

Comparison of Three Evolutionary Algorithms:
GA, PSO, and DE

Voratas Kachitvichyanukul*
Industrial and Manufacturing Engineering, Asian Institute of Technology, Thailand

(Received June 29, 2012 / Revised: July 31, 2012 / Accepted: August 18, 2012)

ABSTRACT

This paper focuses on three very similar evolutionary algorithms: genetic algorithm (GA), particle swarm optimization
(PSO), and differential evolution (DE). While GA is more suitable for discrete optimization, PSO and DE are more
natural for continuous optimization. The paper first gives a brief introduction to the three EA techniques to highlight
the common computational procedures. The general observations on the similarities and differences among the three
algorithms based on computational steps are discussed, contrasting the basic performances of algorithms. Summary of
relevant literatures is given on job shop, flexible job shop, vehicle routing, location-allocation, and multimode re-
source constrained project scheduling problems.

Keywords: Evolutionary Algorithm, Genetic Algorithm, Particle Swarm Optimization, Differential Evolution

* Corresponding Author, E-mail: voratas@ait.ac.th

1. INTRODUCTION

Evolutionary methods for solving NP-hard optimi-
zation problems have become a very popular research
topic in recent years. Among the many methods pro-
posed, the three that are very similar and popular are the
genetic algorithm (GA), particle swarm optimization
(PSO), and differential evolution (DE). While GA is
more well-established because of its much earlier intro-
duction, the more recent PSO and DE algorithms have
started to attract more attention especially for continu-
ous optimization problems. While many papers were
published based on these algorithms, most assessments
are made empirically with specific cases on a particular
application domain, and the two key performance indi-
cators commonly used for comparison are the solution
quality and solution time. Some example comparison
studies include Hassan et al. (2005) for GA and PSO,
Wisittipanich and Kachitvichyanukul (2011, 2012) for
DE and PSO on job shop scheduling problems.

This paper attempts to make a general qualitative
comparison of the three evolutionary algorithms based
on two aspects of a good metaheuristic algorithm, i.e.,

diversification and intensification. The observation will
be focused on the elements of operations required and
their effects on the diversification and intensification
capabilities of each algorithm.

The paper is organized as follows. A general evolu-
tionary algorithm is described at the conceptual level to
highlight the common elements in all the evolutionary
algorithms. The three targeted evolutionary algorithms
are then described in turn in subsequent sections. Simi-
larities and differences among the algorithms are dis-
cussed and highlighted. Finally, some reviews of litera-
ture that contain direct comparison of the algorithms are
summarized.

2. GENERAL STEPS OF EVOLUTIONARY
METHOD

There are three main processes in all evolutionary
algorithms. The first process is the initialization process
where the initial population of individuals is randomly
generated according to some solution representation.
Each individual represents a solution, directly or indi-

Industrial Engineering
& Management Systems
Vol 11, No 3, September 2012, pp.215-223 http://dx.doi.org/10.7232/iems.2012.11.3.215
ISSN 1598-7248│EISSN 2234-6473│ © 2012 KIIE

Kachitvichyanukul: Industrial Engineering & Management Systems
Vol 11, No 3, September 2012, pp.215-223, © 2012 KIIE 216

rectly. If an indirect representation is used, each indi-
vidual must first be decoded into a solution. Each solu-
tion in the population is then evaluated for fitness value
in the second process. The fitness values can be used to
calculate the average population fitness or to rank the
individual solution within the population for the purpose
of selection. The third process is the generation of a new
population by perturbation of solutions in the existing
population. The three key processes are applied as
shown in Figure 1. For a more recent in depth discussion
of evolutionary algorithm, see Yu and Gen (2010).

No

Yes

Generate initial population

Evaluate fitness values

Generate new population

Time to stop STOP

START

Figure 1. Flowchart of evolutionary algorithm.

As shown in Figure 1, after initialization, the popu-

lation is evaluated and stopping criteria are checked. If
none of the stopping criteria is met, a new population is
generated again and the process is repeated until one or
more of the stopping criteria are met. A stopping crite-
rion may be static or dynamic. For example, a static
stopping criterion may allow an algorithm to run for a
fixed number of iterations. An example of a dynamic
stopping criterion is to repeat the process until the top-k
percent of the solutions is within some percentage of the
best solutions found. In some cases, a combination of
several stopping criteria is used.

In using the evolutionary algorithm to solve opti-
mization problems, the first important task is to deter-
mine how the solution can be represented according to
the elements or terminology of the specific evolutionary
algorithm. The processes for initialization and genera-
tion of new population may produce infeasible solutions.
It is very important to choose a solution representation
that is more likely to produce feasible solutions. This is
a common design consideration for all evolutionary al-
gorithms.

The solution representation can be a direct or an
indirect one. The main design consideration is to ensure
that each individual generated can always be decoded
into a feasible solution. For a complex problem, indirect
representation is often used along with a decoding pro-

cedure to convert the indirect solution representation
into a feasible solution. Once the solution is decoded,
the fitness function can be evaluated.

In addition to the solution representation, two com-
mon parameters that must be determined initially are the
population size and the maximum number of iteration.
The choices of values of these two parameters have ma-
jor influence on the solution quality and solution time,
and in practice, these values are almost always deter-
mined empirically through pilot runs.

3. GENETIC ALGORITHM

Although GA started much earlier than 1975, Hol-
land (1975) is the key literature that introduced GA to
broader audiences. The flowchart of the genetic algo-
rithm is given in Figure 2.

No

Yes

Generate initial population

Evaluate individual fitness
Rank individual fitness

Generate new population
Selection
Crossover
Mutation

Time to stop STOP

START

Figure 2. Flowchart for genetic algorithm.

The main idea of GA is to mimic the natural selec-

tion and the survival of the fittest. In GA, the solutions
are represented as chromosomes. The chromosomes are
evaluated for fitness values and they are ranked from
best to worst based on fitness value. The process to pro-
duce new solutions in GA is mimicking the natural se-
lection of living organisms, and this process is accom-
plished through repeated applications of three genetic
operators: selection, crossover, and mutation. First, the
better chromosomes are selected to become parents to
produce new offspring (new chromosomes). To simulate
the survivor of the fittest, the chromosomes with better
fitness are selected with higher probabilities than the
chromosomes with poorer fitness. The selection prob-
abilities are usually defined using the relative ranking of
the fitness values. Once the parent chromosomes are
selected, the crossover operator combines the chromo-

Comparison of Three Evolutionary Algorithms
Vol 11, No 3, September 2012, pp.215-223, © 2012 KIIE 217

somes of the parents to produce new offspring (pertur-
bation of old solutions). Since stronger (fitter) individu-
als are being selected more often, there is a tendency
that the new solutions may become very similar after
several generations, and the diversity of the population
may decline; and this could lead to population stagna-
tion. Mutation is a mechanism to inject diversity into the
population to avoid stagnation. More detailed discus-
sions can be found in the more classic reference by Hol-
land (1975), Goldberg (1989) and the more recent refer-
ence by Gen and Cheng (1997), and Gen et al. (2008).

In addition to the population size and the maximum
number of iterations, several decisions on parameters
must be made for GA. The first set of decisions is the
selection method and the probability assignment mecha-
nism that is based on fitness. Different selection meth-
ods may require different mechanisms for probability
assignments to ensure the balance of the diversity of the
new population and the improvement of solutions. There
are many proposed selection methods in literature, but
the two most popular ones are the roulette wheel selec-
tion and tournament selection. Crossover method and
crossover probability are the second set of decisions to
be made. Many crossover methods are reported in litera-
ture since simple crossover methods have the tendency
to produce infeasible or unusable chromosomes for many
complex optimization problems. Finally, the mutation
method and mutation probability must be selected as
they may help to maintain the diversity of the population
by injecting new elements into the chromosomes. In
general, these three sets of decisions are set empirically
using pilot runs.

There are many software implementations of GA
available from various sources. A more general imple-
mentation of GA is the C++ GALib by Wall (1996) that
allows the user to work at the source code level to apply
GA with any representations and any genetic operators.
The GALib classes provide the framework, and the user
can solve a problem using GA by simply defining a rep-
resentation, genetic operators, and objective function.
Other software packages for GA are also available in
EXCEL Solver (Frontline Solvers, http://www.solver.com/),
and MatLab (http://www.mathworks.com/products/gads/).

4. PARTICLE SWARM OPTIMIZATION

In 1995, a paper on PSO was presented at the Con-
gress on Evolutionary Computation (Kennedy and Eber-
hart, 1995). This landmark paper triggered waves of
publications in the last decade on various successful
applications of PSO to solve many difficult optimization
problems. It is very appealing because of the simple
conceptual framework and the analogy of birds flocking
facilitated conceptual visualization of the search process.
The basic PSO algorithm is shown in Figure 3.

In PSO, a solution is represented as a particle, and
the population of solutions is called a swarm of particles.

Each particle has two main properties: position and ve-
locity. Each particle moves to a new position using the
velocity. Once a new position is reached, the best posi-
tion of each particle and the best position of the swarm
are updated as needed. The velocity of each particle is
then adjusted based on the experiences of the particle.
The process is repeated until a stopping criterion is met.

No

Yes

Genera te initia l popula tion

Eva lua te individua l fitness
Upda te persona l best
Upda te globa l best

Genera te new popula tion
Upda te velocity
Upda te position

Time to stop STOP

START

Figure 3. Flowchart for particle swarm optimization

algorithm.

Similar to GA, the first process of PSO is initializa-
tion whereby the initial swarm of particles is generated.
The concept of solution representation is also applied
here in very much the same manner as GA. Each parti-
cle is initialized with a random position and velocity.
Each particle is then evaluated for fitness value. Each
time a fitness value is calculated, it is compared against
the previous best fitness value of the particle and the
previous best fitness value of the whole swarm, and the
personal best and global best positions are updated where
appropriate. If a stopping criterion is not met, the veloc-
ity and position are updated to create a new swarm. The
personal best and global best positions, as well as the
old velocity, are used in the velocity update.

As mentioned earlier, the two key operations in
PSO are the update of velocity and the update of posi-
tion. The velocity is updated based on three components:
the old velocity (inertia or momentum term), experience
of an individual particle (cognitive or self learning term),
and experience of the whole swarm (group or social lear-
ning term). Each term has a weight constant associated
with it. For basic PSO algorithm, the number of required
constants is three.

It should be noted that PSO algorithm does not re-
quire sorting of fitness values of solutions in any process.
This might be a significant computational advantage
over GA, especially when the population size is large.
The updates of velocity and position in PSO also only
require a simple arithmetic operation of real numbers.

Kachitvichyanukul: Industrial Engineering & Management Systems
Vol 11, No 3, September 2012, pp.215-223, © 2012 KIIE 218

Software implementation of PSO algorithm is now
available in various forms, ranging from black-box to
user modifiable source code. One software library for
PSO algorithm that follows the design principle of GALib
is named ET-Lib, Nguyen et al. (2010). The library is
designed and implemented as object classes in C# pro-
gramming language, and the user must define the repre-
sentation of particle and the objective function. Some
successful applications of PSO that have utilized objects
from ET-Lib include: Ai and Kachitvichyanukul (2009a,
b, c, d), Nguyen and Kachitvichyanukul (2010), Pratcha-
yaborirak and Kachitvichyanukul (2011), Kasemset and
Kachitvichyanukul (2010, 2012), Sombuntham and Ka-
chitvichyanukul (2010), and Sooksaksun et al. (2012).

5. DIFFERENTIAL EVOLUTION

DE was proposed about the same time as PSO by
Storn and Price (1995) for global optimization over con-
tinuous search space. Its theoretical framework is simple
and requires a relatively few control variables but per-
forms well in convergence. For some unknown reason,
DE caught on much slower than PSO but has lately been
applied and shown its strengths in many application
areas (Godfrey and Donald, 2006; Qian et al., 2008).

In DE algorithm, a solution is represented by a D-
dimensional vector. DE starts with a randomly gener-
ated initial population of size N of D-dimensional vec-
tors. In DE, the values in the D-dimensional space are
commonly represented as real numbers. Again, the con-
cept of solution representation is applied in DE in the
same way as it is applied in GA and PSO.

The key difference of DE from GA or PSO is in a
new mechanism for generating new solutions. DE gen-
erates a new solution by combining several solutions
with the candidate solution. The population of solutions
in DE evolves through repeated cycles of three main DE
operators: mutation, crossover, and selection. However,
the operators are not all exactly the same as those with
the same names in GA.

The key process in DE is the generation of trial
vector. Consider a candidate or target vector in a popu-
lation of size N of D-dimensional vectors. The genera-
tion of a trial vector is accomplished by the mutation
and crossover operations and can be summarized as fol-
lows. 1) Create a mutant vector by mutation of three
randomly selected vectors. 2) Create trial vector by the
crossover of mutant vector and target vector.

First, a mutant vector is generated by combining
three randomly selected vectors from the population of
vectors excluding the target vector. This combining
process of three randomly selected vectors to form the
mutant vector V is defined as 1 2 3()V X F X X= + − where

1 2, ,X X and 3X are three randomly selected vectors from
the population and F is a multiplier which is the main
parameter of the DE algorithm. The operation to form
the mutant vector V as described above is called muta-

tion in DE, and this is unfortunate since the word “muta-
tion” was used in GA much earlier with a totally differ-
ent definition.

The second step is to create the trial vector by per-
forming crossover between the mutant vector and the
target vector. There are two commonly used crossover
methods in DE: binomial crossover and exponential
crossover. Here, the crossover probability must be speci-
fied. A small crossover probability leads to a trial vector
that is more similar to the target vector while the oppo-
site favors the mutant vector.

After the trial vector is formed for a given target
vector, selection is done to keep only one of the two
vectors. The simple criterion is to keep the vector with
better fitness value. In other words, the target vector will
survive if the trial vector has poorer fitness. Otherwise,
the trial vector replaces the target vector immediately
and becomes eligible for selection in the formation of
the next mutant vector. This is an important difference
since any improvement may affect other solutions with-
out having to wait for the whole population to complete
the update. The basic flow of a DE algorithm is summa-
rized in Figure 4.

No

Yes

Genera te initia l popula tion
Eva lua te fitness va lues

Genera te tra il vector
Eva lua te fitness of tra il vector

Select the better vector between
ta rget vector a nd tra il vector

Upda te globa l best vector

Tim e to stop

STOP

START

For ea ch ta rget vector

Figure 4. Flowchart for differential evolution.

As shown in Figure 4, the first process is the gen-

eration of a population of new solutions called vectors.
Each vector in the population is evaluated for fitness
value. Each vector takes turns as a candidate or target
vector, and for each target vector, a trial vector is formed.
The selection process simply chooses between the target
vector and trial vector, i.e., the winning vector between
the trial vector and the target vector survives into the
next round while the losing vector is discarded.

Comparison of Three Evolutionary Algorithms
Vol 11, No 3, September 2012, pp.215-223, © 2012 KIIE 219

Several observations are made here. First, since a
new solution would be selected only if it has better fit-
ness, the average fitness of the population would be
equal or better from iteration to iteration. Any improve-
ment in the solution is immediately available to be ran-
domly selected to form a mutant vector for the next tar-
get vector. This is different from GA and PSO where an
improvement would take effect only after all the solu-
tions has completed the iteration.

In contrast with GA where parent solutions are se-
lected based on fitness, every solution in DE takes turns
to be a target vector (one of the parents), and thus all
vectors play a role as one of the parents with certainty.
The second parent is the mutant vector which is formed
from at least three different vectors. In other words, the
trial vector is formed from at least four different vectors
and would replace the target vector only if this new vec-
tor is better than the target vector; otherwise, it would be
abandoned. This replacement takes place immediately
without having to wait for the whole population to com-
plete the iteration. This improved vector would then im-
mediately be available for random selection of vectors
to form the next mutant vector.

There are several variations of the DE proposed
such as those including the best vector in the formation
of the mutant vector or to use more vectors in the proc-
ess. For more detailed information on the DE algorithm,
see Price et al. (2005). Since the data element of the
algorithm is very similar to PSO, a class library for DE
was also developed using the same structure of ET-Lib.

6. COMPARISON

In the three algorithms discussed above, one of the
key differences is in the mechanism to produce a new
population of solutions via perturbation of solutions
from the old population. These different mechanisms
generate a population of solutions with different balance
between intensification and diversification. This dy-
namic behavior of the population can be deducted from
the basic perturbation method used in the creation of new
solutions. This section discusses the three algorithms
based on two aspects: intensification and diversification.

The discussion will be made algorithm by algo-
rithm. Suppose that the same solution representation is
used and the initial population is exactly the same. It
should be noted that all evolutionary algorithms may
require a decoding process and checking of constraints
to ensure that the solutions are feasible.

For GA, the solutions are ranked based on the fit-
ness values. The parents are selected based on probabili-
ties that favor individuals with better fitness. The cross-
over operation produces offspring with parts taken from
the parents and the solutions are more likely to be simi-
lar to the parents. Based on this observation, GA tends
to generate solutions that are more likely to cluster
around several “good” solutions in the population. The

diversification aspect of GA is accomplished through
the mutation operation that injects some “difference”
into the solutions from time to time. The solution time of
GA also increases non-linearly as the population size
increases because of the required sorting.

For PSO, a new swarm of particles is generated via
the velocity and position update equations. This ensures
that all new particles can be much different than the old
ones. Also, since the mechanism is based on the floating
point arithmetic, it could generate any potential values
within the solution space, i.e., the density of the solu-
tions within the solution space may be much higher than
those generated via GA. In other words, the solutions
can be much closer to each other than solutions in GA.
In addition, the best particle in the swarm exerts its one-
way influence over all the remaining solutions in the
population. This often leads to premature clustering around
the best particle, especially if the fitness gaps are large.

Similar to PSO, since the mechanism to generate
new solutions of DE is also based on the floating point
arithmetic, the exploration ability of the population
might be comparable to PSO, but the diversification is
better because the best solution in the population does
not exert any influence on the other solutions in the
population. Furthermore, the mutant vector is always a
solution that is not from the original population; there-
fore, the crossover operation in DE is always between a
solution from the population and a newly generated one.

For any evolutionary algorithm, the solutions are
gradually clustered around one or more “good” solutions
as the search evolves. This clustering can be seen as the
convergence of the population toward a particular solu-
tion. If the population clusters very quickly, the popula-
tion may become stagnated and any further improve-
ment becomes less likely.

6.1 The Effect of Re-Initialization

Among the three algorithms, PSO has a higher ten-
dency to cluster rapidly and the swarm may quickly be-
come stagnant. To remedy this drawback, several sub-
grouping approaches had been proposed to reduce the
dominant influence of the global best particle. A much
simpler and frequently used alternative is to simply keep
the global best particle and regenerate all or part of the
remaining particles. This has the effect of generating a
new swarm but with the global best as one of the parti-
cles, and this process is called the re-initialization proc-
ess. In GA, the clustering is less obvious, but it is often
found that the top part of the population may look simi-
lar, and that re-initialization can also inject randomness
into the population to improve the diversity. In DE, the
clustering is the least and re-initialization has the least
effect for DE.

6.2 The Effect of Local Search

In GA, the density of the population in the solution

Kachitvichyanukul: Industrial Engineering & Management Systems
Vol 11, No 3, September 2012, pp.215-223, © 2012 KIIE 220

space is less, so it is often found that the GA operators
cannot produce all potential solutions. A popular fix is
the use of local search to see if a better solution can be
found around the solutions produced by GA operators.
The local search process is often time consuming, and to
apply it over the whole population could lead to a long
solution time. For PSO, the best particle has a dominant
influence over the whole swarm, and a time saving stra-
tegy is to only apply local search to the best particle, and
this can lead to solution improvement with shorter solu-
tion time. This strategy was demonstrated to be highly
effective for job shop scheduling in Pratchayaborirak
and Kachitvichyanukul (2011). This same strategy may
not yield the same effect in DE since the best particle
does not have a dominant influence on the population of
solutions.

6.3 The Effect of Sub-Grouping

Sub-grouping is a simple strategy to delay prema-
ture clustering of solutions. Sub-grouping can be done
either with homogeneous population or heterogeneous
population. Homogeneous population refers to the fact
that each solution in the population uses the same opera-
tors and the same parameters during the evolutionary
process. Heterogeneous population allows solutions in
different sub-group to use different operators and pa-
rameters, thus allow for more diverse search behavior.
The use of sub-grouping of homogenous population to
improve solution quality has been demonstrated in GA
and PSO. This sub-grouping allows some groups of solu-
tions to be freed from the influence of the dominant so-
lutions, and thus the group may be searching in a differ-
ent area of the solution space and improve the explora-
tion aspect of the algorithms. For DE, the best particle
has little influence on the perturbation process so it is
rational to presume that sub-grouping with homogene-
ous population may have limited effect on the solution
quality of DE. However, no research literature is found
that addresses this issue. Pongchairerks and Kachit-
vichyanukul (2005) proposed a use of heterogeneous
population in PSO to allow some fraction of the swarm

to move by crossover with the best particle.
Dynamic change of population behavior can also

achieve effects similar to the use of heterogeneous popu-
lation. When more than one search strategies are in-
cluded, the population can use the same search strategy
as long as the solution continues to improve. If the solu-
tions do not improve after some number of iterations,
the population switches to use a different search strategy.
Wisittipanich and Kachitvichyanukul (2012) applied
strategy switching with DE for job shop scheduling pro-
blems.

7. SUMMARY

The comparisons made in earlier sections are tabu-
lated in Table 1. There are many research literatures that
compare performances of these three evolutionary algo-
rithms in solving some difficult optimization problems
in various domains. The comparisons are often made
indirectly since many researchers applied different solu-
tion representations in combination with various local
search. Thus it is not so clear if the contributor to the
algorithm performance is from the evolutionary algo-
rithm or from the local search. The comparison is more
comprehensive when benchmark problems are used with
the same solution representation and the same number
of function evaluations. Some recent references on suc-
cessful applications of evolutionary algorithms for im-
portant combinatorial problems are summarized in Ta-
ble 2.

REFERENCES

Ai, T. J. and Kachitvichyanukul, V. (2009a), A particle
swarm optimization for the heterogeneous fleet
vehicle routing problem, International Journal of
Logistics and SCM Systems, 3(1), 32-39.

Ai, T. J. and Kachitvichyanukul, V. (2009b), A particle

Table 1. Qualitative comparison of GA, PSO, and DE

 GA PSO DE

Require ranking of solutions Yes No No
Influence of population size on solution time Exponential Linear Linear
Influence of best solution on population Medium Most Less
Average fitness cannot get worse False False True
Tendency for premature convergence Medium High Low
Continuity (density) of search space Less More More
Ability to reach good solution without local search Less More More
Homogeneous sub-grouping improves convergence Yes Yes NA

GA: genetic algorithm, PSO: particle swarm optimization, DE: differential evolution.

Comparison of Three Evolutionary Algorithms
Vol 11, No 3, September 2012, pp.215-223, © 2012 KIIE 221

swarm optimization for vehicle routing problem with
time windows, International Journal of Operational
Research, 6(4), 519-537.

Ai, T. J. and Kachitvichyanukul, V. (2009c), A particle
swarm optimization for the vehicle routing problem
with simultaneous pickup and delivery, Computers
and Operations Research, 36(5), 1693-1702.

Ai, T. J. and Kachitvichyanukul, V. (2009d), Particle
swarm optimization and two solution representations
for solving the capacitated vehicle routing problem,
Computers and Industrial Engineering, 56(1), 380-
387.

Amiri, A. (2006), Designing a distribution network in a
supply chain system: formulation and efficient so-
lution procedure, European Journal of Operational
Research, 171(2), 567-576.

Baker, B. M. and Ayechew, M. A. (2003), A genetic al-
gorithm for the vehicle routing problem, Computers
and Operations Research, 30(5), 787-800.

Canel, C., Khumawala, B. M., Law, J., and Loh, A.
(2001), An algorithm for the capacitated, multi-

commodity multi-period facility location problem,
Computers and Operations Research, 28(5), 411-
427.

Ge, H.-W., Sun, L., Liang, Y.-C., and Qian, F. (2008),
An effective PSO and AIS-based hybrid intelligent
algorithm for job-shop scheduling, IEEE Transac-
tions on Systems, Man and Cybernetics, Part A:
Systems and Humans, 38(2), 358-368.

Gen, M. and Cheng, R. (1997), Genetic Algorithms and
Engineering Design, Wiley, New York, NY.

Gen, M., Cheng, R., and Lin, L. (2008), Network Mod-
els and Optimization: Multiobjective Genetic Algo-
rithm Approach, Springer, London, UK.

Godfrey, O. and Donald, D. (2006), Scheduling flow shops
using differential evolution algorithm, European Jo-
urnal of Operational Research, 171(2), 674-692.

Goldberg, D. E. (1989), Genetic Algorithms in Search,
Optimization, and Machine Learning, Addison-We-
sley Pub., Reading, MA.

Hassan, R., Cohanim, B., de Weck, O., and Venter, G.
(2005), A comparison of particle swarm optimiza-

Table 2. List of relevant literatures for various domains of combinatorial optimization

Flowshop scheduling problem

Kacem et al. (2002)
Liu, et al. (2007a, b)
Pan et al. (2008)

Job shop scheduling problem

Xia and Wu (2006)
Ge et al. (2008)
Pongchairerks and Kachitvichyanukul (2009)
Kachitvichyanukul and Sitthitham (2011)
Pratchayaborirak and Kachitvichyanukul (2011)
Wisittipanich and Kachitvichyanukul (2011, 2012)

Vehicle routing problem

Hwang (2002)
Baker and Ayechew (2003)
Prins (2004)
Ai and Kachitvichyanukul (2009a, 2009b, 2009c, 2009d)
Marinakis and Marinaki (2010)
Sombuntham and Kachitvichyanukul (2010)

Flexible job shop problem

Xia and Wu (2005)
Zhang and Gen (2005)
Pezzella et al. (2008)

Multicommodity distribution network design problem

Canel et al. (2001)
Syarif et al. (2002)
Jaramillo et al. (2002)
Melo et al. (2005)
Amiri (2006)
Kachitvichyanukul et al. (2010)

Multimode resource constrained project scheduling
Problem

Jarboui et al. (2008)
Lova et al. (2009)
Van Peteghem and Vanhoucke (2010)
Nguyen and Kachitvichyanukul (2012)

Warehouse design problem Sooksaksun et al. (2012)
Bi-level job shop scheduling problem

Qian et al. (2008)
Kasemset and Kachitvichyanukul (2010, 2012)

Kachitvichyanukul: Industrial Engineering & Management Systems
Vol 11, No 3, September 2012, pp.215-223, © 2012 KIIE 222

tion and the genetic algorithm, Proceedings of the
1st AIAA Multidisciplinary Design Optimization
Specialist Conference, Austin, TX.

Holland, J. H. (1975), Adaptation in Natural and Artifi-
cial Systems: An Introductory Analysis with Appli-
cations to Biology, Control and Artificial Intelli-
gence, University of Michigan Press, Ann Arbor,
MI.

Hwang, H.-S. (2002), An improved model for vehicle
routing problem with time constraint based on ge-
netic algorithm, Computers and Industrial Engi-
neering, 42(2-4), 361-369.

Jaramillo, J. H., Bhadury, J., and Batta, R. (2002), On
the use of genetic algorithms to solve location
problems, Computers and Operations Research,
29(6), 761-779.

Jarboui, B., Damak, N., Sirry, P., and Rebai, A. (2008),
A combinatorial particle swarm optimization for
solving multi-mode resource-constrained project
scheduling problems, Applied Mathematics and
Computation, 195(1), 299-308.

Kacem, I., Hammadi, S., and Borne, P. (2002), Ap-
proach by localization and multiobjective evolu-
tionary optimization for flexible job-shop schedul-
ing problems, IEEE Transactions on Systems, Man,
and Cybernetics, Part C: Applications and Reviews,
32(1), 1-13.

Kachitvichyanukul, V., Vinaipanit, M., and Kungwal-
song, K. (2010), A genetic algorithm for multi-
commodity distribution network design of supply
chain, International Journal of Logistics and Tran-
sport, 4(2), 167-181.

Kachitvichyanukul, V. and Sitthitham, S. (2011), A two-
stage genetic algorithm for multi-objective job shop
scheduling problems, Journal of Intelligent Manu-
facturing, 22(3), 355-365.

Kasemset, C. and Kachitvichyanukul, V. (2010), Bi-level
multi-objective mathematical model for job-shop
scheduling: the application of theory of constraints,
International Journal of Production Research, 48
(20), 6137-6154.

Kasemset, C. and Kachitvichyanukul, V. (2012), A PSO-
based procedure for a bi-level multi-objective TOC-
based job-shop scheduling problem, International
Journal of Operational Research, 14(1), 50-69.

Kennedy, J. and Eberhart, R. (1995), Particle swarm opti-
mization, Proceedings of IEEE International Con-
ference on Neural Networks, Perth, WA, 1942-1948.

Liu, B., Wang, L., and Jin, Y.-H. (2007a), An effective
hybrid particle swarm optimization for no-wait flow
shop scheduling, The International Journal of Ad-
vanced Manufacturing Technology, 31(9/10), 1001-
1011.

Liu, B., Wang, L., and Jin, Y.-H. (2007b), An effective
PSO-based memetic algorithm for flow shop sche-

duling, IEEE Transactions on Systems, Man, and
Cybernetics Part B, 37(1), 18-27.

Lova, A., Tormos, P., Cervantes, M., and Barber, F.
(2009), An efficient hybrid genetic algorithm for
scheduling projects with resource constraints and
multiple execution modes, International Journal of
Production Economics, 117(2), 302-316.

Marinakis, Y. and Marinaki, M. (2010), A hybrid ge-
netic-particle swarm optimization algorithm for the
vehicle routing problem, Expert Systems with Ap-
plications, 37(2), 1446-1455.

Melo, M. T., Nickel, S., and Saldanha de Gama, F.
(2006), Dynamic multi-commodity capacitated fa-
cility location: a mathematical modeling frame-
work for strategic supply chain planning, Com-
puters and Operations Research, 33(1), 181-208.

Nguyen, S., Ai, T. J., and Kachitvichyanukul, V. (2010),
Object Library for Evolutionary Techniques (ET-
Lib): User’s Manual, Asian Institute of Technology,
Tailand.

Nguyen, S. and Kachitvichyanukul, V. (2010), Move-
ment strategies for multi-objective particle swarm
optimization, International Journal of Applied
Metaheuristic Computing, 1(3), 59-79.

Nguyen, S. and Kachitvichyanukul, V. (2012), An effi-
cient differential evolution algorithm for multi-
mode resource constrained project scheduling prob-
lems, International Journal of Operational Re-
search (Accepted March 2012).

Pan, Q.-K., Tasgetiren, M. F., and Liang, Y.-C. (2008),
A discrete differential evolution algorithm for the
permutation flowshop scheduling problem, Com-
puters and Industrial Engineering, 55(4), 795-816.

Van Peteghem, V. and Vanhoucke, M. (2010), A genetic
algorithm for the preemptive and non-preemptive
multi-mode resource-constrained project schedul-
ing problem, European Journal of Operational Re-
search, 201(2), 409-418.

Pezzella, F., Morganti, G., and Ciaschetti, G. (2008), A
genetic algorithm for the flexible job-shop schedul-
ing problem, Computers and Operations Research,
35(10), 3202-3212.

Pongchairerks, P. and Kachitvichyanukul, V. (2005), A
non-homogenous particle swarm optimization with
multiple social structures, Proceedings of the Inter-
national Conference on Simulation and Modeling,
Bangkok, Thailand.

Pongchairerks, P. and Kachitvichyanukul, V. (2009), A
two-level particle swarm optimisation algorithm on
job-shop scheduling problems, International Jour-
nal of Operational Research, 4(4), 390-411.

Pratchayaborirak, T. and Kachitvichyanukul, V. (2011),
A two-stage PSO algorithm for job shop scheduling
problem, International Journal of Management Sci-
ence and Engineering Management, 6(2), 84-93.

Comparison of Three Evolutionary Algorithms
Vol 11, No 3, September 2012, pp.215-223, © 2012 KIIE 223

Price, K. V., Storn, R. M., and Lampinen, J. A. (2005),
Differential Evolution: A Practical Approach to Glo-
bal Optimization, Springer, Berlin, Germany.

Prins, C. (2004) A simple and effective evolutionary al-
gorithm for the vehicle routing problem, Computers
and Operations Research, 31(12), 1985-2002.

Qian, B., Wang, L., Huang, D.-X., and Wang, W. (2008),
Scheduling multi-objective job shops using a meme-
tic algorithm based on differential evolution, The
International Journal of Advanced Manufacturing
Technology, 35(9-10), 1014-1027.

Sombuntham, P. and Kachitvichyanukul, V. (2010), Mul-
ti-depot vehicle routing problem with pickup and
delivery requests, Proceedings of the International
MultiConference of Engineers and Computer Sci-
entists, Hong Kong, 71-85.

Sooksaksun, N., Kachitvichyanukul, V., and Gong, D.-C.
(2012), A class-based storage warehouse design us-
ing a particle swarm optimisation algorithm, Inter-
national Journal of Operational Research, 13(2),
219-237.

Storn, R. and Price, K. (1995), Differential evolution-a
simple and efficient adaptive scheme for global op-
timization over continuous spaces, Technical Report
TR-95-012, International Computer Science Insti-
tute, Berkeley, CA.

Syarif, A., Yun, Y., and Gen, M. (2002), Study on multi-

stage logistic chain network: a spanning tree-based
genetic algorithm approach, Computers and Indus-
trial Engineering, 43(1/2), 299-314.

Wall, M. (1996), GAlib: A C++ library of genetic algo-
rithm components, http://lancet.mit.edu/ga/.

Wisittipanich, W. and Kachitvichyanukul, V. (2011), Di-
fferential evolution algorithm for job shop schedul-
ing problem, Industrial Engineering and Manage-
ment Systems, 10(3), 203-208.

Wisittipanich, W. and Kachitvichyanukul, V. (2012), Two
enhanced differential evolution algorithms for job
shop scheduling problems, International Journal of
Production Research, 50(10), 2757-2773.

Xia, W. and Wu, Z. (2005), An effective hybrid optimi-
zation approach for multi-objective flexible job-
shop scheduling problems, Computers and Indus-
trial Engineering, 48(2), 409-425.

Xia, W. and Wu, Z. (2006), A hybrid particle swarm op-
timization approach for the job-shop scheduling
problem, The International Journal of Advanced
Manufacturing Technology, 29(3/4), 360-366.

Yu, X. and Gen, M. (2010), Introduction to Evolution-
ary Algorithms, Springer, London, UK.

Zhang, H. and Gen, M. (2005), Multistage-based genetic
algorithm for flexible job-shop scheduling problem,
Journal of Complexity International, 11, 223-232.

