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ABSTRACT
A Monte Carlo technique was used to investigate the

small sample goodness of fit and statistical power of several
nonparametric tests and their parametric analogues when applied to
data which violate parametric assumptions. The motivation was to
facilitate choice among three designs, simple random assignment with
and without a concomitant variable and randomized blocks, and between
nonparametric or parametric tests. The criteria for choice were power
and robustness. The parameters of the Monte Carlo investigation were
strength of relationship between the concomitant and dependent
variables, number of levels of the independent variable, sample size,
and location parameter. (Author)
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Researchers have long recognized that an increase in statistical precision

may result from the judicious use of information on relevant antecedent vari-

ables. Both the analysis of covariance and the analysis of variance of an

index of response of the form Y - KX have been advocated as precision gaining

analyses for a simple random assignment design (Fisher, 1925, 1935). An in-

crease in precision may also result from the use of the antecedent variable

as a blocking variable in a randomized block design. Gourlay (1953) compared

the effectiveness of the analysis of covariance (ANCOVA) and the analysis of

C\.1 variance (ANOVA) of indices of response relative to simple ANOVA on the dependent

variable to determine the extent to which precision was improved by use of in-

formation on the antecedent variable. Cox (1957) examined the same question

for ANCOVA, ANOVA of correct and incorrect indices of response, and ANOVA of a

randomized block design. Porter and McSweeney (1970, 1971) examined all four

parametric procedures--ANCOVA, ANOVA of correct and incorrect indices of re-

ger4% sponse, ANOVA of a randomized block design, and simple ANOVA on the dependent

&lug variable--and their nonparametric analogues under conditions for which the para-

metric tests would be optimal. The findings of these simulation studies and the

earlier studies by Gourlay and Cox apply to data in which:

(1) the dependent variable, Y, is conditionally normally distributed
with equal variances for each of the t treatment groups;

(2) the regression equations of Y on X for each treatment group are
linear with equal slopes;

(3) the errors are independent.

An analytic study of the robustness of ANCOVA to violation of its

assumptions (Atiqullah, 1964) demonstrated that use of the ANCOVA model
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in the presence of a quadratic compollent of regression of Y on X leads to

serious bias in the estimation of the treatment effects and the mean squares

for t > 2 treatments. Surprisingly, the presence of identical normal distribu-

tions on the concomitant variable X and a large number of treatment groups- -

remedies the reader might assume would mitigate the effects of bias--are inade-

quate to overcome the bias in the mean squares for ANCOVA. Cox (1957) observed,

"...if the regression is non-linear but smooth, blocking methods will remain ef-

fective, while covariance methods will not unless the linear component accounts

for most of the regression..." (p.157). Sukhatme and Sukhatme's (1954) compari-

son of two sampling procedures and their associated estimation techniques in a

sample survey context has impliCations for the comparison among the previously

mentioned experimental designs and their respective analyses. Sukhatme and

Sukhatme examined the precision of the simple regression estimate of the mean

in a simple random sampling design relative to the stratum-weighted mean estimate

in a stratified sample. Such a comparison is analogous to examining the pre-

cision of ANOVA of an index of response for a simple random assignment design

relative to ANOVA of a randomized block design. The authors observed:

"...the stratified sample will, in general, furnish a more
efficient estimate than the simple regression method. The

relationship between Y and X is also not always found to be
linear in practice, in which case the efficiency of the re-
gression estimate is further reduced. For, while stratified
sampling with suitably chosen strata can take care of any type
of relationship, the regression estimate can eliminate only
the effects of the linear component of the relationship." (p.210).

Various writers on experimental design have observed that when the magni-

tude of the linear correlation between the concomitant variable and the depen-

dent variable is less than .3, the use of ANCOVA will gain little if any pre-

cision relative to ANOVA in a simple random assignment design. For linear

relations such that p < .4, blocking is preferable to covariance analysis,

while for values of .4 < p < .6, there is no clear preference between ANOVA



3

of a randomized block design and ANCOVA of a simple random assignment design.

When p > .6 ANCOVA is somewhat more precise than ANOVA of a randomized block

design, and at p > .8, ANCOVA is substantially more precise than ANOVA on

blocked data. (Cox, 1957; Bancroft,.1968; Elashoff, 1969). The findings of

Atiqullah, Cox, and the Sukhatmes suggest that in the presence of a substan-

tial non-linear relationship, ANOVA of a randomized block design may evidence

equal or great....r statistical precision than ANCOVA,or ANOVA of an index of

response.

Reliance on the questionable robustness to nonlinearity of ANCOVA and

ANOVA of an index of respc. is one option available to the researcher

seeking increased statistical precision through the use of a concomitant vari-

able. Another option consists of selecting a statistical procedure which uses

the concomitant information but does not require linearity. Randomization

tests for thJ analysis of variance of a randomized block design (Baker and

Collier, 1968) meet these criteria as does a newly developed randomization test

for the analysis of covariance (Robinson, 1973). Rather than work with ran-

domization procedures, we have chosen to retain the relative but not the actual

magnitude of the observations through ranking and the use of nonparametric

tests based on ranks. A nonparametric test statistic satisfying these re-

strictions is available as an analogue for each of the parametric procedures

reviewed. The four nonparametric techniques considered are:

(1) The Kruskal-Wallis test of equality of mean ranks for a
one way ANOVA design (KW);

(2) The Friedman test on ranks in a randomized block design (Fr);

(3) ANOVA of an index of response on mean deviated ranks, d p d
s x(NI1). Indices with underestimated slopes of .8p (NI2)Y

and overestimated slopes of 1.2 ps (NI3) are also examined.

(4) ANCOVA on ranks (NC).



The first two nonparametric statistics are well-known (c.f. Conover, 1971);

ANOVA of an index of response ati ANCOVA were constructed by applying

parametric procedures to the ranks. Monte Carlo studies by the authors

(1971a, 1971b) verified that the small sample properties of the ANCOVA

based on applying parametric procedures to ranks were comparable to those

of Quade's (1967) nonparametric ANCOVA which adjusts the dependent variable

ranks on the basis of a total sample regression estimate. Because the

small sample properties of the two nonparametric ANCOVAs were comparable,

the test based on a direct analogy to parametric procedures was chosen

for its greater familiarity and ease of computation via standard parametric

ANCOVA techniques. The index of response on the mean-deviated ranks was

created to take advantage of the retained degree of freedom when the re-

gression slope for Y given X can be specified a priori rather than requiring

estimation from the sample. Our past Monte Carlo studies demonstrate

that the randomized blocks design analyzed by Friedman's ANOVA is a success-

ful method for improving power over that for a simple random assignment

design analyzed by the Kruskal Wallis when the correlation between the

blocking variable and the dependent variable is greater than .4. When the

correlation is equal to .4, power is not a relevant dimension for choosing

between the two designs and when correlation is zero the simple random

assignment design analyzed by the Kruskal-Wallis test is the more powerful.

Nonparametric ANCOVA on data in a simple random assignment design is more

powerful than Friedman's ANOVA on data in a randomized blocks design for

all values of the correlation between the concomitant variable and dependent

variable. Moreover the nonparametric ANCOVA is equal in power to the

Kruskal-Wallis when p = .0, but becomes progressively more powerful than
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the Kruskal-Wallis for increasing values of pxy. The use of ANOVA on a

correctly determined index of response proved more powerful than either

the analysis of covariance or the analysis of variance on indices of res-

ponse with over-estimated or under-estimated slopes for nonparametric tests.

Overestimation of the slope impaired the power of the test more seriously

than did underestimation, and the effects of overestimation became more

severe as P
XY

increased.

All of the parametric tests were slightly more powerful than their

nonparametric counterparts for data which completely satisfied parametric

assumptions. As the linear correlation oxy increased, the discrepancy

between the power of the parametric and nonparametric tests increased, but

the relationships among the analyses of covariance and analyses of variance

on the indices of response for both parametric and nonparametric tests were

unchanged by increasing P. The fact that the relative advantage of the

parametric tests was slight even when the assumptions necessary for their

valid use were completely satisfied suggests that little loss, and possibly

considerable gain, in power will result from the more general use of these

nonparametric analogues. Since the nonparametric tests require only the

identity of the marginal distributions of X and the monotonicity of the

XY relationship, 'they may well be preferred to the parametric tests when-

ever there is doubt as to whether the conditional distributions of Y are

normal, the regressions linear or the variances equal.

Our previous investigations of the small sample properties of the

nonparametric statistics and their parametric counterparts were restricted

to data in close agreement with the parametric assumptions. The single

exception was our decision to use a normally distributed random concomitant

variable rather than a fixed concomitant variable. The exception was

5
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motivated by our concern for the utility of the results since educational

researchers rarely if ever have data available on a fixed concomitant

variable measured on an ordinal or ratio scale. The purpose of the present

study was to replicate our previous investigations of goodness-of-fit and

small sample power of parametric and nonparametric tests with a data genera-

tion model that further violated the parametric assumptions while still

satisfying the nonparametric assumptions. Thus the only restrictions on

the selection of a data generation model were that it provide observations

on independent experimental units for two monotonically related variables,

that the observations on each variable allow rank ordering without ties,

and that there be no treatment by concomitant variable interaction. Again

the decision was made to have a random rather than fixed concomitant

variable. Clearly a wide variety of models satisfy these less restrictive

nonparametric assumptions.

The selection of a data generation model is one of the most important

steps in conducting a Monte Carlo study since the utility of the subsequent

results is in large part dependent upon that choice. Given the above restric-

tions, our selection of a general model was guided by the desire to simulate

data that were consistent with those likely to be encountered by educational

researchers. Our choice was the asymptotic regression curve or modified

exponential defined by the equation

Y = a + B(P)x

The asymptotic regression or modified exponential is a general form of

growth curve with three parameters, a, f3, and p. In our use of this curve,

the random variables X and Y represent the concomitant variable and the

dependent variable respectively. When p is restricted to values between

zero and one and a is negative, the curve rises from a + 6 at X=0 to the



asymptote of a for large X. A member of the family of asymptotic regression

curves satisfying these properties is presented in Figure 1.

Figure 1
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When a=0, the curve simplifies to the exponential, Y = a(p)x, which describes

a series that changes by a constant ratio p. Exponential or modified exponen-

tial (asymptotic regression) growth seems more reasonable to investigate

than second-degree polynomial growth if we want to simulate that type of

curvilinearity resulting from the operation of a ceiling effect on the

dependent variable measure. (Croxton and Cowden, 1960).

When the asymptotic regression curve is used to represent the under-

lying relationship between the concomitant and dependent variable, the full

model for simulating data is

Y = a + a(P)
x
+ YZ

where a, a, p and y are constant,

2

X ti N( Ux, ax)

and
Z ti N(0, 1).

The model represents a bivariate population with a normal marginal distri-

bution of X, normal and homoscedastic conditional distributions of Y given

X, and a negatively skewed marginal distribution of Y. The negatively
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skewed marginal distribution of Y violates the normality assumption of

both one way and two way ANOVA, and the monotone increasing curvilinear

relationship between X and Y violates the linearity assumption made by ANCOVA

and ANOVA of an index of response. Educational researchers encounter

similar data when there is a ceiling effect on the dependent variable either

because of a test which was too easy, or because of a true ceiling effect

on the latent dependent variable. One example of the latter situation is

the use of mental age as a dependent variable and chronological age as a

covariable.

Further specification of the data generation model required assigning

specific values to each of the several constants in the equation. We wanted

an asymptotic regression curve and a distribution of X such that the linear

correlation between X and Y would be near .7 which we felt represented a

substantial departure from one. A computer program was written to simulate

data conforming to the asymptotic regression curve with X normally dis-

tributed. The output of the program was the Pearson correlation between X

and l(p
Y
) and the first four moments of the distribution of Y. Using

samples of size 10,000 the values of p were systematically varied for a=0,

p
x
=0 and a

x
= 1. Setting a=0 simplified the curve to the exponential,

Y = f3P
x

. As p increased from .1 to .9, p increased from .29 to .95.
XY

Although p = .3 resulted in a desirable value of pxy = .72, the standardized

third and fourth moments for the marginal distribution of Y were -5.94 and

63.78 respectively. We decided to vary the other parameters in search of

a similar Pearson correlation but a less substantial deviation from normal

for the marginal distribution of Y. A value of p = .5 had resulted in

p
XY

= .89 and third and fourth moments of Y equal to - 2.53 and 12.62 respec-

tively. Varying values of a from - 1.0 to 1.5 did not have a noticeable ef-

fect on reducing the value of nor on the third and fourth moments. A lack



of change in correlation and third and fourth moments was found when px

was varied from .0 to 2.0. Increasing ox from 1.0 to 1.6 did reduce pxy

to .72 but resulted in a concomitant increase in negative skew and kurtosis

to approximately that of th..: value for p = .3. When we set p = .4, a = 0,

= -1 and p
x

= 0, an increase in 0
x

from 1 to 1.3 resulted in a decrease

in p
XY

to .73 with third and fourth moments equal to -4.98 and 39.03.

Therefore we used p = .4, a = 0, a = -1.0, px = 0, and ic = 1.3

for our data generation model. Thus Y = -.4
x

yZ and X t\-, N(0, 1.3
2
).

Unfortunately, subsequent runs for the same set of parameters revealed that

the third and fourth moments of Y ware quite unstable for samples of size

10,000. The implication is that we could have left the standard deviation

of X at one without markedly changing the third and fourth moments of Y.

The remaining constant to be defined la the data generation model was

y, the standard deviation of the conditional distribution of Y given X.

The value of y was set according to the desired strength of relationship

between X and Y as defined by
2

a
2

n = 1 -
y.x

Y
2

where
ay

2 = y
2

is the variance of the conditional distribution of Y given
.x

X and a 2 is the variance of the marginal distribution of Y. Since

2 2 2 2

a ;- a , let a = a + C where C > 0. Then
y y.x y.x

and

2
2

n 2

Y

I + C

n 2

C

9



The standard deviation y can be evaluated in terms of the desired n
2

as

soon as C is known. Analytic attempts to solve for C = a
2

in the reduced

model

Y = -.4x where X ti N(0, 1.32)

failed. Consequently a simulation based on 100,000 observations from the

reduced model was used to estimate C = 11.3906. Thus for a given value of

2
n , Y was set equal to

Y
n
2

11.3906

n
2

10

Finally, a pseudo-random unit normal deviate generator for the IBM 370-165

computer was used to provide observations on the random variables X and Z

in the data generation model. The unit normal deviate generation involved

two stages. First, the multiplicative congruent method was used to generate

sixteen pseudo random numbers from a nniform distribution. Second, the

sixteen numbers were summed and linearly resealed to provide a pseudo-random

unit normal deviate via the Central Limit Theorem.

Design of the Monte Carlo Study

The parameters of the Monte Carlo study were t, the number of treatments;

b the number of experimental units in each treatment; and n
2

, the correla-

tion ratio. Figure 2 presents a summary of the conditions under which the

sampling distributions of the nonparametric and parametric test statistics

were investigated. For each X in Figure 2, sampling distributions based

on 1,000 samples of size tb were generated for the null case of no treatment

effects and for a single noncentral case. Both central and noncentral

sampling distributions were described by the frequencies of the various test

statistics falling above their respective critical values for the .10, .05,

and .01 levels of significance.
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Figure 2
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The population distributions indicated in Figure 2 were chosen to

facilitate comparisons with the results from our earlier studies. Three

values of t were investigated because of possible trends in the sampling

distributions as the number of levels of the treatment independent variable

increase. The smallest value of t was three since the Wilcoxon matched

pairs test offers a more powerful alternative to the Friedman test when t

equals two. Three values of b were investigated because of possible trends

in the sampling distributions as the number of units under each level of

the independent variable increases. The smallest value of b was five

since exact tests would be more appropriate for smaller values. Three

values of th_ correlation ratio (n
2

= .8, .6, .4) were investigated since

the deviation from parametric assumptions increases withthe size of the

correlation ratio. The noncentral case was created by adding the value

1
a to the dependent variable value of each unit under one level of the

2 y

treatment independent variable. The choice of
1

a was made because it
2 y

seemed to represent a deviation from the null hypothesis that most educa-

tional researchers would wish to notice. Further, it produced intermediate

values of power which facilitated comparisons of the various test statistics.

Defining the Indices of Response

Prior to the actual generation of the sampling distributions, a final

set of parameters had to be defined. Both the parametric and the nonpara-

metric indices of response require a priori knowledge of the slope of the

regression line for predicting the dependent variable from the concomitant

variable. The slope for the parametric index, B , is defined on the
y.x

original observations while the slope for the nonparametric index, ps,

is the Spearman correlation. Both parameters were estimated for each of

the three values of the correlation ratio by generating 4,000 samples with
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eight treatment groups and eight units per treatment group in each sample.

The large samples (64) were used so that the estimates of ps would be

minimally affected by sample size.

The three estimates of each parameter and their standard errors are

presented in Table 1. The value of 8
y.x

was approximately 1.78 for all

three values of eta squared, but the value of ps increased with an increase

in eta squared, i.e., .3595 for n
2
= .4 to .6027 for n

2
= .8.

Since nonparametric and parametric indices of response require a priori

information about the parameters p
s
or 8 , it was also of interest to

y.x

investigate the sampling distribution of the F test for each procedure when

the a priori information was in error. Somewhat arbitrarily we decided to

investigate the effect of a priori "guesses" about the slopes that were in

error by twenty percent, either too high or too low. The slopes for the

incorrect indices are also presented in Table 1.

The extensive simulations necessary for estimating p
s

and provided
y.x

interesting additional descriptive information about the data generated by

the model. The Pearson correlation between X and Y as well as the first

four moments of the marginal distribution of Y for varying values of eta

squared are contained in Table 2. The mean was approximately-2.0 for all

three values of eta squared. The variances are in quite close agreement

with what was predicted using the equation

a2 = 11.3906 + y2,

given earlier. Skewness, kurtosis and Pearson correlation increased with

increases in eta squared as was expected. Skewness ranged from -1.8721 to

-5.3158, kurtosis ranged from 10.4755 to 73.8704 and the Pearson Correlation

ranged from .4436 to .6301.
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TABLE 1

ESTIMATES OF THE SLOPES FOR.DEFINING THE PARAMETRIC ANT) NONPARAMETRIC

INDICES OF RESPONSE

----

8 y.x
S.E. .8e

y.x
1.2e

y.x P
s

S.E. .8p
s

1.2p
s

.4 1.7837 .0115 1.4270 2.1404 .3595 .001.8 .2876 .4314

.6 1.7807 .0107 1.4246 2.1368 .4666 .0017 .3733 .5599

.8 1.7864 .0099 1.4291 2.1437 .6027 .0015 .4822 .7232
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TABLE 2

A DESCRIPTION OF THE SIMULATED DATA FOR THE MARGINAL DISTRIBUTION OF Y

FOR VARYING VALUES OF ETA SQUARED AND SAMPLES OF SIZE 256,000

n
2 .4 .6 .8

Mean - 1.9913 - 1.9982 - 2.0030

Variance 27.9597 18.8208 14.1016

Skewness 1.8721 - 3.9729 5.3158

Kurtosis 19.4755 64.6519 73.8704

Pearson Correlation .4436 .5414 .6301
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Correlations Within and Across the Treatment Groups for the Simulated Data

Table 3 reports the empirically generated correlations on the original

data and on the ranks assigned to the data. Correlations are reported for

the case of no treatment effects on the dependent variable (the central case)

and for the case in which the dependent variable observations in one of the

treatment groups have been increased by the addition of 1/2 a units (the

noncentral case). The total sample correlation ratio, E(12), is an empirical

estimate, based on 1000 data sets, of the expected value of cl2 for the design

defined by the specified values of t, b, and n2. A comparison of each of

the tabled values of E(nA2) with the respective value of n 2 shows that the

simulation has been quite successful in achieving the desired amount of

curvilinearity. The largest difference between the empirical estimate of

2the expected value of 6
n and the desired parameter is .0257 for n2 = .6,

and the average size of the difference is only .0085. The total sample

Pearson correlation for the underlying model, E(r
xy

), is an empirical estimate

of the expected value of r
xy

when the error-free model Y = - .4
X

with

X N(0, 1.32) is used to describe the X Y relationship. The estimated ex-

pected values of r
xy

are very close to the desired measure of linear rela-

tionship, P
xy

= .7, and are approximately equal across all designs studied.

These data demonstrate that it was possible to keep the amount of linear

relationship constant while varying the strength of curvilinear relation. Thus

as n2 increases, for constant o
xy)

curvilinearity increases.

The remaining coefficients are also averages obtained over all 1000 data

sets for their respective designs, and they represent empirical estimates of

the corresponding mathematical expectations of those correlations in the popu-

lation. The coefficient E(r ) is an average across 1000 data sets of the

pooled within treatment group measures of association where

r = SSxy / V ss SS
XX YY
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and SS
X?
W

represents a sum of squares within groups on the variables X and Y.

Since it is a mea ce of the linear relationship of X Y, we find, as expected,

E(r
2

) < E012). The Spearman correlation, E(r
RW

) is similarly defined as an

average across all 1000 data sets of the pooled within group measures of associ-

ation. However, the scores are ranked separately on both X and Y across the

total sample prior to the computation of the sums of squares. The only com-

parable measures of association obtained from the application of Pearson and

Spearman correlation coefficients to these data are the respective pooled

within group estimates given by rw' and rRW. When empirical estimates of the

expected values of these quantities are found from the summary results of the

1000 replications, E(rw) is consistently higher than E(rRW) by .055 to .075

units, with no clear pattern of decrease in the discrepancy as a function of

the total sample size, b t, alone or the value of n2 alone. If the joint dis-

tribution of X and Y were bivariate normal, we would expect

p = 6 (sin
-1

(p
XY

/ 2))/7

and E(r ) = 6 ( sin
-1

p + (n 2) sin
-1

(p
XY

/2) )1 (71-(n + 1) ) .

XY

(Moran, 1948). Kendall (1949) demonstrated that these relationships may be

substantially in error for samples from other than a bivariate normal distri-

bution and that no simple modifications exist to express the exact relationship

between ps and pxy for arbitrarily specified populations. Kendall's illustra-

tion of a particularly large discrepancy between predicted and actual values of

p. occurs for a skewed, leptokurtic population not unlike the population defined

by the dependent variable Y. For our data, use of the formula for ps in terms of

p yields a value of r
RW

= .634 when E(r ) = .6513 (b=8, t=3,n2=.8). This
XY

value is noticeably different from the obtained value E(rRW) = .5891. The

heavy concentration of Y values in the upper tail of the distribution may be

responsible for the sizable differences between E(rw) and E(rRW).

The remaining measure of correlation in the central case, E(rs), is the

average across simulations of the Spearman correlation based on all b t ranks.
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As expected, E(r5) increases with an increase in n
2

for fixed b t. The values

of r also increase slightly with an increase in b t, which may be reflective

of the diminished effect of discreteness.

The average values of r and r
RW

for the noncentral case can be compared with

those for the central case. The values of E(r
RW

) are relatively constant over the

two cases with discrepancies of (.0012, .0002, .0018, .0034, .0005, .0009, and

.0003) respectively. The total sample values E(r ) are smaller in the noncentral

case than in the central case. The direction of this difference is expected since

the addition of values of 1/2 a to the dependent variable in one group with no

compensating change in the values of X, introduces noise into the X Y relationship.

Goodness-of-Fit and Empirical Power for Varying Values of n
2
When t = 3 and b = 8

Table 4 compares the empirical sampling distributions of the test statistics

for the Kruskal-Wallis (KW), Friedman (Fr), parametric ANCOVA on ranks (NC) and

nonparametric indices of response on mean deviated ranks with the correct slope

(NI1) and with slopes that are systematically underestimated (NI2) and overesti-

mated (NI3). The three rows labelled "central" depict the goodness-of-fit of the

empirical distributions to their respective null distributions. Both the Kruskal-

Wallis and Friedman testa are referred to x
2

-1'
the ANCOVA test refers to F

t-1,bt-t-1't

and all of.the ANOVAs on indices of response use F Since all of the

sampling distributions were based on 1000 cases, standard errors for the estimated

actual alphas can be determined from S.E. = p(1-p)/1000 where p denotes nominal

alpha level. For nominal alphas of .10, .05, and .01, the respective standard

errors are .009, .007, and .003.

The nominal and empirically estimated actual alphas are in close agreement

for the nonparametric ANCOVA and the ANOVAs of correct and incorrect indices of

response. Without exception these empirical alphas are within two standard errors

of the respective nominal a for all values of n
2

. The Kruskal-Wallis test is

noticeably conservative for nominal alpha values of .10 and .01 and slightly

conservative for a nominal alpha of .05. The Friedman test is somewhat

liberal at a = .10, but its empirical sampling distribution does



19

not depart appreciably from good fit to the chi-square distribution at

the other nominal alpha levels. On the basis of these data it can be con-

cluded that the fit of the nonparametric analysis of covariance and analysis

of variance of an index of response to their respective F distributions is

quite good and is independent of the size of the correlation ratio, n
2

The fit of the Kruskal-Wallis and Friedman tests to x
2

-1
is somewhat poorer,

t

although it too seems independent of the size of n
2

.

The goodness of fit of the corresponding parametric analogues:

ANOVA for a one way simple random assignment design (Al);

ANOVA for a two way randomized block design (A2);

ANCOVA for a one way simple random assignment design (PC);

ANOVA of an index of response for a correctly determined index
(PI1), an underestimated slope (PI2), and an overestimated
slope , (PI3);

to their respective F null distributions can be studied by examining the

"central" case reported in the first three rows of Table 5. Fit to the

respective null distributions is good throughout the table, with the only

exceptions occurring for the index of response when ri
2
= .8 and a = .01.

In that case all three ANOVAs of the indices yield slightly conservative

tests; empirical alphas fall at least two standard errors below the

nominal alpha = .01.

The fit of the test statistics to their corresponding null distri-

butions is somewhat better for the parametric than for the nonparametric

tests when the comparative goodness-of-fit is described by the relative

incidence of values of estimated actual alpha that fall outside the 68

percent and 95 percent probability intervals defined on nomina- alphas.

For the nonparametric analyses, a total of 17 out of .54 values of estimated

actual alphas fall outside their respective 68 percent probability inter-
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vals and, of these, 6 values are also outside their corresponding 95 percent

probability intervals. For the parametric analyses, 13 of 54 values are

not within the corresponding 68 percent probability intervals and, of

these, one value falls outside the 95 percent probability interval.

Although the parametric test statistics seem to exhibit slightly better fit

than do their nonparametric analogues, the differences in absolute dis-

crepancy between nominal a and estimated actual a ,

e = nominal a - estimated actual al ,

are not large. For nominal a = .10, the mean difference in fit between

the parametric tests and their nonparametric analogues is e e
NP

= -.005,

with the discrepancy almost entirely attributable to the poor fit of the

Kruskal-Wallis and Friedman tests. The corresponding mean differences for

a = .05 and .01 are +.002 and +.001 respectively. The somewhat poorer fit

of the Kruskal-Wallis and Friedman tests may be attributable to the use

of the chi-square dis,tribution, the traditional large sample approximation

for each of these tests, rather than the F distribution, found by Wallace

(1959) to give slightly better fit.

Tables 4 and 5 may also be used to compare the small sample power

against a slippage alternative for the nonparametric and paramt'tric tests

included in this study: The values appearing in the three rows labelled

"noncentral" represent the empirical power of the various tests at a = .10,

.05, and .01. The maximum standard error of the reported empirical powers,
0

.016, occurs for power equal to .5. To facilitate power comparisons, we

have averaged power differences between statistics across the nominal

alpha levels. Although the power comparisons at the differing nominal

alpha levels have slightly different precision, the differences in precision

do not seem substantial enough to negate the use of these summary measures.
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When the power of each of the nonparametric procedures which use informa-

tion on the concomitant variable is compared with that of the Kruskal-Wallis

test which makes no use of this information, the former is as high or higher for

all values of allall nominal alpha levels and all nonparametric tests using the

antecedent informaLion. The corresponding differences in power relative to the

Kruskal-Wallis test for n
2
= .4 are .024 for the Friedman test, .049 for nonpara-

metric ANCOVA, .055 for an ANOVA of a correct index of response, and .054 for both

the underestimated and overestimated slope in ANOVA of an index of response. When

n
2

= .6, the respective differences increase to .054, .062, .069, .067 and .064.

Further increases are noted for n
2
= .8, where the corresponding differences are

.088, .147,,-a59, .159 and .144 respectively.

As expected, the empirical power of nonparametric ANOVA of the correct and

incorrect indices of response exceeds that of all other statistics when n
2

is

large. This difference is already noted when n
2

= .4. The slight superiority

of the indices with respect to ANCOVA was anticipated on the basis of the retained

degree of freedom in the former technique and its loss in the latter. The superi-

ority of the indices of response and ANCOVA to the Friedman test at 'II

2
= .4 is

a little surprising if the designs alone are compared. Such a comparison over-

looks the fact that the Friedman test does not exploit the existence of inter-

block differences to gain power. Hodges and Lehmann (1964) hypothesized that

the use of intrablock ranking in the Friedman test, with the attendant disregard

of interblock differences, resulted in a less than optimal nonparametric test

for the randomized block design. Their test, based on intra- and interblock com-

parisons, is asymptotically more efficient than the Friedman test. We conjecture

that because of the exclusive use of intrablock ranks in the Friedman test, the

full advantage of blocking may not be gained relative to the use of direct ante-

cedent variable adjustment in ANCOVA and ANOVA of indices of response. The power

ANOVA of an index of response using an underestimate slope is comparable to

that of an index using the correct slope, while that of an index using



an overestimated slope is slightly less. The discrepancies in power between

the under- and over-estimated slope increase with increasing fromfrom .000

to .003 and .012 respectively. We had found differences comparable to

these in our earlier work with linear relations. Now, as then, it seems

reasonable to ascribe increasing differences in the power of NI2 versus

NI3 to underestimation in the average noncentral values of r
s

. A compari-

son of the average noncentral values of the total sample Spearman corre-'

lation for n
2
= .4, .6, and .8 (Table 3) with the estimates of p

s
to

define the incorrect slopes (Table 1) reveals that the underestimated

slopes, .bps, are consistently closer to the average noncentral total

sample ps than are the overestimated slopes, 1.2 ps. The differences for

the underestimated slopes relative to the average noncentral p
s

are

-.0557, -.0591, -.0688 for n
2

= .4, .6, and .8 respectively. The corres-

ponding differences for the overestimated slope are .0881, .1275 and .1722

respectively. The comparison of NI2 and NI3, although based on .8ps

versus 1.2p
s

, employs sample correlations such that the magnitude of the

error of underestimation is considerably smaller than that if overestima-

tion. Consequently, the differences in empirical power are consistent

with the differing size of the errors in estimating the slope.

A comparison of the empirical power of the nonparametric tests with

that of their parametric analogues shows higher power for the nonparametric

analysis of covariance and all nonparametric indices of response, irrespective

of the value of n2 . Moreover, the advantage of the nonparametric tests

relative to their parametric analogues increases with an increase in the

correlation ratio. For the analysis of covariance the average differences

in power for the nonparametric techniques versus the parametric techniques

'vary from .015 at n2 = .4 to .011 at n2= .6 and to .071 at r12 = .8. The

22
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differences for the correct and incorrect indices follow a similar pattern

for increasing values of n2. In the case of the correct index the values

are .008, .014, and .095 respectively; for the index based on the under-

estimated slope, the respective quantities are .008, .011, and .077; and

for the index based on the overestimated slope they are .006, .019, and

.115. Since an increase in n2 for constant p in the underlying model implies

an increase in curvilinearity in the model, the results are consistent in

demonstrating the relatively superior power of those nonparametric procedures

which assume only monotonicity of the X Y relationship to parametric pro-

cedures assuming linearity of the relationship. The comparison of nonpara-

metric to parametric procedures for the randomized block design tends to

favor the parametric test slightly, despite the fact that the dependent

variable distribution is negatively skewed and extremely peaked. The dif-

ferences in power for the Friedman test relative to the F test for the

randomized block design are .007, .001, and .003 for increasing values

of n2 when averaged over the nominal alpha levels. The relative weakness

of the Friedman test in this context occurs primarily in the upper percentiles

(1 a > .95) of the empirical sampling distribution and may be partly at-

tributable to the discreteness of the sampling distribution of the Friedman

test. As was noted earlier, the Friedman test does not use the interblock

differences that are a source of increased precision for the F test in the

randomized block design. This too may be responsible for the lower power

relative to the parametric competitor. The Kruskal-Wallis statistic also

exhibits somewhat lower power than the F test for one way ANOVA,especially

at the .10 and .01 alpha levels. The conservativeness of the Kruskal-Wallis

null distribution at these same alpha levels may explain the reduced power

relative to the F test. When power differences are averaged over the nominal

alpha levels, the results for KW - F are - .012, - .006 and .017 for increasing

n2. Only at n2 = .8, is the power of the Kruskal-Wallis test superior to F's.
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Although not of direct concern in this study, the empirical powers

of the parametric tests can be examined to determine the extent to which

they reflect the effects of curvilinearity. All of the parametric procedures

which employ antecedent variable information are more powerful than the one

way analysis of variance F test on a simple random assignment design. The

following differences in power, averaged over the nominal alpha levels, are

found when the power of each of the other parametric procedures is compared

with that of the one way ANOVA F test. The differences are reported as

three-tuples, with the'elements ordered in terms of increasing n2:

ANOVA in a randomized block design (.020, .048, .109)

ANCOVA for data in a simple one way design (.023, .046, .093)

ANOVA on a correct index of response (.035, .049, .093)

ANOVA on an index of response with an underestimated slope (.034, .050, .099)

ANOVA on an index of response with an overestimated slope (.031, .039, .049).

The results support the earlier conjecture that as n2 becomes large,

the analysis of variance of a randomized block design, which does not assume

linearity, becomes more powerful than ANCOVA or ANOVA of response on correct

or incorrect indices. The differences between the indices of response based

on correct and incorrect slopes are slight at n2 = .4 or .6 (.001 for the

correct versus the underestimated slope and .004 and .010 for the correct versus

the overestimated slope). However, at n2 = .8, the index with the under-

estimated slope is slightly more powerful than the index with the correct

slope (.006) and noticeably more powerful than the index with the overestimated

slope (.050).

Goodness-of-Fit and Empirical Power for Varying Values of t When b = 8 and n2= .8

When the goodness-of-fit of the respective parametric and nonparametric

tests is studied for increasing numbers of treatment groups (t = 3, 5, 8) and

constant curvilinear relationship (n2 = .8), no pronounced trends emerge.(Tables 6
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and 7). The majority of the estimated actual alphas for these statistics

fall within the 95% probability intervals based on the corresponding nominal

alphas, with only five exceptions out of 54 cases for the nonparametric tests

and fourteen out of 54 for the parametric tests. The fit is similar when

68% probability intervals are examined: 22 nonparametric estimated actual

alphas and 31 parametric empirical alphas fall outside of the respective 68%

intervals. Most of the instances of lack of good fit result in the over-

estimation of the actual alpha through the use of the nominal alpha. Thus

the associated tests are conservative. The fit of the nonparametric tests

is somewhat better than that of the parametric procedures. The parametric

tests are especially conservative for t = 8; however, it seems unlikely that

the conservative behavior of almost all the parametric procedures for this

design is a consequence of the change in design from t = 3 and 5 to t = 8.

Unreported portions of this simulation study examined the central distribution

of the parametric tests for varying t and n2 = .6 and did not find comparably

conservative behavior. Thus it seems mere reasonable to assume that these

results are an artifact of the particular 1000 data sets simulated for t = 8,

b = 8, n2 = .8 that are used for the analysis of all the parametric and non-

parametric tests having these design dimensions.

When the empirical power of the nonparametric tests is examined as a

function of an increasing number of treatment groups, the actual magnitude of

the power decreases but the relative ordering among the tests remains unchanged.

The decrease in empirical power with increased t merely reflects the fact that

the single differing treatment group makes up a smaller proportion of the

total sample size (1/3 versus 1/5 versus 1/8 for t = 3, 5, 8 respectively).

The power of each of the other nonparametric tests using information on

the concomitant variable is compared with that of the Kruskal-Wallis test

and differences are averaged over the nominal alpha levels to yield the
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following results for increasing values of t:

Fr - KW Power: (.088, .114, .104)

NC - KW Power: (.147, .151, .153)

NIl - KW Power: (.159, .159, .153)

NI2 - KW Power: (.159, .156, .154)

NI3 - KW Power: (.147, .148, .141) .

The most powerful of the nonparametric techniques for n2 = .8 are the analysis

of variance on a correct index of response (NI1) and on an index of response

with an underestimated slope (NI2). These are followed closely in power

by the analysis of covariance (NC) and the analysis of variance on an index

of response with an overestimated slope (NI3). The Friedman test (Fr) has

substantially more power than the Kruskal-Wallis test in the presence of

such a strong X Y relationship, but its power is considerably lower than

that of the other procedures which incorporate information about the nature

of the X Y relationship more directly into theii respective test statistics.

A comparison of these nonparametric tests with their parametric

analogues for the substantial curvilinear relationship implied by p = .7 and

n2 = .8 reveals that all of the nonparametric tests are more powerful than

their parametric counterparts for all values of t. The gains in power for

the Kruskal-Wallis and Friedman tests relative to the F tests for one way

ANOVA and ANOVA of a randomized block design respectively are quite slight,

while those for the other procedures versus the parametric tests demanding

linearity are somewhat more substantial. For,increasing values of t

KW - Al Power: (.017, .034, .020)

Fr - A2 Power: (.013, .013, .029)

NC - PC Power: (.073, .084, .107)

NIl PI1 Power: (.095, .102, .117)

NI2 - PI2 Power: (.077, .093, .085)

NI3 - PI3 Power: (.115, .117, .128)

The strong showing of the nonparametric analysis of variance on an index of

response with an overestimated slope is probably reflective of the very
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conservative behavior of the parametric analogue in the central case, and

the reuse of the same data with 1/2 a added to one treatment group to

create the noncentral case. A very slight increase in the advantage of the

nonparametric procedures to the parametric tests occurs with increasing t.

Such a finding is consistent with the results of many Monte Carlo studies

which have established that nonparametric tests tend to make their best

showing relative to the parametric analogues when differences between populations

are small and power is low to moderate.

Goodness-of-Fit and Empirical Power for. Varying Values of b When t = 3 and n2 = .8

Tables 8 and 9 provide evidence with respect to the goodness-of-fit of

the nonparametric and parametric tests for increasing numbers of observations

per treatment group. Both tables indicate relatively good fit of the empiri-

cal sampling distributions of the test statistics to their corresponding null

distributions. Only 6 of 54 estimated actual alphas for the nonparametric tests

and 3 of 54 for the parametric tests fall outside the 95% probability intervals

based on the corresponding nominal alphas. The fit is similar when 68% proba-

bility intervals are studied: 11 nonparametric and 18 parametric estimated

actual alphas fall outside the respective 68% intervals. The quality of the

fit does not vary appreciably with b, although there is slightly better fit

for the nonparametric tests at larger values of b. The Kruskal-Wallis test

and the Friedman test are once again the principal source of lack of fit among

the set of nonparametric tests examined. All 5 estimated actual alphas that

are outside the limits of the corresponding 95% probability intervals on the

nominal alphas are identified with either the Kruskal-Wallis or the Friedman

test.

The power of all of the parametric and nonparametric tests considered is

a monotonically increasing function of the sample size per treatment group, b.

Substantial increases in the power of the tests occur as b increases from

5 to 10, but the relative superiority of the various statistics is only
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moderately affected by changes in b.

Each of the nonparametric tests using information on the concomitant

variable is more powerful than the Kruskal-Wallis test which ignores this

information. Furthermore, the gain in power relative to the Kruskal-Wallis

test increases with an increase in the number of observations. The analyses

of variance on a correct index of response and on an index with an under-

estimated slope are again slightly higher in power than the analysis of

covariance or the analysis of variance on an index of response with an over-

estimated slope and substantially more powerful than the Friedman test. The

resulting differences in power relative to the Kruskal-Wallis test, averaged

over the nominal alpha levels, are:

Fr - KW Power: (.032, .088, .109) For, increasing values of b

NC - KW Power: '(.086, .147, .186)

Nil - KW Power: (.097, .159, .192)

N12 - KW Power: (.097, .159, .185)

N13 - KW Power: (.085, .147, .183)

All of the nonparametric tests except the Friedman test are more power-

ful than their parametric counterparts. The Friedman test, which exhibits a

conservative null distribution, is slightly less powerful than the F test for

a randomized block design. The Kruskal-Wallis test realizes only a slight

advantage in power relative to the F test for one-way analysis of variance,

but this advantage increases with an increase in the number of observations

per group. The nonparametric analysis of covariance and the analyses of

variance of the indices of response are all substantially more powerful than

their parametric analogues, and this gain in power increases with increasing b.

These results are indicative of the effect of curvilinearity in decreasing

the power of the parametric tests which assume linearity. Our earlier work

dealing with, similar design dimensions but a data model satisfying parametric

assumptions provides an informative comparison with these data employing a

curvilinear relationship.
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Empirical Power of the Nonparametric Tests Minus That of Their

Parametric Analogues Requiring Linearity, Averaged Over a Levels

for t = 3, b = 5, 8, 10 and Differing Assumed X Y Relationships

Parametric Assumptions Met

p = .6

Curvilinearity Present

p = .7 n2 = .8

NC - PC - .033 - .043 - .053 .041 .071 .112

Nil PI1 - .050 - .058 - .058 .056 .095 .128

NI2 - PI2 .022 - .050 - .049 .053 .077 .110

NI3 - PI3 - .068 - .077 - .075 .055 .115 .154

As the results indicate, the advantage of the parametric tests increases

with increasing b when parametric assumptions are met, but the disadvantage

of the parametric tests increases when the X Y relationship is markedly

curvilinear.

Summary of the Empirical Results

The data for this study indicate some consequences, in terms of the

estimated Type I Error and power, of the choice between a nonparametric

test and a parametric test when there is a nonlinear relation between the

dependent variable and the concomitant variable. The empirical sampling

distributions of all of the parametric and nonparametric tests employing

the F distribution showed relatively good fit to their respective null

distributions. The Kruskal-Wallis ancFriedman tests, both of which were

referred to the chi-square distribution, occasionally demonstrated poor fit.

The Kruskal-Wallis test was consistently somewhat conservative, while the

Friedman test tended to be conccrvative in the extreme tail of the distri-

bution but liberal at the a = .10 level.

All of the nonparametric tests were more powerful than the Kruskal-

Wallis test at all levels of relationship studied and for all design variations

of t and b. Among the nonparametric tests using information on a concomitant

variable, the tests could be ranked in order of decreasing empirical power as:
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ANOVA of correct ANOVA of index > ANCOVA 4: ANOVA of index > Friedman
index of response slope too low slope too high test

The differences between an index of response based on a correct slope and one

based on an underestimated slope were typically very slight, as were the dif-

ferences in power between analysis of covariance and analysis of variance of

an index of response on an overestimated slope.

When the nonparametric tests were compared with those parametric tests

which demand linearity of the X Y relation, the relative superiority of the

nonparametric tests increased with increases in the size of n2, the number of

observations per group, b, and the number of treatments, t. The effect of

skewed, leptokurtic distributions on the dependent variable was not sufficiently

strong to yield nonparametric tests for the one way ANOVA (KW) and for the ran-

domized block design (Fr) which were consistently more powerful than their para-

metric analogues. However, for n2 = .8, the Kruskal-Wallis and Friedman tests

tended to be slightly more powerful than their parametric counterparts.

When the parametric tests were compared among themselves, our conjecture

that a sizable amount of nonlinearity might favor the F test for the randomized

block dcsign over its parametric counterparts which require a linear X Y rela-

tion was substantiated. Thus conclusions regarding the decreasing power of

parametric procedures for data in which the X Y relation is linear,

ANOVA of correct > ANCOVA > ANOVA of a randomized
index of response block design

are not supported in the nonlinear case. Instead,

ANOVA of a randomized > ANOVA of a correct > ANCOVA
block design index of response

The study as a whole supports the viability of selecting a nonparametric

test in preference to a parametric one if the relationship between the depen-

dent variable and the concomitant variable is nonlinear. The declared chances

of committing a Type I Error adequately describe the actual chances, and the

power of the nonparametric analyses of variance of indices of response and

of analysis of covariance is higher than that of their parametric analogues.



*We have asserted that, "Since an increasein n2 for constant p in the under-
lying model implies an increase in curvilinearity in the model,..." This
statement does not imply that n2and p are reported for comparable data.
The value of p pertains to the linear correlation in the error-free model,

Y = - .4
X

with X N(0, 1.3
2
) .

The value (1 - p2) is a measure of the lack of fit of a linear X Y relationship
to the function specified by

Y = - .4
X

.

The correlation ratio

2n2 = 1 - fy.x

a2
y

is based on the full model which includes normally distributed error,

Y = - .4
X
+ yZ with Z N(0, 1) .

The value (1 n2) =a2. / a2 is a measure of "pure error" in fitting
empirical data to theYnOnlinar functional X Y relation. Unfortunately, no
comparable data are reported for the total sample values of the Pearson
correlations. These would measure both "pure error" and lack of fit (Draper
and Smith, 1966). Of necessity, comparisons will be made between E(n2) and
E(rw), both computed on the full model, but the former measuring association
in the total sample and the latter measuring the pooled within groups linear
correlation. Under the null hypothesis of no treatment effects and the as-
sumption of identical distributions on the concomitant variable, needed by
the nonparametric tests, r and r for the total sample both serve as estima-
tors of the corresponding population Pearson correlation. It can be noted
that as n2 increases, both E(`12) and E(rw) increase, but at differing rates.
Since r2 < cl2 in the presence of curvilinearity and r2 =An2 for linearity,
the increasing values of E(n2) - (E(r ))2 with an increase in ri2 imply an
increase in curvilinearity.
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TABLE 3

TOTAL SAMPLE CORRELATION RATIO E(r2), TOTAL SAMPLE PEARSON CORRELATION FOR

THE UNDERLYING MODEL E(r ), AND AVERAGE CORRELATIONS WITHIN TREATMENT

GROUPS E(rw), ACROSS'
xy ALL RANKED OBSERVATIONS E(r ) AND WITHIN TREAT-

MENT GROUPS ON RANKED DATA E(rRW)
S

2 =

E(n2)

E(rxy)

CENTRAL E(rw)

E(rs)

E(rRw)

E(rs)

NON-CENTRAL
E(rRw

3 3 3 5

08 5. 8 10 8

.3920 .5743 .8029 .8010 .8135 .8016 .8068

.7109 .7175 .6978 .6925 .6;87 .6676 .7046

.4187 .5261 .6445
.('513

.6516 .6592 .6553

.3539 .4496 .5698 .5910 .5393 .6038 .6044

.3505 .4499 .5670 .5891 .5F,93 .6031 .6019

.3433 .4324 .5353 .5510 .55:.%:: .5772 .5887

.3517 .4501 .6S8 .5857 .5898 .602 j .6022
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