vertical component of the magnetic field of a thick flux tube in
the MHD snapshot (solid lines) along the black line in the lower right
corner of Fig. 3. The triangles represent Bz resulting from the thin flux
tube model. The 5 plots correspond to the same heights as in Fig. 6

.

simulations. This picture is appropriate for the ideal case where
flux tubes/sheets have an extremely thin boundary layer (separat-
ing magnetic and non-magnetic regions) and for a static plasma.
The situation in the photosphere is clearly different. There vig-
orous convective flows induce considerable distortions of very
thin flux concentrations. As a consequence, the shape and flux
density distribution of the thinnest magnetic elements may differ
significantly from a thin flux tube/sheet model.

In order for a flux concentration to evolve as a coherent struc-
ture in a plasma with density ρ and velocity V , its magnetic en-
ergy density (B2/(8π)) has to be larger than the kinetic energy
density of the flow (0.5ρV2). In other words, the magnetic field
has to be such that B > Beq = V

√

4πρ, where Beq is the equipar-
tition field strength.

At the surface of the sun we have Beq ≃ 500 G. This is a limit
below which we cannot expect to obtain a structure coherent
enough to be described by the thin flux tube/sheet model. Thus
we only consider thin magnetic features with B > Beq > 500 G
(see contours on Fig. 1). We also require that flux concentrations
remain coherent at higher altitude (see top-left panel in Fig. 3)
and are not located in a region close to opposite-polarity fields,
since at these locations the field morphology gets complicated.

The Bz map in the upper left panel of Fig. 3 indicates that
only relatively few very-thin flux concentrations (that have not
merged with larger magnetic features) are noticeable at the great-
est height. We select one of them, at the location shown by the
black vertical line in the upper-right part of the maps in Fig. 1.

A lateral 2D view of this thin structure (Fig. 10) shows that
it is asymmetric and distorted, with an inclination that varies
strongly with height. Since the magnetic energy density is not
far above the equipartition value, the convective flows influence
the morphology of the thin flux concentration rather strongly.
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Fig. 10. Vertical 2D cut in the MHD data showing Bz at the location
indicated by the black line in the upper right part of the maps in Fig. 1.

This does not favour the representation of very thin flux concen-
trations in terms of thin flux tube/sheet models.

6. Conclusions

The total pressure diagnostic (Sect. 4) indicates that Ptot is nearly
constant across most flux concentrations near the solar surface.
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This is a necessary condition for applying the 0th-order thin flux
tube/sheet approximation. In the higher parts of the atmosphere,
tension forces become important due to the curved field lines
and low plasma β. In this case, higher orders in the thin flux
tube/sheet model are needed to describe flux elements.

For a detailed analysis of magnetic features in the MHD sim-
ulation, we have adopted two models (thin flux tube and thin
flux sheet) depending on the geometry of the studied flux con-
centration. We have seen that for flux concentrations with mag-
netic field well above the equipartition distribution (Sects. 5.1
and 5.2), the models reproduce reasonably well Bz and Bx (or
Br) of the simulated flux concentrations. This was especially the
case in the higher part of the atmosphere. The fits were less good
in the lower part of the atmosphere due to higher β and the vig-
orous convective flows. In this case, it is rather the overall shape
of Bz that is consistent with the approximation. The 2nd-order
terms of the thin flux tube/sheet approximation contribute at the
5–15 percent level especially in the upper part of the atmosphere.
The 3rd-order terms provide a relatively small contribution to Bx

or Br, while the 4nd-order terms give a very small contribution
to Bz. This justifies neglecting the 4th-order terms and the view
that higher-orders contribute less and less to Bz and Bx (or Br).

In the case of very thin flux concentrations which generally
have energy densities lower than or at most somewhat higher
than the equipartition value, field lines are distorted and partly
driven by plasma motions. This leads to distorted or incoherent
flux concentrations which do not have the necessary symmetry
and regularity to be reproduced by a thin flux tube/sheet model.
To what extent these low field strengths are due to the lim-
ited resolution (low Reynold’s number) of the simulations still
needs to be established. Note, however, that it has been pointed
out (Venkatakrishnan 1986) that the convective collapse mech-
anism, thought to be responsible for the concentration of mag-
netic flux to kG strengh (Parker 1978; Spruit 1979; Grossmann-
Doerth et al. 1998), becomes less efficient as the amount of mag-
netic flux per feature decreases. A decrease in field strength with
decreasing magnetic flux has been observationally confirmed
(Solanki et al. 1996).
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