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Abstract

Background: The three-dimensional organization of the genome is tightly connected to its biological function. The

Hi-C approach was recently introduced as a method that can be used to identify higher-order chromatin interactions

genome-wide. The aim of this study was to determine genome-wide chromatin interaction frequencies using the Hi-C

approach in mouse sperm cells and embryonic fibroblasts.

Results: The obtained data demonstrate that the three-dimensional genome organizations of sperm and fibroblast

cells show a high degree of similarity both with each other and with the previously described mouse embryonic stem

cells. Both A- and B-compartments and topologically associated domains are present in spermatozoa and fibroblasts.

Nevertheless, sperm cells and fibroblasts exhibit statistically significant differences between each other in the contact

probabilities of defined loci. Tight packaging of the sperm genome results in an enrichment of long-range contacts

compared with the fibroblasts. However, only 30% of the differences in the number of contacts are based on

differences in the densities of their genome packages; the main source of the differences is the gain or loss of

contacts that are specific for defined genome regions. We find that the dependence of the contact probability on

genomic distance for sperm is close to the dependence predicted for the fractal globular folding of chromatin.

Conclusions: Overall, we can conclude that the three-dimensional structure of the genome is passed through

generations without being dramatically changed in sperm cells.

Background
For a long time, the study of chromosome architectures

was based on fluorescence-based microscopy [1-3]. The

approach allowed researchers to establish that individual

chromosomes are localized in distinct spaces designated

as chromosome territories [4]. Moreover, chromosome

territories in nuclei are localized in a non-random man-

ner with respect to the nuclear periphery [4] and are

able to interact and form gene clusters that loop out of

their chromosome territory [5]. The development of a

technique based on chromosome conformation capture

(3C) [6] and related methods (4C, 5C and Hi-C) [7-10]

significantly extended the possibility of studying the

three-dimensional genome architecture. The Hi-C tech-

nology, as a genome-wide approach, allows the deter-

mination of the contact frequency between any pair of

loci within 10 to 100 nm at the moment of nuclei

fixation [11]. Thus, Hi-C provides ‘a true all-by-all

genome-wide interaction map’ [11] based on the quanti-

tative estimation of proximity-ligation events for mil-

lions of loci in the genome. Importantly, the Hi-C

interaction frequencies are well correlated with the mean

spatial distance separating loci, as measured using inde-

pendent methods such as FISH [12,13], indicating that

the Hi-C data can accurately reproduce the expected

distance.

Genome-wide Hi-C mapping has revealed that inter-

and intrachromosomal interactions are represented by

two compartments, A and B, which have a mean size of

approximately 5 Mb each [10,14,15]. Loci of the A com-

partments interact preferentially with loci of other A
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compartments, while the B compartments often are in

contact with other B compartments. Additionally,

genome-wide Hi-C mapping, in combination with a hid-

den Markov model, revealed that human and mouse

chromosomes are composed of approximately 2,200

topologically associated domains (TADs) that have a me-

dian size of 880 kb and cover over 90% of the genome

[16]. The same conclusion was simultaneously made

based on the 5C analysis of the mouse X-chromosome

inactivation center [17]. It is important to note that the

topological domains are stable across different cells

(mouse embryonic stem (ES) cells and mouse cortex or

human ES cells and human IMR90 fibroblasts) and

highly conserved across species (human and mouse), ‘in-

dicating that topological domains are an inherent prop-

erty of the mammalian genome’ [16].

In mammals, chromatin organization in mature sperm

cells is unique among cell types. The genome of sperm

cells is packaged in a highly condensed configuration.

This packaging enables more than a 10-fold decrease in

nucleus size in spermatozoa relative to the somatic inter-

phase nucleus. This extraordinary compactness results

from the replacement of histones with protamines. Prot-

amines coil sperm DNA into toroids that form an almost

crystalline structure. Only 1 to 15% of mammalian sperm

DNA is bound to histones rather than protamines [18].

Additionally, sperm cells have a haploid, transcriptionally

inactive set of chromosomes [18,19]. It is unknown how

all of the aforementioned features affect the three-

dimensional organization of the sperm genome.

The aim of this study is to compare the three-

dimensional genome architectures of sperm cells and

fibroblasts, as somatic cells, using the Hi-C approach.

The obtained results demonstrate that genome-wide

interaction maps of mouse sperm and fibroblast genomes

show a high degree of similarity both to each other and to

the previously described Hi-C organization of mouse ES

cells. Nevertheless, there are statistically significant differ-

ences in the spatial contacts of some regions.

Results

We created Hi-C libraries from mouse fibroblasts and

mature sperm cells using the tethered conformation cap-

ture (TCC) protocol developed by Kalhor and colleagues

[13]. The TCC method allows one to significantly reduce

the noise obtained using the Hi-C approach, particularly

the noise from interchromosomal interactions. We per-

formed massive parallel sequencing of the Hi-C libraries

at a depth of 150 and 400 million read pairs for fibro-

blasts and sperm, respectively, and filtered the data so

that the reads could be uniquely aligned to the mouse

genome reference sequence.

Figure 1 presents genome-wide and chromosome 19

Hi-C maps for sperm cells and fibroblasts (binned at

1 Mb resolution) as heatmaps, where the color indicates

the contact frequency. Both interaction maps display vis-

ibly similar plaid patterns of the regional enrichment or

depletion of long-range interactions. Individual chromo-

somes visually rise above both heatmaps due to the en-

richment of contacts.

A previous study showed that contact heatmaps could

be decomposed into a set of eigenvector tracks. The first

eigenvector (E1) values correlate with different genome

properties such as replication time, GC content and his-

tone marks [15]. We performed eigenvector decomposition

and compared the obtained E1 values for spermatozoa, fi-

broblasts, ES cells and cortex using the Hi-C data pub-

lished by Dixon and colleagues [16] (Figures 1 and 2).

Again, one can note a high degree of similarity between

spermatozoa and fibroblasts (Spearman r = 0.899), as well

as between spermatozoa and ES cells (Spearman r = 0.878)

and between spermatozoa and cortex (Spearman r = 0.901)

(Additional file 1). Similar results were obtained when an-

other measure of dependence for two-variable relation-

ships, maximal information coefficient [20], was used to

measure relationships between E1 values for different

datasets (Additional file 1). Lieberman-Aiden et al. [10]

suggested that the genome could be divided into discrete

A and B compartments that are characterized by positive

and negative E1 values. Further extension of this work

propose a continuous set of domains that are character-

ized by similar E1 values for regions inside a compartment

[15]. Other research also supported this viewpoint [11].

Thus, the similarities of E1 values imply a similar distribu-

tion of A and B compartments in sperm cells and fibro-

blasts, emphasizing conservation of genome organization

(Figures 1 and 2).

In addition to the presence of A and B compartments,

we identified TADs in sperm cells and fibroblasts (Figure 3;

Additional file 2). We found 2,590 domains in fibroblasts

(with an average size of 928 kb and a median of 680 kb;

Additional file 3). The number and size of TADs in fibro-

blasts were similar to those described earlier for mouse ES

cells (2,200 domains with a median of 880 kb). Interest-

ingly, the number of TADs identified in sperm cells was

slightly lower (1,856 domains with an average size of

1,226 kb and a median of 1,000 kb; Additional files 4 and

5). We found that some of the domains identified in fibro-

blasts were ‘merged’ in sperm cells, that is, genomic re-

gions occupied by one domain in sperm cells might be

occupied by several (usually two to four) domains in fibro-

blasts. This could partially explain the fewer chromatin

domains in sperm cells with bigger average size.

The general similarities of long-range interactions in

sperm cell and fibroblast genomes do not exclude dissimi-

larities in any defined regions. Different analyses, such

as the calculation of correlation coefficients, Euclidean

distance and comparisons of eigenvector values, have
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advantages and limitations and could even be connected to

different biological properties; therefore, we decided to use

all of these approaches together. We first compared the

aforementioned characteristics (Pearson and Spearman

correlation, Euclidean distance and eigenvector values) for

individual bins (Figure 4A). We observed a slight decrease

in the Pearson and Spearman correlation coefficients for

regions in the middle of chromosome compared with

regions near the chromosome end. This difference was

due to the statistical insignificance of rare long-range in-

teractions captured for individual bins. We enhanced our

comparison method to account for these biases using the

self-correlating dataset of ES cells (see Materials and

methods for details). Using this method, we selected, in

Figure 1 Relative Hi-C contact probability maps. Whole-genome (A,D) and chromosome 19 (B,E) maps at a 1 Mb resolution for sperm cells and

fibroblasts. The color of each dot represents the log of the interaction probability for the corresponding genome bins. The graphs under the

heatmaps show E1 values for chromosome 19 in sperm cells and fibroblasts. The two-dimensional contact correlation matrices constructed as in

[10] (C,F) demonstrate the characteristic plaid patterns for both sperm cells and fibroblasts.
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sets of 100, the most different bins for each parameter

separately, and we then focused on the bins that were

present in all sets. We identified seven bins that greatly

differ between fibroblasts and sperm cells (the list of

identified genomic regions is shown in Additional file 6).

The observed number of bins was more than 10 times

higher than expected (approximately 0.1) by a random se-

lection of bins. The identified regions that are dissimilar

Figure 2 Comparison of the E1 values for sperms cells, fibroblasts, cortex and ES cells. (A-F) Scatter plots of eigenvectors. The E1 values are

highly similar in fibroblasts and sperm cells. The x- and y-axes indicate the E1 values from sperm and fibroblasts (A); sperm and ES cells (ESC)

(B); sperm and cortex (C); fibroblasts and ES cells (D); fibroblasts and cortex (E); ES cells and cortex (F). The line represents the linear trend for

the obtained values.
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between sperm cells and fibroblasts are located on chro-

mosomes 5, 12, 13, and 19 (Additional file 6).

We used another approach based on the identification

of the individual contacts distinguishing sperm cells and

fibroblasts to compare these cells. We considered all

contacts supported by more than one read as mappable.

Approximately 153,000 (approximately 4.37%) of a po-

tential approximately 3.5 × 107 (at a resolution of 1 Mb)

contacts were mappable in sperm and fibroblast ge-

nomes. In addition, we found that of the 153,363 map-

pable interactions for both sperm cells and fibroblasts,

8,947 (5.85%) have significantly different (q-value <0.05)

contact probability. Moreover, of these 8,947 interac-

tions, the probabilities of 6,586 contacts showed more

than a two-fold difference (Figure 4B). Interestingly, the

above-mentioned loci of chromosome 19 show a high

amount of significantly different interactions with other

regions in the genome (Figure 4B).

The dependence of the contact probability of genome

loci on the distance between these loci P(s) is inform-

ative for understanding the DNA state [10,15,21]. We

examined the P(s) dependence in sperm cells and fibro-

blasts. For both cell types, we observed a strong decrease

in contact probability with an increase in the distance

between loci, that is, P(s) ~ s-1.07 for spermatozoa and

P(s) ~ s-1.27 for fibroblasts (Figure 5A). The estimated

standard errors of the power coefficients at the 95% sig-

nificance level for both datasets did not exceed 0.01.

Thus, the difference between them is significant. They

also differ significantly from the ideal fractal model value

of −1. However, the packing of the sperm chromosomes

appeared more fractal-like than the that of the fibroblast

one. Interestingly, the contact probability for fibroblasts

was higher, in the range of 104 to 106 bp. This increase

in P(s) values was compensated by a lower contact prob-

ability in a diapason of long-range interactions at 107 to

Figure 3 TADs are present in fibroblasts and sperm cells. The TAD signal is shown as a green line (for sperm cells) or a blue line (for fibroblasts)

for a region on chromosome 19. The fragments of the heatmaps for sperm cells and fibroblasts (binned at a resolution of 40 kb) display the

enrichment of contacts inside the TAD domains. The TAD signal shows visible similarity between sperm cells and fibroblasts.

Battulin et al. Genome Biology  (2015) 16:77 Page 5 of 14



108 bp. These data suggest that sperm cells have more

long-range contacts than do fibroblasts. A detailed ana-

lysis showed that the probabilities of contacts in fibro-

blasts were more than those in sperm cells, when

counting regions separated by less than 40 Mb; for loci

separated by 50 to 150 Mb, sperm cells display more

than two times higher contact probabilities compared

with fibroblasts cells (Figure 5B). To better understand

how differences in P(s) affect spatial properties of topo-

logical features of chromosomes in sperm cells com-

pared with fibroblast cells, we performed modeling of

chromatin of these cells. We used BACH [22] to infer

Figure 4 Identification of regions distinguishing sperm cells and fibroblasts. (A) E1 values, Euclidean distance and Pearson and Spearman

correlation coefficients for chromosome 1 of both sperm cells (green line for E1 values) and fibroblasts (blue line for E1 values). All graphs

indicate high similarities between sperm cells and fibroblasts (that is, similar E1 values, small Euclidean distance and high correlation coefficients).

However, some regions display less similarity than others. (B) The two-dimensional heatmaps for the whole genome and for chromosome 19

(binned at a 1 Mb resolution) indicate the significance of the differences in the contact probability between fibroblasts and sperm cells. Each dot

represents a single contact. Regions in red are not mappable, those in yellow are significantly different, those in cerulean are significantly different

with a difference of more than two times, and those in blue are contacts where no significant difference was found.
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the consensus three-dimensional chromosomal structure

of sperm cells and fibroblasts. In agreement with a lower

amount of long-range interactions in fibroblasts, TADs

of these cells appeared to be more ‘elongated’ than com-

pact TADs of sperm cells (Additional file 7). Consistent

with an increased amount of long-range interactions,

sperm cells display a lower intrachromosomal to inter-

chromosomal contact ratio than fibroblasts (Figure 6A).

We observed 25 to 40 times more intrachromosomal

contacts than interchromosomal ones in fibroblasts,

whereas sperm cells showed only a difference of 12 to

20 times more intrachromosomal contacts. Overall,

these data indicate that the genome of spermatozoa is

packed more compactly, such that more distant loci are

brought together and have a high probability of contact

with each other.

Figure 5 The genome of sperm cells is packed more tightly than that of fibroblasts. (A) The dependence of the contact probability on the

genomic distance P(s) averaged over all chromosomes, compared with P ~ 1/s. The blue line indicates fibroblasts (P ~ s-1.27), and the green line

indicates sperm cells (P ~ s-1.07). (B) The ratio between sperm cells’ and fibroblasts’ contact probabilities at different genomic distances. The x-axis

indicates genomic distance, and the y-axis indicates the ratio of contact probabilities. The black lines show a 1:1 ratio.
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In the generated heatmaps, individual chromosomes

showed up as compact contact-enriched clusters (Figure 1).

Indeed, more than 90% of the interactions fell into intra-

chromosomal contacts in both sperm and fibroblast cells.

Statistical analyses of rare interchromosomal contacts re-

vealed that chromosomes are distributed non-randomly in

sperm and fibroblast nuclei (Figure 6B). The whole

chromosome interaction patterns show that the large

chromosomes (for instance, chromosomes 1 to 8 and X)

are more likely to interact with one another and not with

the small chromosomes (chromosomes 14 to 19), while

the shorter chromosomes show a tendency to establish

Figure 6 Analysis of intrachromosomal contacts in sperm cells and fibroblasts. (A) The ratio between intra- and interchromosomal contact

numbers for sperm cells (green) and fibroblasts (blue). (B,C) The two-dimensional heatmaps show the observed number of interactions between

any pair of chromosomes divided by the expected number of interactions between those chromosomes for sperm cells (B) and fibroblasts

(C). The color of each dot represents the enrichment (red) or depletion (blue) of contacts compared with the expected values. (D) The observed

number of interactions between any pair of chromosomes plotted against the difference in the lengths of those chromosomes. The dotted lined

represents the linear trend for obtained values.
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contact with each other (Figure 6B). A similar pattern of

interactions between chromosomes was identified in fibro-

blasts (Figure 6C). This observation was further confirmed

by an opposite correlation between probabilities of contacts

between chromosomes and differences in their lengths

(Pearson r =−0.44; Figure 6D). These data are in agreement

with the previously published Hi-C results [13].

The differences between the three-dimensional organi-

zations of sperm cells and fibroblasts can potentially ori-

ginate from two independent sources. First, the denser

packaging of the sperm genome compared with the

fibroblast genome is due to a decrease in the nucleus

size and a denser packaging of DNA with protamines

compared with histones. Second, local rearrangements

of three-dimensional genome structures are due to the

loss or gain of functional connections between different

loci. To estimate the role of the first reason (that is, the

denser packaging of the sperm genome), we developed a

normalization process referred to as the ‘compression’ of

the fibroblast genome to a sperm cell’s parameters. Our

normalization does not change the distribution of con-

tact probabilities for regions separated by the same gen-

omic distance but instead brings all loci closer to each

other. Thus, we normalized the number of fibroblast

contacts between loci separated by a given genomic dis-

tance to achieve the same P(s) distribution for fibroblasts

and sperm cells, but we maintained the contact ratios of

loci separated by the same genomic distance. We compared

the obtained post-‘compression’ fibroblasts (CSp-fibroblasts)

with the sperm cells and found that the number of contacts

that had different probabilities between sperm cells and

fibroblasts decreased from 8,974 to 6,962 after compres-

sion (Additional file 8). Additionally, the number of

contacts with more than a two-fold difference in contact

probabilities decreased from 6,586 to 5,009. As a con-

trol, we performed the compression of fibroblasts to ES

cell parameters, thereby obtaining CESC-fibroblasts. The

number of differences in contact probabilities between

CESC-fibroblasts and sperm cells increased up to 10,848,

with more than 8,776 contacts showing at least a two-fold

difference. However, the CESC-fibroblasts were more simi-

lar to ES cells than original fibroblasts were to ES cells, in-

dicating that compression decreases differences only when

performed in a cell-specific manner. Our data imply that

approximately 25% of the differences in contact probabil-

ities between sperm cells and fibroblasts might originate

from differences in the densities of their genome pack-

aging; however, the main source of differences is the

gain or loss of contacts that are specific to defined gen-

ome regions.

Discussion
The obtained data are the first description of three-

dimensional organization in mouse motile sperm cells

and fibroblasts obtained using Hi-C technology. Though

spermatozoa and fibroblasts are extremely different in a

number of aspects, the spatial organization of DNA in

these cells is similar. Moreover, two types of previously

identified domains, that is, A and B compartments [10,15]

and TADs [16], were present in both sperm and fibroblast

genomes.

The high similarity of E1 values for sperm cell data

produced by TCC and cortex data produced by Hi-C

suggests that this correlation is due to similar folding of

chromosomes in these two contexts, as opposed to po-

tential Hi-C- or TCC-specific biases. Indeed, the correl-

ation between E1 values of sperm cells and cortex data

was even slightly higher than between sperm cells and fi-

broblasts, despite the first being produced using different

methods (Hi-C and TCC) whereas the last were pro-

duced using a similar TCC protocol. This is in agree-

ment with the close similarity (R > 0.95) of Hi-C maps

produced by the ‘classical’ Hi-C method (described in

[10]), a TCC-based method (described in [13]) and a

novel in situ Hi-C method (described in [23]), at least at

a resolution of 100 kb and above, observed in other

studies [13,23].

It is still unknown whether the presence of spatial do-

mains in cells is an indirect result of DNA packaging in

nucleosomes and the transcription process or whether

there are special mechanisms involved in the formation

and maintenance of spatial domains. In sperm cells,

DNA packaging is influenced at a very basic level by the

replacement of histones with different proteins, that is,

protamines; the transcription process is also completely

abolished [18]. However, the high-order chromatin

structure of the cell remains stable. This finding suggests

the presence of special mechanisms involved in the es-

tablishment and maintenance of these structures and

highlights an important role for spatial domains in cell

function.

Despite the remarkable similarity of the three-

dimensional genome organization between sperm cells and

fibroblasts, we aimed to find regions that distinguish these

cell types. We used three independent methods (Pearson

correlation, Euclidean distance and eigenvector compari-

son) to compare the three-dimensional organization of the

genomes of sperm cells and fibroblasts. Some of these

methods (Pearson correlation and eigenvector comparison)

have been used previously [10,15]; we introduced

Euclidean distance as a method for comparing indi-

vidual genomic regions. Though the overlap between

the sets of genomic regions obtained using different

methods was more than 10 times larger than expected

for randomly selected regions, it was still far from 100%.

One explanation for this result could be a difference in

the sensitivities of the methods used to estimate systematic

biases of the Hi-C experiment. Another, more intriguing
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explanation is that the different mathematical methods

used to compare individual regions reflect different bio-

logical properties of these regions. Additional studies are

required to develop a standardized approach for the com-

parison of several Hi-C datasets.

To explain the differences observed in sperm cells and

fibroblasts, we developed a normalization method ac-

counting for genome compression. Our normalization

shows that genome compression can explain approxi-

mately 30% of the differences between sperm cells and

fibroblasts. The further development of such a model

might allow understanding the changes in the three-

dimensional structure of chromatin from a new point of

view.

The differences described above, that is, in the long-

range contacts in sperm cells and fibroblasts, are most

likely related to the extreme compactness of the sperm

genome. The increased average size of TADs in sperm

cells compared with fibroblasts, as well as the fact that

some domains are ‘merged’ in sperm cells, support this

suggestion. However, one should note that identification

of TADs is a matter of the mathematical algorithm and

parameters used for calling TADs. We employed the

most commonly used algorithm and parameters for

TAD calling to make our data comparable with other re-

ports [16,24-26]. However, this algorithm does not allow

identification of subdomains, that is, alternative sets of

small domains located at defined regions of the genome.

Thus, we cannot exclude that TADs identified in the

fibroblast genome are also present in sperm cells, but

are not fully visible to the TAD calling algorithm due to

the increase in long-range contacts.

Finally, the possible explanation for the aforemen-

tioned differences in TADs could originate from cell

type-specific functional looping. For instance, the gen-

ome of mouse cortex contains 1,519 domains with an

average size of 1.54 Mb and a median of 1.32 Mb, which

is different from ES cells and fibroblasts but even more

close to the parameters observed in sperm cells. Thus,

the functional role of the number and average size of

TADs with respect to particular cell types remains to be

elucidated.

Extreme compactness of the sperm genome might also

be a reason for the increased frequency of interchromo-

somal interactions, resulting in different intrachromoso-

mal to interchromosomal contact ratios in sperm cells

and fibroblasts. In fact, the DNA within the sperm nu-

cleus is packed in a volume that is approximately 5% of

the volume in somatic cells [18]. Here, it is pertinent to

note that the compactness of the sperm genome is com-

parable to that of metaphase chromosomes. Recently,

Naumova et al. [21] reported a homogenous folding

state that is locus-independent and common to all chro-

mosomes at their metaphase status in examined cell

types. Keeping in mind the similarity of the three-

dimensional organization of sperm cells and fibroblasts,

one could suggest that the exceptional compactness of

the sperm genome is not sufficient in itself to change

hierarchical models of chromatin structure [11,15,16].

On the other hand, some of the specific looping iden-

tified in this study can be caused by the difference be-

tween fibroblast and primordial germ cells, which do

not reflect the genome compaction during spermatogen-

esis. Additional studies of primordial germ cells are re-

quired to resolve this possibility.

We found the P(s) distribution in sperm cells is closer

to the fractal-like model of genome organization than in

fibroblasts. The P(s) distributions in spermatozoa and fi-

broblasts were strictly different from those found in mi-

totic chromosomes [21], emphasizing differences in the

mechanisms of genome compression during mitosis and

sperm maturation.

In summary, the remarkable similarities in the three-

dimensional genome organization of spermatozoa and

fibroblasts show the role of male gametes as carriers of

the three-dimensional genome organization through

generations.

Conclusions
Taken together, our findings suggest that genomic spatial

contacts are (largely) consistent across the sperm cells

and spermatozoa with >90% of interactions being seen

in both cell types. However, there are specific dissimilar

regions, that is, on chromosomes 5, 12, 13, and 19.

Spermatozoa have more long-range contacts than fibro-

blasts, which makes sense considering their nuclei are

more compact, and approximately 30% of the differences

in interaction probabilities between the two cell types

can be explained by differences in the density of their

genome packaging.

Materials and methods

Ethics statement

All animal protocols were approved by the Ethical

Committee of the Institute of Cytology and Genetics

(protocol number 17.4_17.06.2013).

Preparation of motile sperm cells and mouse embryonic

fibroblasts

Mature mouse spermatozoa were obtained from the epi-

didymis of C57BL mice using the swim-up assay [27].

Briefly, cauda epdidymis was dissected into pieces and

placed into sperm motility medium (135 mM NaCl,

5 mM KCl, 1 mM MgSO4, 2 mM CaCl2, 30 mM Hepes,

pH 7.4; freshly supplemented with 10 mM lactate acid,

1 mM sodium pyruvate, 20 mg/ml bovine serum albumin,

25 mM NaHCO3) for 1 h at 37°C. To avoid contamination

by somatic cells, only the top fractions containing motile
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sperm were collected. The cell suspension was centri-

fuged, and the cell pellets were resuspended in serum free

Dulbecco’s modified Eagle’s medium (DMEM) and proc-

essed for Hi-C library generation as described below.

Mouse embryonic fibroblasts were obtained from 13-

day-old embryos from C57BL mice and cultured in

standard conditions, as described previously [28].

Generation of Hi-C libraries

Hi-C libraries were produced using a TCC protocol [13],

but with some minor modifications. Briefly, 50 million

sperm cells were resuspended in 45 ml serum free DMEM,

and 37% formaldehyde was added to obtain a final con-

centration of 1% for cross-link chromatin. Mouse fi-

broblasts were fixed while they were attached to the

culturing surface in 1% final concentration of formal-

dehyde in the serum-free DMEM. Cells were incubated

at room temperature for 10 minutes; the formaldehyde

was then quenched by adding glycine to obtain a final

concentration of 0.125 M, and the mixture was incu-

bated at room temperature for 5 minutes and subse-

quently on ice for 15 minutes. Mouse fibroblasts were

scraped from the culture plate using disposable cell

scrapers and aliquoted for 25 million cells. Sperm cells

were harvested by centrifugation. After crosslinking,

the sperm and fibroblast samples were processed identi-

cally. Fixed cells were lysed using a Dounce homogenizer

in the presence of cold lysis buffer (10 mM HEPES,

pH 8.0, 10 mM NaCl, 0.2% IGEPAL CA-630, and 1× pro-

tease inhibitor solution).

The chromatin was solubilized with dilute sodium do-

decyl sulfate (SDS) and incubated at 65°C for 10 minutes.

The chromatin was biotin labeled chemically by EZ-

Link-Iodoacetyl-PEG2-biotin (Pierce Protein Research

Products, Rockford, Illinois, USA). DNA in the cross-

linked protein complexes was digested with HindIII endo-

nuclease. Biotinylated digested chromatin was immobi-

lized on MyOne Streptavidin T1 beads (Invitrogen, Grand

Island, New York, USA). The 5′ overhang was filled in by

the Klenow fragment of DNA polymerase I using equimo-

lar amounts of all deoxyribonucleotides, with the substitu-

tion of biotin-14-dCTP for dCTP. The immobilized blunt-

ended DNA fragments were then ligated while they were

tethered to the surface of the beads. The chromatin com-

plexes containing the biotin-labeled ligation products were

degraded by incubation with Proteinase K at 65°C. DNA

was purified by phenol-chloroform extraction. The bio-

tinylated nucleotide was removed from non-ligated DNA

ends using T4 DNA polymerase, as previously described

[29]. The DNA was sheared and size-selected; the frag-

ments that included a ligation junction were then

isolated on streptavidin-coated magnetic beads and

prepared for paired-end sequencing. The libraries were

sequenced on an Illumina Genome Analyzer IIx (GA

IIx) machine using the paired-end module and with

50 bp reads on each end.

Generation of heatmaps

Sequencing reads were mapped to the mm9 mouse genome

and filtered using the pipeline developed by Imakaev et al.

[15]. Mirnlib version 0d30147f052f and hiclib version

d28d8d985120 software were obtained from [30]. The pub-

lic datasets SRR443883, SRR443884 and SRR443885

[16] were processed similarly to obtain Hi-C data for

mouse ES cells. Heatmap computation, iterative correc-

tion, eigenvector decomposition and P(s) calculation

were performed using the hiclib software [15]. For each

interaction, we estimated an error as
ffiffiffi

K
p

K
, where K is a

number of reads supporting the interaction. The average

error for non-zero intrachromosomal interactions in

sperm cells was 24% at the 1 Mb scale and reached 88%

on a 0.1 Mb scaled heatmap. Therefore, we used the

1 Mb resolution for all subsequent calculations, except

cases where the resolution is specifically indicated. The

two-dimensional contact correlation matrices were con-

structed as in [10].

Identification of regions different between sperm cells

and fibroblasts

We calculated the Euclidean distance, Pearson correlation

and eigenvector differences between individual bins of

sperm and fibroblasts cells.

We calculated Euclidean distance between individual

bins as:

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

j¼cst ::cend ;j≠i

Spij−Fibij

� �2
s

where E is the Euclidean distance between bin ‘i’ at

chromosome chri, cst is the first bin of chromosome chri,

cend is the last bin of chromosome chri, and Spij and Fibij
are the number of reads supporting contacts between

bins ‘i’ and ‘j’ of sperm cells and fibroblasts. A greater

Euclidean distance indicates a larger difference between

bins.

The Pearson and Spearman correlation coefficients

were calculated for each bin, accounting only for intra-

chromosomal contacts. The signal-to-noise ratio might

vary in a Hi-C experiment, even if the data are itera-

tively corrected. The enrichment of any genomic re-

gion with interactions that have low signal-to-noise

ratios might result in an underestimation of the correl-

ation coefficients for these genomic regions. To handle

this problem, we used the correlation of two random

sub-datasets (‘reference’ datasets) generated from the

ES cells dataset as a marker for regional-dependent
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biases. We defined poor bins as those that satisfy the

condition:

Ci < M − SD

where Ci is the Pearson or Spearman correlation coef-

ficient between bin ‘i’ in the ‘reference’ datasets, and M

and SD are the median and standard deviation of the

Pearson correlation coefficient for all bins in the ‘refer-

ence’ datasets. We observed that Ci values for one bin

upstream and downstream of poor regions were also

strongly less than average (Additional file 9). Based on

this observation, we excluded from the analysis all poor

bins as well as one bin both upstream and downstream

of each poor bin. Because the Spearman correlation co-

efficient is rank-based, it is more sensitive to small dif-

ferences in the samples observed at low signal-to-noise

ratios. We therefore used the Pearson correlation coeffi-

cient for the subsequent analysis.

The first eigenvector (E1) values of the sperm and

fibroblast cells were calculated using the hiclib software,

as described previously [15]. We considered each bin to

be a dot, with the X-coordinate equal to the appropriate

E1 value of sperm cells and the Y-coordinate equal to

the appropriate E1 value of fibroblasts. We computed a

linear regression line for the obtained dots using the

least-squares method. We than calculated a distance

from each dot to the regression line and used this dis-

tance as a measure of the difference between the eigen-

vectors of the appropriate bins. A greater distance

indicates a larger difference between bins. Additionally,

a maximal information coefficient was calculated for E1

values for each pair of datasets as described in [20],

using MINE python implementation [31] with default

parameters (alpha = 0.6, c = 15).

We ranked all bins in the sperm cell and fibroblast

datasets using three types of ranks (ranks generated dur-

ing the calculations of Euclidean distance, Pearson cor-

relation and eigenvectors difference). From the 2,308

bins, we selected the 100 highest-ranked bins for each

type of analysis and defined them as candidate bins. This

process resulted in three sets of candidate bins. Some of

the candidate bins might have had high ranks due to

region-specific biases (for example, described in the cal-

culation of Pearson correlation coefficient). To exclude

such regions, we calculated the Euclidean distance and

the difference between the eigenvectors for two ‘refer-

ence’ ES cell datasets (described above in the calculation

of Pearson correlation coefficient), selected the 100

highest-ranked bins for each type of analysis and ex-

cluded them from the candidate bins. Finally, we identi-

fied regions that were present in all three sets’ candidate

bins and defined them as regions that differed between

sperm cells and fibroblasts. The expected number of

regions that differed between sperm cells and fibroblasts

was calculated as:

NEucl �NP �NE1

NT
2

where NEucl, NP, NE1 are the number of bins remaining

after filtering candidate bins with ranks according to Eu-

clidean distance (NEucl), Pearson correlation (NP) and

eigenvector difference (NE1) and NT is the total number

of bins (2,308).

Identification of differences in individual contact

probabilities in sperm cells and fibroblasts

We used a uniform probability model to describe the

contact frequencies observed in Hi-C experiments [32].

Assuming that the probability of observing any particular

interaction is uniform, the probability of contacts between

bins ‘i’ and ‘j’ (Pi,j) is:

Pi;j ¼ m

M

where m is the number of reads supporting the inter-

action (normalized in the iterative correction) and M is

the total number of reads (normalized in the iterative

correction). Note that when counting reads, we only

considered contacts that were supported by more than

one read (mappable contacts). We used following cri-

teria of normal approximation of binomial distribution:

M × Pi,j × (1 - Pi,j) > 9 [33] and excluded all contacts that

do not satisfy the criteria. We tested the null hypothesis

H0 : P
i;j
Sp ¼ P

i;j
Fib , where P

i;j
Sp; P

i;j
Fib are the probabilities of

contacts between bins ‘i’ and ‘j’ in sperm cells (PSp) and

fibroblasts (PFib). Assuming normal approximation of bi-

nomial distribution, we calculated the P-value for the

null hypothesis as:

pi;j ¼ 2 �Norm
P
i;j
Sp−P

i;j
Fib

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P
i;j

Sp
� 1− P

i;j

Sp

� �

MSp
þ P

i;j

Fib
� 1− P

i;j

Fibð Þ
MFib

r

0

B

B

@

1

C

C

A

−1

where Norm is the normal distribution. We than cal-

culated q-values by multiplying each P-value by the total

number of hypotheses tested.

Modeling of fibroblast genome ‘compression’

To perform the fibroblast genome ‘compression’, we first

calculated compression coefficients Kj as:

K j ¼
Spj

Fibj

where Spj and Fibj represent the sum of elements of

diagonal j in an iteratively corrected Hi-C matrix for
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sperm cells or fibroblasts, respectively. Errors for coeffi-

cient calculation were estimated in the same way as de-

scribed above (see the ‘Generation of heatmaps’ section).

We then performed a correction by multiplying all con-

tacts at the diagonal j of the fibroblast datasets by the

appropriate coefficient compression coefficients. We did

not apply a correction if the coefficient error was above

5%. Finally, we adjusted all contacts to achieve the same

total sum of elements for both the resulting and original

matrices.

The chromosome interaction patterns were calculated

as described previously [10,13]. Briefly, the observed/ex-

pected contact frequencies for chromosomes ‘i’ and ‘j’

were calculated as:

Sij

Si � Sj
T−Si

þ Sj � Si
T−Si

� �

� 0:5

where Si and Sj are the sum of interchromosomal con-

tacts of chromosomes ‘i’ and ‘j’, respectively, Sij is the

sum of contacts between chromosomes ‘i’ and ‘j’, and T

is the total sum of all interchromosomal contacts.

Identification of topologically associated domains

To identify TADs, heatmaps were binned at 40 kb reso-

lution, iteratively corrected and analyzed using a previ-

ously developed pipeline [16].

Chromatin modeling

Chromatin modeling was performed using the BACH al-

gorithm [22] with default parameters. The get Annotated

Restriction Sites function from the HiTC package [34]

was used to compute the mappability score for each re-

striction site in the mm9 genome, and Mirnlib was used

to calculate GC percentage and number of restriction

sites for each locus analyzed. Each TAD identified in fi-

broblasts and sperm cells was processed separately. The

resulting posterior mode of the three-dimensional coor-

dinates was used to calculate the HD-ratio of TADs as

described in [22]. The HD-ratio was used as a measure

of TAD compactness, that is, domains with a higher

HD-ratio were assumed to be more elongated and less

compact. The normalized HD-ratio (HD-ratio divided by

the TAD length) was introduced to account for differ-

ences in TAD length as in [22]. Mann–Whitney test was

used to compare the HD-ratio of sperm cells and fibro-

blasts, and P-value <0.001 was considered as a threshold

for statistically significant differences.

Data availability

The sequencing results of Hi-C libraries of sperm cells

and fibroblasts are available in the NCBI Sequence Read

Archive under accession number SUB540202 (SRX553176

for sperm cell data and SRX554530 for fibroblast data).

Additional files

Additional file 1: Spearman correlation and maximal information

coefficients between E1 values of sperm cells, fibroblasts, ES cells

and cortex.

Additional file 2: TADs identified in fibroblasts and sperm cells

display similar, but not equal, distribution. The TAD signal is shown

as a green line (for sperm cells) or a blue line (for fibroblasts) for a region

on chromosome 3. In some regions TADs are different (for example, the

most left TAD, region A), in some similar (for example, the most right

TAD, region C) and in some ‘nested’ (for example, TADs in the middle of

the region, region B).

Additional file 3: TADs identified in fibroblasts. Coordinates of TADs

identified in fibroblasts in USCS bed-track format.

Additional file 4: TADs identified in sperm cells. Coordinates of TADs

identified in sperm cells in USCS bed-track format.

Additional file 5: Sperm cell TADs display higher average size.

Box-and-whisker plot showing TAD sizes in fibroblasts and sperm cells.

Additional file 6: Localization of seven regions on a genome map,

as identified by overlapping different datasets of highly dissimilar

regions between sperm cells and fibroblasts.

Additional file 7: TADs of fibroblasts are more ‘elongated’ than

sperm cell TADs. (A,B) Normalized (A) and not normalized (B) HD-ratios

(see Materials and methods for details of HD-ratio calculation) of fibroblasts

and sperm cell TADs are presented as standard errors of the mean. Asterisks

indicate significance of differences.

Additional file 8: Estimation of number of contacts distinguishing

sperm and other cell types. The bar plot shows total number of

interactions in 1 Mb-binned heatmaps (in 1,000-fold scale), number of

‘non-zero’ interactions (that is, all mappable contacts for satisfying criteria

of normal approximation of binomial distribution, see Materials and

methods for details), and number of interactions with different frequencies

(q-value <0.05) obtained when comparing sperm cells, fibroblasts or ES cell

datasets and ‘compressed’ derivations of these datasets.

Additional file 9: Nearest to poor bins regions show strong

decrease in average Pearson correlation of ‘reference’ datasets. The

graph shows average Pearson correlation of ‘reference’ datasets (see

‘Identification of regions different between sperm cells and fibroblasts’

subsection of Materials and methods for definition of ‘reference’ datasets)

plotted against distance from poor bins.
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