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ABSTRACT
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fundamental effects of the array configuration on the performance of DF systems remain unknown.

Furthermore it is often overlooked that there are some theoretical lower limits on the DF performance which
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NOTATION
EÇ + scalar     
E Ç +  vector      
� ÇéA    matrix       
¸Æ¹T transpose    
¸Æ¹H   conjugate transpose   
+# element by element squarek k+  absolute value of a scalar   k k+  Euclidian norm of vector
� projection operator
�¤ orthogonal projection operator
eR   real -dimensional space   R
VR   complex -dimensional space  R
:   general bearing parameter   
)  azimuth bearing     
9   elevation bearing
= arc length parameter
=¸:¹ :
Æ  rate of change of  arc length of -curve
?: l: � : l bearing separation  

" #

?= l= � = l arc length separation 
" #

+ `+ `:
.    /
+ `+ `=w   /
,
3

 -th curvature3
R  number of sensors
Q   number of sources
P number of snapshots (observation interval)
T   signal power
5#  noise power
exp{ } element by element exponential�
sum    sum of the elements of vector¸+¹ +
_e f+ , + , , subspace spanned by vectors  and  
DF Direction Finding
DOA Direction Of Arrival
CRB Cramér-Rao  Bound
SNR Signal-to-Noise Ratio
RMS Root-Mean Square

1.   INTRODUCTION

Consider a planar array of  sensors receiving  narrow-band plane waves. The response of the array to aR Q

signal incident from azimuth  and elevation  is described by the ) 9� º!Ç $'! » � º!Ç *! »ü ü source position

vector (or manifold vector) which is defined as

 ,  , exp  cos sin  cos 1=+¸ ¹ é � 4 5¸ ¹ é � 4 ¸ � ¹ ¸ ¹) 9 ) 9 1 ) ) 9expe f ë þr r rx y

where    is the matrix of sensor locations (in units of half-wavelengths)  and=
, ,r é �c dr r rx y z

3eRô

k¸ ¹ é �) 9 1 e) 9 ) 9 9,  denotes the wavenumber vector. The array manifold iscos cos , sin cos , sinc dT 3 1ô

then defined as the locus of the vector  ,   , .+¸ ¹ a) 9 ) 9

The overall performance of a DF system is a function of both the array geometry/characteristics and the DF

algorithm employed, since a particular algorithm behaves differently when used in conjunction with different

array structures and, similarly, a certain array generates different results when its output is applied to different

algorithms.

The effect of the array structure on the system performance may be assessed quantitatively by determining the

shape orientation and  of the array manifold through the study of the manifold's differential geometry [1,2,3,4].

In  the case of a linear array employed in a  direction-finding system (where   and ) the) 9 é ! é ér ry z 0

array manifold is a single curve shaped in the form of a  [1] and, therefore, can be fullyhyperhelix1

characterised by its length and curvatures. However, in a ( ) direction-finding system which employs a) 9Ç

planar array, the manifold is a two-parameter surface lying on a hypersphere of radius   embedded in °R VR

and is shaped in the form of a conoid. The parameters of this conoid have been estimated in [2]. Alternatively

1A  is a curve whose curvatures remain constant at all points along its length.hyperhelix
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the surface of this conoid can be considered to consist of two families of constant-parameter curves defined as

follows

    
-parameter curves  ( -curves of constant elevation 
-parameter curves  | ( -curves of constant azimuth é ) ) 9 ) 9

9 9 ) 9 )
+¸ l ¹ ¹
+¸ ¹ ¹

3 3

3 3

where each family can be used to fully describe the array manifold surface. The properties of these curves

have been investigated in [3] and are summarised next.

9-parameter curves

According to Equation (1), the manifold surface of a planar array can be generated by a family of -parameter9

curves which meet at the apex of the manifold for  and can be described as9 é *!ü

      cos  with =constant  (2)+¸ ¹ é � 4 V¸ ¹9 1 ) 9 )expë þ
    where  cos sinV¸ ¹ é � Æ) ) )r rx y

Equation (2) can be seen as the manifold of an equivalent linear array with sensor locations given by the

vector . This implies that the -parameter curves of a planar array are shaped as complex hyperhelicesV¸ ¹) 9

[1,3].

)-parameter curves

The manifold surface can also be generated by a family of -parameter curves)

      cos   =constant (3) +¸ ¹ é � 4 V¸ ¹) 1 ) 9 9expë þ
These curves are not  and only limited information, regarding their complete shape, is available. hyperhelical

A hyperhelical curve such as a -curve is analytically ’convenient’ in the sense that all its curvatures are+¸:¹ 9

independent of the parameter , hence the procedure for their calculation is identical to that of linear arrays:

[1].  However, for a non-helical curve, such as a -curve, this is not the case and an analytical approach for the)

calculation of all curvatures is impractical. Fortunately, the first curvature is quite adequate for describing a

curve’s shape at a local level.

The essential properties of both   and  curves, which will be used in this study, are:) 9

Ô = the  , (the most basic feature of a curve)arc length

    d (4)=¸:¹ é :' :

:o

¢ ¢d
 d  
+¸:¹
:

Ô = the    :.rate of change of arc length

  (5). .
=¸:¹ é é +¸:¹d

d
=
: k k

Ô ¸:¹ and the first curvature ,
"

where  is a generic parameter representing both  and .: ) 9
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Table 1 provides analytical expressions for the first curvature and the rate of change of arc length of both )

and  curves for a planar array. Note that the differential geometry of the -curves varies as a function of9 )

azimuth with a periodicity of at least 180 .ü

 Table 1: Differential geometry features of  planar array manifold
parameter curves - curves - curves
rate of change of arc lengt

9 )

h

first curvature

s  sin  s  cos  . .

| |    | |

where      cos sin  ,
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V V`
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In this paper eight array geometries are compared according to three fundamental limits which are imposed on

the performance of a superresolution DF system by the  employed. These arearray structure

 the detection thresholdÔ

 the resolution thresholdÔ

 the estimation accuracy lower boundÔ

where each is a function of the differential geometry of manifold parameter curves.

These limits will be used as  for the different array structures. Since no DF algorithm canfigures of merit

exceed these performance levels they also provide a benchmark against which any DF algorithm can be

compared.

The outline of the paper is as follows:

In Section 2 the detection, resolution and accuracy limits which specify the ultimate performance provided by

a direction-finding system, are introduced as under the assumptions of a finite number offigures of merit, 

snapshots and a finite signal-to-noise ratio.

In Section 3 eight diverse planar array geometries of elevated feed monopoles (used in a number of

experimental sites in the UK) are presented, while in Section 4 these array geometries are compared and their

relative merits are determined according to the criteria established in Section 2. In Section 5 the comparison is

performed with the array geometries normalised  with respect to aperture and number of sensors.  Finally, in

Section 6 the paper is concluded.
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2.   PERFORMANCE CRITERIA

The most essential feature of signal subspace type techniques is their ability to eliminate the effects of noise

from the estimation process and thus to provide exact estimates of the signal subspace spanned by the true

manifold vectors. This feature is achieved asymptotically over an infinite number of snapshots (the

observation interval). Unfortunately in practice the availability of only a limited number of snapshots, ,P

prevents the full elimination of the noise and can result in poor direction finding performance. This

’uncertainty’ due to the remaining noise has been modelled in [4] based on the processing of  snapshots at theP

output of an -element array which receives signals in the presence of noise of power . The conclusionR Q 52

of the investigation in [4] is that the ’uncertainty’ due to the remaining noise in the estimation process of the -3

th signal after  snapshots can be represented as an -dimensional hypersphere centered at the point whoseP R +
3

radius  represents the RMS value of the remaining noise. These spheres are known as  5
/3

uncertainty spheres

and they  ’shrink’ as a function of the observation interval according to the model

5
/3

=         ² 52

#PT G
3

3 é "Ç ÆÆÆQ

where  denotes the power of the -th source. The factor  is a positive real number smaller than or equal toT 3 G
3

1 (i.e. which models the additional uncertainties introduced by the employment of a specific! � G ì "¹

practical DF algorithm. The value  corresponds to a theoretical limit achieved by an ’ideal’ DF-G é "

algorithm which does not introduce extra uncertainties and eliminates any dependency which may exist

between the received signals  (for instance decorrelating any correlated signals, etc).

Consider the case of two closely spaced emitters with manifold vectors  and . The thresholds of detection+ +
" #

and resolution can be identified in terms of the relative positions of the centered at pointsuncertainty spheres 

+ +
" #

 and . Then, according to  [4],

 "Two sources are detected if and only if the uncertainty spheres do not make contact"

with the implication that the  occurs when the two uncertainty spheres . Itdetection threshold just make contact

should be emphasised that detecting the presence of two sources does not necessarily mean that their bearings

have been resolved. In fact for a sufficiently low SNR or a sufficiently small number of snapshots, a typical

high-resolution algorithm will always provide a spectrum with a single null, even if it has been given the true

number of sources a priori.
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If a  similar line of arguments is followed for the resolution then

" Two sources corresponding to points  and  on the manifold are resolved  if ands s  
" #

only  if  the  uncertainty  spheres  do  not  make  contact with the subspace

ù _é e f+ ? ?¸= ¹Ç ¸= ¹ = = = é
! " ! ! " # "

at any point and where "between    .. ¸= ¹
.=
+

9

and, in this case, the  occurs when the uncertainty spheres  with theresolution threshold just make contact

worst case signal subspace ù Æ

According to the model of uncertainty spheres and the above definitions of  and detection resolution

thresholds, the products (SNR required for a source of power to be detected and resolved in the1 ôP¹ T
"

presence of a source of power , when the two sources have a bearing separation  are respectivelyT
#

?:,

   L      6a b � �²SNR )
"

#

ô é � ¸det  
"

# G¸ ô ¸ ¹¹ p s p  . P
P? #

"

#

"

and

   L      a b � �²SNR 1 (7)
"

%

ô é �res
  #

G ô ¸ ¹ ¸ ¹�s p s p  p  .
P
Pa b ê ý? ,%

"

# "

R

"

#

%

where2

    (8)
sum  when   

                  

sum  when    

,

, 9 9

, ) )

s ¸:¹ é

¸ ¹ � ¸V ¹ : é
�

¸ ¹ � ¸V ¹ : é
�

"

"

#
#

$

"

#
#

$

ÂÅÅÃÅÅÄ
±
±

)

and is a parameter representing  or .  In the above expressions it is assumed that the reference point isp 9 )

taken at the array centroid. Bearing  corresponds to arc length  on the manifold, which, to a first : ¸= � = ¹¶#
" #

order approximation, also corresponds to bearing . Note also that the arc length separation is¸: � : ¹¶#
" #

related to the bearing separation with the expression For  the above expressions? ?s p s p . .
é ô ¸ ¹ G é "

become ’lower bounds’ and form a benchmark against which any practical DF algorithm can be compared.

Having presented the detection and resolution criteria, the discussion will be confined to the estimation

accuracy. The estimation accuracy can be expressed in terms of the error variance of the estimation of the

parameter  for a source of power  in the presence of a source of power .  If  the two sources have a: T T
" " #

bearing separation then this estimation accuracy  is bounded by the Cramér-Rao Bound [3,5]?:, 

 p     CRB (9). .
º » é �

"

"

¤

"

�"" "
# ô ô ¸ ô ¸ ¹¹ ¸ ¹ ¸ ¹�"¶RsSNR SNR

" "

#
#

"

#L L p s p  s p  p. .ê ý+ +H �
�

#
 

 
? ,î ü

"

2 ,s"is the first curvature of the circular approximation to the manifold, i.e. it takes into account the orientation of the manifold in the
  -dimensional observation space.R
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where  is the  source position vector  corresponding to the source at  and SNR is the signal-to-noise ratio+1 1:
"

 

of the signal impinging from bearing  : Æ
"

Furthermore, if the CRB is evaluated at the threshold level  SNR then the estimation error (accuracya b
"

ô L , res

of the estimate) at the resolution threshold is given as follows:

CRB .
º » é + �

Æp     
"

"

¤

"

�"

res

  
 

" G
# ô

�

ô ¸ ¹
¸ ¹a b a b

SNR
1"

"

#

#

"

L
p s p.

 s p  .
res P  

P

2ê ý+H �
�

� �²%
%

?

It is important to note that  for two equi-powered sources  the above expression is simplified for  to¸ G é "¹

a b °  estimation error at resolution threshold pRMS CRB� º » �
" res

? ?p p
    s p    

s p.
.

% ¸ ¹ %
¸ ¹.      

"

p

which is an expected result indicating the generality and significance of the resolution threshold.

The above discussion was carried out under the assumption that the planar array consists of antennas that are

isotropic (with gain of unity) in both azimuth  and elevation .  This assumption might seem unrealistic since) 9

many  practical  antennas (like the elevated-feed monopoles which will be investigated in this study) are  non-

isotropic  and exhibit a complex gain response   as a function of one or both bearing parameters. In this1 � V"

case the array manifold is given by

   10+
1

¸ Ç ¹ é 1¸ Ç ¹+¸ Ç ¹ ¸ ¹) 9 ) 9 ) 9

By using    instead of  , where ,  Equations (6), (7) and (9) can be transformed for+
1

¸:¹ +¸:¹ : é ¸ Ç ¹) 9

directional sensors to the expressions presented in Table 2 It is clear from Table 2 that the directional patternÆ

1¸:¹ of a directional sensor behaves simply as a "voltage gain" term boosting or deteriorating the effective

Signal-to-Noise ratio at the output of the array. Consequently, it can be stated that the presence of directional

sensors affect the relative merits of one array geometry over the other, although of course,does not 

performance is affected in absolute terms.

Table 2:  DF capabilities criteria for directional arrays
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Performance as a function of  elevation

Manifold differential geometry reveals that the variation of array performance with elevation  is independent9

of array geometry and consequently the merits of one array configuration as compared with another remain

unaltered at different elevations,  i.e. performance comparison need only be carried out at a single elevation

9 9o o. The choice of  is arbitrary and can be made according to the particular application.  Here we consider an

elevation of  =30° at which the elevated feed monopoles, which will be used in this study, exhibit maximum9o

gain.

Another characteristic feature of planar arrays of isotropic sensors is that while azimuth-estimation

performance is greatest at low elevations, elevation-estimation performance is greatest at high elevations.

Naturally this characteristic is masked by the directional pattern of the array elements.

Performance as a function of azimuth

Manifold differential geometry also reveals that the - and -estimation capabilities of a planar array are9 )

dependent on azimuth  through vector  and its derivative °  respectively.  and) ) ) ) )V¸ ¹ V ¸ ¹ é V¸ � *! ¹ V¸ ¹)

V ¸ ¹) )  are both direct functions of the array configuration and are 90° out of phase.

It is evident from Equations (6), (7) and (9), that an array is a more powerful direction finder along those

azimuths  which correspond to larger values of  for -estimation  and larger values of) ) 9k kV¸ ¹ ¸ ¹

k kV¸ � ¹) )90° (for -estimation), where  equals the sensor locations when the array is projected alongV¸ ¹)

the azimuthal direction  (Figure 1). This rule is particularly easy to apply in cases where the sensors are)

predominantly distributed along one direction. In such cases it is easy to judge the variations of  with ,k kV¸ ¹) )

by a simple observation of the array geometry.   For more complicated array structures the variations of

k kV¸ ¹) are not so obvious and actual computation is necessary.  In the following section the variations of

performance with azimuth will be examined in detail for a number of different array configurations.

3. ARRAY GEOMETRIES FOR STUDY

The eight array geometries investigated in this paper consist of vertical elevated-feed monopoles which are

directional in elevation but isotropic in azimuth. These array structures are used in a number of experimental

sites in the UK operating as DF systems in the HF frequency band (3 to 30 MHz) and employ monopoles of

"# meters height.  Figure 2 shows the elevation gain pattern of these  monopole-antennas. The pattern consists
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of a single beam pointing at an elevation of approximately with nulls at (due to the vertical9 9é $! é *!ü ü

orientation of the monopole) and (due to the reflectivity of conducting ground)  Such antennas are9 é ! Æü

unsuitable for the reception of ground-waves or high elevation signals but are often employed in the over-the-

horizon reception of long-range sky-waves.

The eight array geometries, which will be investigated, are

Ô  a linear array of 20 antennas (sensors) consisting of monopoles uniformly spaced at 27.58m,

with the exception of the end-sensors which are at double spacing;

Ô  a 24-element uniform circular array of 75m radius;

Ô � Y, X, L and (CROSS) shaped arrays with each branch of these shapes having 8

monopoles with locations [8m, 22m, 38m, 57m, 79m, 105m, 136m, 170m];

Ô  two 8-element arrays with dual-ring and dual-spiral geometries respectively.

Figure 3 illustrates the above described array geometries, in meters. Note that the array centroids are used as

the reference point (0m,0m).

Finally, we have seen in Section 2 that the variations in -estimation performance and -estimation) 9

performance, as a function of , are essentially identical apart from a phase of 90° (due to dependence on)

k k k kV¸ � ¹ V¸ ¹) ) 9 990°  and  respectively) and a scaling factor (due to dependence on  and  respectively).cos sin

Therefore, only the -estimation performances for =30° will be investigated and compared in the following) 9o

section. Various array geometries and values of  from 0° to 180° are considered, while the results are)

repeated for  from 180° to 360°.)

4. COMPARISON BASED ON DETECTION, RESOLUTION AND

ACCURACY CRITERIA

The theoretical lower limits on the accuracy, detection and resolution thresholds imposed on a DF system by

the array geometry itself were evaluated for the array geometries described in the previous section.  The

results are presented in Figures 4-6 for an operating frequency of 15MHz.  A discussion associated with the

performance of each geometry is presented below.

Linear Array
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The behaviour of a linear array can be readily predicted by noting that cos  and thatV¸ ¹ é <) )x

V ¸ ¹ é V¸ � ¹ é �<) ) ) )90° sin . Hence one could predict that a linear array would have great difficulty inx

estimating azimuth bearings near 0° or 180° (end-fire) where | | 0. This is demonstrated in Figures 4-6,V¸ ¹ é)

where the three criteria  SNR  , SNR  and CRB  tend to  infinity at the above angles.¸ ô P¹ ¸ ô P¹
./>Ç </=Ç) ) ) 

One could also predict that a linear array would have highest azimuth estimation capability for azimuths near

90° (broadside) where |R |  is maximum. Again this is confirmed in Figures 4-6 where the functions¸ ¹)

¸ ô P¹ ¸ ô P¹SNR ,  SNR  and CRB are smallest at =90°.
./>Ç </=Ç) ) )    )

Circular Array

It can be shown that the uniform circular array configuration is the only planar array geometry for which both

k kR  and |R | are independent of . This implies that, in the case of a circular array, all the performance¸ ¹ ¸ ¹
�

) ) )
#

criteria investigated herein exhibit no dependence on azimuth . Such a geometry seems to be the obvious)

choice for applications where uniform performance at all azimuths is a necessity.

Y-shaped and X-shaped Arrays

Both Y-shaped and X-shaped arrays have a balanced-symmetric  geometry [3] and consequently their3

detection thresholds SNR  are independent of . On the other hand both SNR  and CRB¸ ô P¹ ¸ ô P¹
./>Ç </=Ç) ) ))

vary periodically as a function of  with a period of 60° for the Y-array and of 90° for the X-array. Note that)

the best performance of the Y and X arrays occurs at even multiples of 30° and 45° respectively with worst

performance occurring at odd multiples of 30° and 45° respectively.

L-shaped and CROSS-shaped Arrays

These two geometries are not balanced-symmetric and so the detection thresholds SNR , exhibita bôP
./>Ç) 

significant variations with best performance at 45° and worst performance at 135° for the L-array and at

0°/180° and 90° respectively for the CROSS-array. Note also that the resolution threshold SNR  and¸ ô P¹
</=Ç)

CRB  indicate best and worst performances at similar azimuths.)

Dual-Ring Array

3Balanced symmetric array:  r r r rx y x y
X

é ! l é l l and |
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The dual-ring array is approximately balanced-symmetric and also resembles a circular-type structure.

Consequently an almost uniform performance is provided at all azimuths. The detection SNRa bôP
./>Ç)

indicates best performance at 77° and worst performance at 167° while the resolution  threshold function

a bSNR  and CRB   indicate best and worst performances at 68° and 126° respectively.ôP
</=Ç) )

Dual-Spiral Array

The dual-spiral array is an example of an array geometry which has  sensors clearly distributed in one

predominant direction and so it is easier to observe the variations of |R | as a function of . The detection¸ ¹) )

¸ ô P¹ ¸ ô P¹SNR  indicates best performance at 153° and worst performance at 63° while both SNR
./>Ç </=Ç) )

and CRB   indicate best and worst performances at 162° and 54° respectively.)

A comparison of the array structures reveals that at, and only at, =90° (broadside) the linear array has the)

best performance but that there is a monotonic degradation in performance as emitters approach the end-fire

position. In terms of average performance over all azimuths, the X-shaped array out-performs the others with

the Y-shaped array taking second position. The worst performance is obtained with the dual-ring array which

clearly suffers due to its small dimensions.

5.  PERFORMANCE COMPARISON AND ARRAY NORMALISATION

It is well known that the aperture of an array (i.e. the maximum separation between any two sensors), plays an

important role in the ability of an array to resolve two sources close together. Therefore it may be argued that,

in order to perform a fair comparison, the DF capabilities should be investigated with the array geometries

normalised with respect to aperture. In order to perform such a comparison the exercise of Section-4 is

repeated with the sensor locations scaled such that each array has the same aperture of  57.918 half-

wavelengths.

From the results shown in Figures 7-9, it is apparent that now the circular array exhibits the best performance

which is independent of azimuth. The performance of the linear array approaches that of the circular array

only at  =90° (broadside)  but rapidly shows a degradation as emitters approach the end-fire position. In)

terms of  performance averaged over all azimuths, the X-shaped array and the Y-shaped array take the second

position. The worst performance is obtained with the dual-spiral array.
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As expected the variations of array performance with azimuth remain unchanged, apart from a scaling factor,

when compared to the unnormalised case. This is because all array shapes are preserved through the

normalisation process. The absolute performances of all the arrays are slightly improved as a result of an

increase in array dimensions.

It is known that the resolution is also influenced by the length of the manifold curve (the longer the manifold

curve the better the resolution). For a given aperture the length of the manifold curve is a function of the

number of sensors. Therefore it may also be argued that a fairer performance comparison would be achieved

with arrays normalised with respect to both aperture and number of sensors. In Figures 10-12 the results of

this normalisation are shown with all array geometries having 24 elements. The normalisation was not possible

for the dual ring and the dual spiral arrays, due to insufficient information regarding the rules defining their

original sensor locations.

An important feature of an array geometry is its ability to provide a uniform DF performance over all azimuth

directions. This property can be quantified by the following differential comparison rule

differential¸ ¹SNR SNR SNRôP é ¸ ô P¹ � ¸ ô P¹dB dBe f e f
,/=> A9<=>

where small SNR corresponds to more consistent performance and therefore to a betterdifferential¸ ô P¹

array geometry.

In order to demonstrate the significance of this differential rule, it has been used to compare the original array

geometries as well as their two normalised counterparts. The results are shown in Figure 13 in a bar-chart

format. It is clear from this bar-chart that the difference is not affected by the normalisation and is a function

only of the array geometry itself. Thus, using the above differential rule the array geometries may be ordered

as shown in Table 3.

Table 3: Arrays order with respect to difference between best and worst performance
detection threshold resolution threshold

array unnormalised normalised array unnormalised normalised

Circular 1 1 1 Circular 1 1 1
Y 1 1

aperture aperture, N aperture aperture,  N
st st st st st st

st st st nd nd

st st st rd rd nd

nd nd th th rd

rd rd th th th

th th nd th th

1 Dual Ring 2 2
X 1 1 1 Y 3 3 2
Dual Ring 2 2 X 4 4 3
Dual Spiral 3 3 L 5 5 4
Cross 4 4 2 Dual Spiral 6 6
L 5

�

�

�

�
th th rd th th th

th th th th th th

5 3 Cross 7 6 5
Linear 6 6 4 Linear 8 7 6
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6.   CONCLUSIONS

In this paper the ultimate direction-finding capabilities of a number of planar arrays have been investigated

and compared. Criteria relating to the DF performance in terms of the minimum achievable bearing estimation

error, and the detection and resolution thresholds have been determined using differential geometry properties

of the array manifold.

The arrays were initially unnormalised and then normalised with respect to aperture and with respect to

aperture and number of sensors. From the results it was concluded that the difference between the best and the

worst detection and resolution performance is independent of the normalisation procedure being employed

and is a characteristic only of the array geometry itself. However this should not be confused with the absolute

performance of an array which is, of course, a function of both aperture and number of sensors.

A comprehensive set of results has been presented indicating the theoretical limits on accuracy, detection and

resolution thresholds.

Thus these limits can be used as figures of merit to provide the performance level against which any existing

or new algorithm can be compared. That is, for a given array, the closer a DF algorithm comes, performance-

wise, to these theoretical limits the better.



Comparison of the ultimate direction-finding capabilities of a number of planar array geometries 14

REFERENCES

[1] DACOS, I., MANIKAS, A.: ’Estimating the Manifold Parameters of a One-Dimensional Array of

Sensors,’ 1995,Journal  of   the  Franklin  Institute, Engineering   and  Applied  Mathematics, 

332B,  (3),  pp. 307-332

[2] MANIKAS, A, DACOS, I.: ’Investigating the Manifold Parameters of a Non Linear Array of

Omnidirectional Sensors. Part II: Specialization to Planar Arrays of Arbitrary Geometry.’

Unclassified-Research Report: AM-91-5, Department of Electrical and Electronic Engineering,

Imperial College London, 1991

[3] KARIMI, H.R., MANIKAS A.: ’The Manifold of a Planar  Array  and   its  Effects  on  the  Accuracy

of  Direction-Finding  Systems,’  1996,  ,  (6),  pp. 349-357IEE  Proc.- Radar,  Sonar  Navig., 143

[4] MANIKAS, A., KARIMI, H.R., DACOS, I.: ’Study of the Detection and Resolution Capabilities of

One-Dimensional Array of Sensors by using Differential Geometry,’ IEE Proc.-Radar, Sonar  Navig.,

1994, , (2), pp. 83-92141

[5] STOICA, P., NEHORAI, A.: 'MuSIC, Maximum Likelihood and Cramér-Rao Bound,' IEEE Trans.

Acoust. Speech and Signal Process., 1989, , (52), pp. 720-74137

[6] SCHMIDT, R.O.: 'Multiple Emitter Location and Signal Parameter Estimation,' IEEE Trans.

Antennas Propag., 1986, , (3), pp. 276-28034

[7] GUGGENHEIMER, H.W.: 'Differential Geometry' ( McGraw-Hill, 1973)

[8] LIPSCHUTZ,  M.M.: 'Differential Geometry' ( McGraw-Hill, 1969)

[9] VAN TREES, H.L.:  'Detection, Estimation and Modulation Theory-Part I'  (John Wiley and Sons,

1968)



Comparison of the ultimate direction-finding capabilities of a number of planar array geometries 15

CAPTIONS

Figure 1

Variations in parameter estimation performance as a function of azimuth )

¸ ¹Phase reference is assumed to be at the array centroid.  

Figure 2

Monopole gain pattern

Figure 3

ARRAY STRUCTURES FOR STUDY

Figure 4

Detection Threshold (SNR ) as a function of azimuth angle for two equi-poweredôP

emitters separated by =0.5 about .  ( =30 )?) ) 9ü ü

Figure 5

Resolution Threshold (SNR )  as a function of azimuth angle for two equi-ôP

powered emitters separated by =0.5 about .   ( =30 )?) ) 9ü ü

Figure 6

Error standard deviation CRB   as a function of azimuth angle for two uncorrelated°
)

emitters separated by =0.5 about .?) )ü

P=100, SNR=20dB,  =309 ü

Figure 7

Detection Threshold (SNR ) as a function of azimuth angle for two equi-poweredôP

emitters separated by =0.5 about . ( =30 )?) ) 9ü ü

The array geometries have been normalised with respect to aperture.
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Figure 8

Resolution Threshold (SNR )  as a function of azimuth angle for two equi-ôP

powered emitters separated by =0.5 about . ( =30 )?) ) 9ü ü

The array geometries have been normalised with respect to aperture.

Figure 9

Error standard deviation CRB   as a function of azimuth angle for two uncorrelated°
)

emitters separated by =0.5 about . ( =100, SNR=20dB,  =30 )?) ) 9ü üP

The array geometries  have been normalised with respect to aperture.

Figure 10

Detection Threshold (SNR ) as a function of azimuth angle for two equi-poweredôP

emitters separated by =0.5 about . ( =30 )?) ) 9ü ü

The arrays  have been normalised with respect to aperture and number of sensors.

Figure 11

Resolution Threshold (SNR ) as a function of azimuth angle for two equi-ôP

powered emitters separated by =0.5 about . ( =30 )?) ) 9ü ü

The arrays have been normalised with respect to aperture and number of sensors.

Figure 12

Error standard deviation CRB   as a function of azimuth angle for two uncorrelated°
)

emitters separated by =0.5 about . ( =100, SNR=20dB,  =30 )?) ) 9ü üP

The arrays have been normalised with respect to aperture and number of sensors.

Figure 13

Difference between best and worst detection and resolution thresholds performance for unnormalised

and normalised array structures
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