
 

 

Comparison of Three Evolutionary Algorithms: 
GA, PSO, and DE 

 
 

Voratas Kachitvichyanukul* 
Industrial and Manufacturing Engineering, Asian Institute of Technology, Thailand 

 
(Received June 29, 2012 / Revised: July 31, 2012 / Accepted: August 18, 2012) 

 

ABSTRACT 

This paper focuses on three very similar evolutionary algorithms: genetic algorithm (GA), particle swarm optimization 
(PSO), and differential evolution (DE). While GA is more suitable for discrete optimization, PSO and DE are more 
natural for continuous optimization. The paper first gives a brief introduction to the three EA techniques to highlight 
the common computational procedures. The general observations on the similarities and differences among the three 
algorithms based on computational steps are discussed, contrasting the basic performances of algorithms. Summary of 
relevant literatures is given on job shop, flexible job shop, vehicle routing, location-allocation, and multimode re-
source constrained project scheduling problems. 
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1.  INTRODUCTION 

Evolutionary methods for solving NP-hard optimi-
zation problems have become a very popular research 
topic in recent years. Among the many methods pro-
posed, the three that are very similar and popular are the 
genetic algorithm (GA), particle swarm optimization 
(PSO), and differential evolution (DE). While GA is 
more well-established because of its much earlier intro-
duction, the more recent PSO and DE algorithms have 
started to attract more attention especially for continu-
ous optimization problems. While many papers were 
published based on these algorithms, most assessments 
are made empirically with specific cases on a particular 
application domain, and the two key performance indi-
cators commonly used for comparison are the solution 
quality and solution time. Some example comparison 
studies include Hassan et al. (2005) for GA and PSO, 
Wisittipanich and Kachitvichyanukul (2011, 2012) for 
DE and PSO on job shop scheduling problems.  

This paper attempts to make a general qualitative 
comparison of the three evolutionary algorithms based 
on two aspects of a good metaheuristic algorithm, i.e., 

diversification and intensification. The observation will 
be focused on the elements of operations required and 
their effects on the diversification and intensification 
capabilities of each algorithm. 

The paper is organized as follows. A general evolu-
tionary algorithm is described at the conceptual level to 
highlight the common elements in all the evolutionary 
algorithms. The three targeted evolutionary algorithms 
are then described in turn in subsequent sections. Simi-
larities and differences among the algorithms are dis-
cussed and highlighted. Finally, some reviews of litera-
ture that contain direct comparison of the algorithms are 
summarized. 

2.  GENERAL STEPS OF EVOLUTIONARY 
METHOD 

There are three main processes in all evolutionary 
algorithms. The first process is the initialization process 
where the initial population of individuals is randomly 
generated according to some solution representation. 
Each individual represents a solution, directly or indi-
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rectly. If an indirect representation is used, each indi-
vidual must first be decoded into a solution. Each solu-
tion in the population is then evaluated for fitness value 
in the second process. The fitness values can be used to 
calculate the average population fitness or to rank the 
individual solution within the population for the purpose 
of selection. The third process is the generation of a new 
population by perturbation of solutions in the existing 
population. The three key processes are applied as 
shown in Figure 1. For a more recent in depth discussion 
of evolutionary algorithm, see Yu and Gen (2010). 
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Figure 1. Flowchart of evolutionary algorithm. 

 
As shown in Figure 1, after initialization, the popu-

lation is evaluated and stopping criteria are checked. If 
none of the stopping criteria is met, a new population is 
generated again and the process is repeated until one or 
more of the stopping criteria are met. A stopping crite-
rion may be static or dynamic. For example, a static 
stopping criterion may allow an algorithm to run for a 
fixed number of iterations. An example of a dynamic 
stopping criterion is to repeat the process until the top-k 
percent of the solutions is within some percentage of the 
best solutions found. In some cases, a combination of 
several stopping criteria is used. 

In using the evolutionary algorithm to solve opti-
mization problems, the first important task is to deter-
mine how the solution can be represented according to 
the elements or terminology of the specific evolutionary 
algorithm. The processes for initialization and genera-
tion of new population may produce infeasible solutions. 
It is very important to choose a solution representation 
that is more likely to produce feasible solutions. This is 
a common design consideration for all evolutionary al-
gorithms. 

The solution representation can be a direct or an 
indirect one. The main design consideration is to ensure 
that each individual generated can always be decoded 
into a feasible solution. For a complex problem, indirect 
representation is often used along with a decoding pro-

cedure to convert the indirect solution representation 
into a feasible solution. Once the solution is decoded, 
the fitness function can be evaluated. 

In addition to the solution representation, two com-
mon parameters that must be determined initially are the 
population size and the maximum number of iteration. 
The choices of values of these two parameters have ma-
jor influence on the solution quality and solution time, 
and in practice, these values are almost always deter-
mined empirically through pilot runs. 

3.  GENETIC ALGORITHM 

Although GA started much earlier than 1975, Hol-
land (1975) is the key literature that introduced GA to 
broader audiences. The flowchart of the genetic algo-
rithm is given in Figure 2.  
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Figure 2. Flowchart for genetic algorithm. 

 
The main idea of GA is to mimic the natural selec-

tion and the survival of the fittest. In GA, the solutions 
are represented as chromosomes. The chromosomes are 
evaluated for fitness values and they are ranked from 
best to worst based on fitness value. The process to pro-
duce new solutions in GA is mimicking the natural se-
lection of living organisms, and this process is accom-
plished through repeated applications of three genetic 
operators: selection, crossover, and mutation. First, the 
better chromosomes are selected to become parents to 
produce new offspring (new chromosomes). To simulate 
the survivor of the fittest, the chromosomes with better 
fitness are selected with higher probabilities than the 
chromosomes with poorer fitness. The selection prob-
abilities are usually defined using the relative ranking of 
the fitness values. Once the parent chromosomes are 
selected, the crossover operator combines the chromo-
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somes of the parents to produce new offspring (pertur-
bation of old solutions). Since stronger (fitter) individu-
als are being selected more often, there is a tendency 
that the new solutions may become very similar after 
several generations, and the diversity of the population 
may decline; and this could lead to population stagna-
tion. Mutation is a mechanism to inject diversity into the 
population to avoid stagnation. More detailed discus-
sions can be found in the more classic reference by Hol-
land (1975), Goldberg (1989) and the more recent refer-
ence by Gen and Cheng (1997), and Gen et al. (2008). 

In addition to the population size and the maximum 
number of iterations, several decisions on parameters 
must be made for GA. The first set of decisions is the 
selection method and the probability assignment mecha-
nism that is based on fitness. Different selection meth-
ods may require different mechanisms for probability 
assignments to ensure the balance of the diversity of the 
new population and the improvement of solutions. There 
are many proposed selection methods in literature, but 
the two most popular ones are the roulette wheel selec-
tion and tournament selection. Crossover method and 
crossover probability are the second set of decisions to 
be made. Many crossover methods are reported in litera-
ture since simple crossover methods have the tendency 
to produce infeasible or unusable chromosomes for many 
complex optimization problems. Finally, the mutation 
method and mutation probability must be selected as 
they may help to maintain the diversity of the population 
by injecting new elements into the chromosomes. In 
general, these three sets of decisions are set empirically 
using pilot runs.  

There are many software implementations of GA 
available from various sources. A more general imple-
mentation of GA is the C++ GALib by Wall (1996) that 
allows the user to work at the source code level to apply 
GA with any representations and any genetic operators. 
The GALib classes provide the framework, and the user 
can solve a problem using GA by simply defining a rep-
resentation, genetic operators, and objective function. 
Other software packages for GA are also available in 
EXCEL Solver (Frontline Solvers, http://www.solver.com/), 
and MatLab (http://www.mathworks.com/products/gads/). 

4.  PARTICLE SWARM OPTIMIZATION 

In 1995, a paper on PSO was presented at the Con-
gress on Evolutionary Computation (Kennedy and Eber-
hart, 1995). This landmark paper triggered waves of 
publications in the last decade on various successful 
applications of PSO to solve many difficult optimization 
problems. It is very appealing because of the simple 
conceptual framework and the analogy of birds flocking 
facilitated conceptual visualization of the search process. 
The basic PSO algorithm is shown in Figure 3. 

In PSO, a solution is represented as a particle, and 
the population of solutions is called a swarm of particles. 

Each particle has two main properties: position and ve-
locity. Each particle moves to a new position using the 
velocity. Once a new position is reached, the best posi-
tion of each particle and the best position of the swarm 
are updated as needed. The velocity of each particle is 
then adjusted based on the experiences of the particle. 
The process is repeated until a stopping criterion is met.  
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Figure 3. Flowchart for particle swarm optimization 

algorithm. 
 

Similar to GA, the first process of PSO is initializa-
tion whereby the initial swarm of particles is generated. 
The concept of solution representation is also applied 
here in very much the same manner as GA. Each parti-
cle is initialized with a random position and velocity. 
Each particle is then evaluated for fitness value. Each 
time a fitness value is calculated, it is compared against 
the previous best fitness value of the particle and the 
previous best fitness value of the whole swarm, and the 
personal best and global best positions are updated where 
appropriate. If a stopping criterion is not met, the veloc-
ity and position are updated to create a new swarm. The 
personal best and global best positions, as well as the 
old velocity, are used in the velocity update. 

As mentioned earlier, the two key operations in 
PSO are the update of velocity and the update of posi-
tion. The velocity is updated based on three components: 
the old velocity (inertia or momentum term), experience 
of an individual particle (cognitive or self learning term), 
and experience of the whole swarm (group or social lear-
ning term). Each term has a weight constant associated 
with it. For basic PSO algorithm, the number of required 
constants is three. 

It should be noted that PSO algorithm does not re-
quire sorting of fitness values of solutions in any process. 
This might be a significant computational advantage 
over GA, especially when the population size is large. 
The updates of velocity and position in PSO also only 
require a simple arithmetic operation of real numbers.  
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Software implementation of PSO algorithm is now 
available in various forms, ranging from black-box to 
user modifiable source code. One software library for 
PSO algorithm that follows the design principle of GALib 
is named ET-Lib, Nguyen et al. (2010). The library is 
designed and implemented as object classes in C# pro-
gramming language, and the user must define the repre-
sentation of particle and the objective function. Some 
successful applications of PSO that have utilized objects 
from ET-Lib include: Ai and Kachitvichyanukul (2009a, 
b, c, d), Nguyen and Kachitvichyanukul (2010), Pratcha-
yaborirak and Kachitvichyanukul (2011), Kasemset and 
Kachitvichyanukul (2010, 2012), Sombuntham and Ka-
chitvichyanukul (2010), and Sooksaksun et al. (2012).  

5.  DIFFERENTIAL EVOLUTION 

DE was proposed about the same time as PSO by 
Storn and Price (1995) for global optimization over con-
tinuous search space. Its theoretical framework is simple 
and requires a relatively few control variables but per-
forms well in convergence. For some unknown reason, 
DE caught on much slower than PSO but has lately been 
applied and shown its strengths in many application 
areas (Godfrey and Donald, 2006; Qian et al., 2008). 

In DE algorithm, a solution is represented by a D-
dimensional vector. DE starts with a randomly gener-
ated initial population of size N of D-dimensional vec-
tors. In DE, the values in the D-dimensional space are 
commonly represented as real numbers. Again, the con-
cept of solution representation is applied in DE in the 
same way as it is applied in GA and PSO. 

The key difference of DE from GA or PSO is in a 
new mechanism for generating new solutions. DE gen-
erates a new solution by combining several solutions 
with the candidate solution. The population of solutions 
in DE evolves through repeated cycles of three main DE 
operators: mutation, crossover, and selection. However, 
the operators are not all exactly the same as those with 
the same names in GA. 

The key process in DE is the generation of trial 
vector. Consider a candidate or target vector in a popu-
lation of size N of D-dimensional vectors. The genera-
tion of a trial vector is accomplished by the mutation 
and crossover operations and can be summarized as fol-
lows. 1) Create a mutant vector by mutation of three 
randomly selected vectors. 2) Create trial vector by the 
crossover of mutant vector and target vector. 

First, a mutant vector is generated by combining 
three randomly selected vectors from the population of 
vectors excluding the target vector. This combining 
process of three randomly selected vectors to form the 
mutant vector V is defined as 1 2 3( )V X F X X= + −  where 

1 2, ,X X  and 3X are three randomly selected vectors from 
the population and F is a multiplier which is the main 
parameter of the DE algorithm. The operation to form 
the mutant vector V as described above is called muta-

tion in DE, and this is unfortunate since the word “muta-
tion” was used in GA much earlier with a totally differ-
ent definition. 

The second step is to create the trial vector by per-
forming crossover between the mutant vector and the 
target vector. There are two commonly used crossover 
methods in DE: binomial crossover and exponential 
crossover. Here, the crossover probability must be speci-
fied. A small crossover probability leads to a trial vector 
that is more similar to the target vector while the oppo-
site favors the mutant vector. 

After the trial vector is formed for a given target 
vector, selection is done to keep only one of the two 
vectors. The simple criterion is to keep the vector with 
better fitness value. In other words, the target vector will 
survive if the trial vector has poorer fitness. Otherwise, 
the trial vector replaces the target vector immediately 
and becomes eligible for selection in the formation of 
the next mutant vector. This is an important difference 
since any improvement may affect other solutions with-
out having to wait for the whole population to complete 
the update. The basic flow of a DE algorithm is summa-
rized in Figure 4.  
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Figure 4. Flowchart for differential evolution. 

 
As shown in Figure 4, the first process is the gen-

eration of a population of new solutions called vectors. 
Each vector in the population is evaluated for fitness 
value. Each vector takes turns as a candidate or target 
vector, and for each target vector, a trial vector is formed. 
The selection process simply chooses between the target 
vector and trial vector, i.e., the winning vector between 
the trial vector and the target vector survives into the 
next round while the losing vector is discarded. 
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Several observations are made here. First, since a 
new solution would be selected only if it has better fit-
ness, the average fitness of the population would be 
equal or better from iteration to iteration. Any improve-
ment in the solution is immediately available to be ran-
domly selected to form a mutant vector for the next tar-
get vector. This is different from GA and PSO where an 
improvement would take effect only after all the solu-
tions has completed the iteration. 

In contrast with GA where parent solutions are se-
lected based on fitness, every solution in DE takes turns 
to be a target vector (one of the parents), and thus all 
vectors play a role as one of the parents with certainty. 
The second parent is the mutant vector which is formed 
from at least three different vectors. In other words, the 
trial vector is formed from at least four different vectors 
and would replace the target vector only if this new vec-
tor is better than the target vector; otherwise, it would be 
abandoned. This replacement takes place immediately 
without having to wait for the whole population to com-
plete the iteration. This improved vector would then im-
mediately be available for random selection of vectors 
to form the next mutant vector. 

There are several variations of the DE proposed 
such as those including the best vector in the formation 
of the mutant vector or to use more vectors in the proc-
ess. For more detailed information on the DE algorithm, 
see Price et al. (2005). Since the data element of the 
algorithm is very similar to PSO, a class library for DE 
was also developed using the same structure of ET-Lib. 

6.  COMPARISON 

In the three algorithms discussed above, one of the 
key differences is in the mechanism to produce a new 
population of solutions via perturbation of solutions 
from the old population. These different mechanisms 
generate a population of solutions with different balance 
between intensification and diversification. This dy-
namic behavior of the population can be deducted from 
the basic perturbation method used in the creation of new 
solutions. This section discusses the three algorithms 
based on two aspects: intensification and diversification.  

The discussion will be made algorithm by algo-
rithm. Suppose that the same solution representation is 
used and the initial population is exactly the same. It 
should be noted that all evolutionary algorithms may 
require a decoding process and checking of constraints 
to ensure that the solutions are feasible. 

For GA, the solutions are ranked based on the fit-
ness values. The parents are selected based on probabili-
ties that favor individuals with better fitness. The cross-
over operation produces offspring with parts taken from 
the parents and the solutions are more likely to be simi-
lar to the parents. Based on this observation, GA tends 
to generate solutions that are more likely to cluster 
around several “good” solutions in the population. The 

diversification aspect of GA is accomplished through 
the mutation operation that injects some “difference” 
into the solutions from time to time. The solution time of 
GA also increases non-linearly as the population size 
increases because of the required sorting. 

For PSO, a new swarm of particles is generated via 
the velocity and position update equations. This ensures 
that all new particles can be much different than the old 
ones. Also, since the mechanism is based on the floating 
point arithmetic, it could generate any potential values 
within the solution space, i.e., the density of the solu-
tions within the solution space may be much higher than 
those generated via GA. In other words, the solutions 
can be much closer to each other than solutions in GA. 
In addition, the best particle in the swarm exerts its one-
way influence over all the remaining solutions in the 
population. This often leads to premature clustering around 
the best particle, especially if the fitness gaps are large. 

Similar to PSO, since the mechanism to generate 
new solutions of DE is also based on the floating point 
arithmetic, the exploration ability of the population 
might be comparable to PSO, but the diversification is 
better because the best solution in the population does 
not exert any influence on the other solutions in the 
population. Furthermore, the mutant vector is always a 
solution that is not from the original population; there-
fore, the crossover operation in DE is always between a 
solution from the population and a newly generated one.  

For any evolutionary algorithm, the solutions are 
gradually clustered around one or more “good” solutions 
as the search evolves. This clustering can be seen as the 
convergence of the population toward a particular solu-
tion. If the population clusters very quickly, the popula-
tion may become stagnated and any further improve-
ment becomes less likely. 

6.1 The Effect of Re-Initialization 

Among the three algorithms, PSO has a higher ten-
dency to cluster rapidly and the swarm may quickly be-
come stagnant. To remedy this drawback, several sub-
grouping approaches had been proposed to reduce the 
dominant influence of the global best particle. A much 
simpler and frequently used alternative is to simply keep 
the global best particle and regenerate all or part of the 
remaining particles. This has the effect of generating a 
new swarm but with the global best as one of the parti-
cles, and this process is called the re-initialization proc-
ess. In GA, the clustering is less obvious, but it is often 
found that the top part of the population may look simi-
lar, and that re-initialization can also inject randomness 
into the population to improve the diversity. In DE, the 
clustering is the least and re-initialization has the least 
effect for DE. 

6.2 The Effect of Local Search 

In GA, the density of the population in the solution 
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space is less, so it is often found that the GA operators 
cannot produce all potential solutions. A popular fix is 
the use of local search to see if a better solution can be 
found around the solutions produced by GA operators. 
The local search process is often time consuming, and to 
apply it over the whole population could lead to a long 
solution time. For PSO, the best particle has a dominant 
influence over the whole swarm, and a time saving stra-
tegy is to only apply local search to the best particle, and 
this can lead to solution improvement with shorter solu-
tion time. This strategy was demonstrated to be highly 
effective for job shop scheduling in Pratchayaborirak 
and Kachitvichyanukul (2011). This same strategy may 
not yield the same effect in DE since the best particle 
does not have a dominant influence on the population of 
solutions. 

6.3 The Effect of Sub-Grouping 

Sub-grouping is a simple strategy to delay prema-
ture clustering of solutions. Sub-grouping can be done 
either with homogeneous population or heterogeneous 
population. Homogeneous population refers to the fact 
that each solution in the population uses the same opera-
tors and the same parameters during the evolutionary 
process. Heterogeneous population allows solutions in 
different sub-group to use different operators and pa-
rameters, thus allow for more diverse search behavior. 
The use of sub-grouping of homogenous population to 
improve solution quality has been demonstrated in GA 
and PSO. This sub-grouping allows some groups of solu-
tions to be freed from the influence of the dominant so-
lutions, and thus the group may be searching in a differ-
ent area of the solution space and improve the explora-
tion aspect of the algorithms. For DE, the best particle 
has little influence on the perturbation process so it is 
rational to presume that sub-grouping with homogene-
ous population may have limited effect on the solution 
quality of DE. However, no research literature is found 
that addresses this issue. Pongchairerks and Kachit-
vichyanukul (2005) proposed a use of heterogeneous 
population in PSO to allow some fraction of the swarm 

to move by crossover with the best particle. 
Dynamic change of population behavior can also 

achieve effects similar to the use of heterogeneous popu-
lation. When more than one search strategies are in-
cluded, the population can use the same search strategy 
as long as the solution continues to improve. If the solu-
tions do not improve after some number of iterations, 
the population switches to use a different search strategy. 
Wisittipanich and Kachitvichyanukul (2012) applied 
strategy switching with DE for job shop scheduling pro-
blems. 

7. SUMMARY 

The comparisons made in earlier sections are tabu-
lated in Table 1. There are many research literatures that 
compare performances of these three evolutionary algo-
rithms in solving some difficult optimization problems 
in various domains. The comparisons are often made 
indirectly since many researchers applied different solu-
tion representations in combination with various local 
search. Thus it is not so clear if the contributor to the 
algorithm performance is from the evolutionary algo-
rithm or from the local search. The comparison is more 
comprehensive when benchmark problems are used with 
the same solution representation and the same number 
of function evaluations. Some recent references on suc-
cessful applications of evolutionary algorithms for im-
portant combinatorial problems are summarized in Ta-
ble 2. 
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