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Abstract

Background: Mixed effects logistic models have become a popular method for analyzing multicenter clinical trials
with binomial data. However, the statistical properties of these models for testing homogeneity of odds ratios
under various conditions, such as within-center and among-centers inequality, are still unknown and not yet
compared with those of commonly used tests of homogeneity.

Methods: We evaluated the effect of within-center and among-centers inequality on the empirical power and type
I error rate of the three homogeneity tests of odds ratios including likelihood ratio (LR) test of a mixed logistic
model, DerSimonian-Laird (DL) statistic and Breslow-Day (BD) test by simulation study. Moreover, the impacts of
number of centers (K), number of observations in each center and amount of heterogeneity were investigated by
simulation.

Results: As compared with the equal sample size design, the power of the three tests of homogeneity will
decrease if the same total sample size, which can be allocated equally within one center or among centers, is
allocated unequally. The average reduction in the power of these tests was up to 11% and 16% for within-center
and among-centers inequality, respectively. Moreover, in this situation, the ranking of the power of the
homogeneity tests was BD≥DL≥LR and the power of these tests increased with increasing K.

Conclusions: This study shows that the adverse effect of among-centers inequality on the power of the
homogeneity tests was stronger than that of within-center inequality. However, the financial limitations make the
use of unequal sample size designs inevitable in multicenter trials. Moreover, although the power of the BD is
higher than that of the LR when K≤6, the proposed mixed logistic model is recommended when K≥8 due to its
practical advantages.

Background
The results from multicenter clinical trials or meta-ana-
lysis studies with binomial data are often summarized in
K 2 × 2 contingency tables, where K denotes the total
number of centers or studies. Combining data in such
tables and proposition a summary measure is the pri-
mary objective of such studies. However, before com-
puting the overall odds ratio, we often need to assess
whether the specific odds ratios are homogeneous across
tables [1-4].

Nowadays, investigators have a wide range of methods
available for this purpose, including model-based and
test-based approaches. The excellent simulation studies
conducted by pioneer researchers in this field assist us
in choosing the most appropriate test for the assessment
of homogeneity among K 2 × 2 tables [1-6]. Neverthe-
less, the results of these simulation studies indicate that
homogeneity tests show different behaviors under com-
binations of parameters such as the number of centers,
center sizes and amount of heterogeneity [3,5,7].
In recent years, a class of models called mixed logistic

models has been used for analysis of multicenter clinical
trials with binomial data. Although Agresti has discussed
a likelihood ratio (LR) test based on a mixed logistic
model for testing homogeneity of odds ratios in K 2 × 2
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contingency tables [8], the statistical properties of this
test and the other traditional homogeneity tests such as
Breslow-Day (BD) [9] and DerSimonian-Laird (DL) [10]
are still unknown. A situation which occurs frequently
in multicenter trials and has not been evaluated in pre-
vious studies is the effect of unequal sample size designs
on the statistical properties of these homogeneity tests.
For example, in some multicenter clinical trials, when
one center is larger, it may seem reasonable to select a
larger sample from it, but this leads to among-centers
inequality. Moreover, within-center inequality could
occur when the costs of two treatment groups are very
different. In this situation, due to financial restrictions,
it is reasonable to allocate more patients to the cheaper
treatment in each center. This simulation study hence
compares the empirical power and type I error rate of
the three tests of homogeneity of odds ratios, including
LR, DL and BD tests when the sample size is unequal
within one center or among centers.

Methods
Consider a series of K independent 2 × 2 contingency
tables, with the data in the kth table denoted as shown
in Table 1. In this paper, K is the number of centers in
multicenter clinical trials.
Suppose that each yik follows a binomial distribution

with parameters nik and πik (i = 1,2; k = 1,2,...,K). Let nik
denote the total number of observations in the ith treat-
ment arm and kth center, and let πik denote the success
probability at treatment level xik in the kth center,
where xik is the treatment indicator with xik = 1 repre-
senting treatment 1 and xik = 0 treatment 2.
In this paper, we focus on the following logistic-nor-

mal probability model in order to assess the homogene-
ity of odds ratios:

logit(πik) = α + βxik + uk + bik (1)

In this model, the segment a + bxik is the fixed effect
part in which b is the common treatment effect. Here,
uk and bik are independent random components of the
model, where uk is the center effect and uk ∼ N(0, σ 2

u )
and the parameter σ 2

u summarizes center heterogeneity.
In addition, bik is the center-by-treatment interaction
random effect, bk ∼ N(0, σ 2

b ) and the parameter σ 2
b

describes variability in the log-odds ratios [8]. The two

advantages of working with this model are: first, a test
of homogeneity of odds ratios can be performed by test-
ing the null hypothesis: H0:σ 2

b = 0 against H1:σ 2
b > 0;

and, second, the common treatment effect and also cen-
ter-specific odds ratios can be obtained by estimating b
and bik [8].
It should be noted that the homogeneity test can be

performed using likelihood ratio (LR) test Δ = -2(l0 - l1),
where l0 is the log-likelihood under the assumption of
homogeneity of odds ratios and when there is just one
random effect, uk, in the Model 1 and l1 is the log-likeli-
hood when both uk and bik are in the model. Under the
null hypothesis, the asymptotic distribution of the LR
test is a mixture of a chi-squared distribution with zero
and one degrees of freedom, respectively, both with
weight of 1/2 [11,12].
Since the properties of the LR test in order to assess

homogeneity of odds ratios had not been evaluated in
the previous studies, we investigated the behavior of this
test under various conditions, particularly under within-
center and among-centers inequality in multicenter
trials and also compared it with the other two most
common test statistics, including DL and BD tests. Brief
calculation details of these statistics are given in the
appendix [9-12].

Simulation study
We studied the statistical properties of the three men-
tioned-above homogeneity tests, in terms of empirical
power and type I error rate, by simulation in SAS statis-
tical package v 9.1. Our simulation design was based on
the mixed logistic model 1; we set the fixed effect para-
meters for all simulation scenarios arbitrarily as: a = -1
and b = 1 . The random components uk and bik are gen-
erated independently from normal distribution with
mean zero and variance σ 2

u and σ 2
b . In order to generate

the response variable, the binomial distribution with

parameters nik and πik =
exp(α + βxik + uk + bik)

1 + exp(α + βxik + uk + bik)
was

used. The influence of within-center and among-centers
inequality, different values of K, σ 2

u , σ 2
b and also number

of observations in each centers, nk, on the statistical
properties of all the homogeneity tests were evaluated.
We generated 1000 random data sets for each simula-
tion scenario. Namely, we chose three values for K (4, 6
and 8), two values for σ 2

u (0.1 and 0.5) and five values
for σ 2

b (0, 0.2, 0.4, 0.6 and 0.8). In the equal sample size
design, in which equal numbers of patients were allo-
cated between two treatment arms and also among all
centers, the number of individuals per center, nk, was
set at 40, 100 and 200. In addition, in this study two
forms of unequal sample size designs were considered.
In the first one, ie within-center inequality, the same

Table 1 Summary of data from the kth 2 × 2 contingency
table

Success Failure Total

Treatment 1 (x1k) y1k n1k - y1k n1k
Treatment 2 (x2k) y2k n2k - y2k n2k
Total tk tk - nk nk
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sample size, which can be allocated equally between two
treatment arms within a center, is allocated unequally in
the ratio of 3:1. In this case, the sample sizes were con-
sidered equal in all centers. In the latter one, ie among-
centers inequality, the same total sample size, which can
be allocated equally among centers, is allocated
unequally. In this situation, one center has a much lar-
ger sample size in comparison with the other ones. The
exact details of different sample size configurations are
described in Table 2. In addition, SAS simulation code
for performing the three homogeneity tests is presented
in the additional file 1.

Results
Equal sample size design
Tables 3 shows empirical type I error rate (when σ 2

b = 0)
and power (when σ 2

b �= 0) of the three homogeneity tests
under the equal sample size design and various combi-
nations of nk, K, σ 2

u , and σ 2
b . In terms of power, the tests

are ordered BD≥DL≥LR in all cases and they perform
similarly when the total sample size in each center is as
large as 200 and σ 2

b ≥ 0.4. In addition, our findings
reveal that substantial gain in the power of all homoge-
neity tests occurred with increasing number of centers,

Table 2 Description of different configurations of sample size in equal and unequal sample size designs.

K Sample size per treatment arm

Equal sample size design:
E1: ntot= 160(20:20, 20:20, 20:20, 20:20)
E2: ntot= 400(50:50, 50:50, 50:50, 50:50)
E3: ntot= 800(100:100, 100:100, 100:100, 100:100)

4 Within-center inequality:
W1: ntot= 160(10:30, 10:30, 10:30, 10:30)
W2: ntot= 400(25:75, 25:75, 25:75, 25:75)
W3: ntot= 800(50:150, 50:150, 50:150, 50:150)

Among-centers inequality:
A1: ntot= 160(10:10, 10:10, 10:10, 50:50)
A2: ntot= 400(25:25, 25:25, 25:25, 125:125)
A3: ntot= 800(50:50, 50:50, 50:50, 250:250)

Equal sample size design:
E1: ntot= 240(20:20, 20:20, 20:20, 20:20, 20:20, 20:20)
E2: ntot= 600(50:50, 50:50, 50:50, 50:50, 50:50, 50:50)
E3: ntot= 1200(100:100, 100:100, 100:100, 100:100, 100:100, 100:100)

6 Within-center inequality:
W1: ntot= 240(10:30, 10:30, 10:30, 10:30, 10:30, 10:30)
W2: ntot= 600(25:75, 25:75, 25:75, 25:75, 25:75, 25:75)
W3: ntot= 1200(50:150, 50:150, 50:150, 50:150, 50:150, 50:150)

Among-centers inequality:
A1: ntot= 240(10:10, 10:10, 10:10, 10:10, 10:10, 70:70)
A2: ntot= 600(25:25, 25:25, 25:25, 25:25, 25:25, 175:175)
A3: ntot= 1200(50:50, 50:50, 50:50, 50:50, 50:50, 350:350)

Equal sample size design:
E1: ntot= 320(20:20, 20:20, 20:20, 20:20, 20:20, 20:20, 20:20, 20:20)
E2: ntot= 800(50:50, 50:50, 50:50, 50:50, 50:50, 50:50, 50:50, 50:50)
E3: ntot= 1600(100:100, 100:100, 100:100, 100:100, 100:100, 100:100, 100:100, 100:100)

8 Within-center inequality:
W1: ntot= 320(10:30, 10:30, 10:30, 10:30, 10:30, 10:30, 10:30, 10:30)
W2: ntot= 800(25:75, 25:75, 25:75, 25:75, 25:75, 25:75, 25:75, 25:75)
W3: ntot= 1600(50:150, 50:150, 50:150, 50:150, 50:150, 50:150, 50:150, 50:150)

Among-centers inequality:
A1: ntot= 320(10:10, 10:10, 10:10, 10:10, 10:10, 10:10, 10:10, 90:90)
A2: ntot= 800(25:25, 25:25, 25:25, 25:25, 25:25, 25:25, 25:25, 225:225)
A3: ntot= 1600(50:50, 50:50, 50:50, 50:50, 50:50, 50:50, 50:50, 450:450)

Note: In the notation of Ei: Wi: and Ai: ntot= n (n11: n21, ..., n1k: n2k): ntot = n =
K∑
k=1

nk: is the total number of observations and nk is the number of observations
per center.
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sample size per center and degree of heterogeneity of
odds ratios, σ 2

b . However, increasing degree of heteroge-
neity of center, σ 2

u , from 0.1 to 0.5 resulted in a reduc-
tion of approximately 4.93% and 3.76% in the power of
DL and BD, respectively, while no regular trend was
detected for the change in LR.

Unequal sample size designs
Table 4 shows type I error rate and the power of the
homogeneity tests under within-center inequality for dif-
ferent values of nk, K, σ 2

u , and σ 2
b . Indeed, when σ 2

u = 0.1,
as compared with the equal sample size design, there
were decreases of approximately 16.35%, 9.93% and

Table 3 Type I error rate (when σ 2
b= 0) and the statistical power (when σ 2

b �= 0) of homogeneity tests under equal
sample size design.

σ 2
u= 0.1 σ 2

u= 0.5
K = 4 K = 6 K = 8 K = 4 K = 6 K = 8

σ 2
b nk LR BD DL LR BD DL LR BD DL LR BD DL LR BD DL LR BD DL

0 E1 0.029 0.057 0.041 0.041 0.047 0.039 0.044 0.050 0.041 0.056 0.061 0.042 0.050 0.058 0.040 0.048 0.042 0.038

E2 0.031 0.051 0.046 0.045 0.058 0.046 0.045 0.043 0.040 0.041 0.044 0.040 0.042 0.051 0.041 0.042 0.053 0.043

E3 0.035 0.045 0.042 0.057 0.061 0.058 0.043 0.043 0.044 0.044 0.053 0.051 0.044 0.042 0.043 0.043 0.053 0.050

0.2 E1 0.134 0.220 0.183 0.167 0.316 0.256 0.215 0.365 0.287 0.155 0.207 0.151 0.219 0.277 0.209 0.244 0.336 0.266

E2 0.396 0.470 0.459 0.450 0.590 0.570 0.569 0.718 0.699 0.401 0.467 0.452 0.460 0.560 0.545 0.561 0.653 0.638

E3 0.594 0.697 0.692 0.739 0.841 0.836 0.862 0.917 0.915 0.609 0.668 0.661 0.772 0.807 0.804 0.840 0.890 0.881

0.4 E1 0.262 0.391 0.351 0.359 0.511 0.434 0.453 0.587 0.503 0.267 0.349 0.282 0.354 0.461 0.387 0.481 0.550 0.478

E2 0.573 0.682 0.668 0.721 0.815 0.803 0.829 0.904 0.886 0.603 0.647 0.630 0.725 0.797 0.779 0.859 0.902 0.892

E3 0.792 0.829 0.827 0.915 0.947 0.946 0.969 0.983 0.932 0.764 0.830 0.820 0.886 0.923 0.917 0.964 0.976 0.974

0.6 E1 0.367 0.482 0.427 0.518 0.659 0.607 0.634 0.756 0.673 0.368 0.468 0.401 0.515 0.600 0.517 0.628 0.701 0.642

E2 0.674 0.780 0.765 0.833 0.875 0.862 0.927 0.965 0.960 0.692 0.750 0.718 0.839 0.891 0.877 0.918 0.943 0.929

E3 0.844 0.882 0.879 0.963 0.979 0.978 0.989 0.992 0.992 0.835 0.869 0.862 0.939 0.956 0.953 0.983 0.996 0.996

0.8 E1 0.432 0.562 0.518 0.618 0.709 0.652 0.708 0.817 0.743 0.453 0.550 0.474 0.601 0.700 0.632 0.711 0.780 0.713

E2 0.775 0.828 0.813 0.906 0.937 0.929 0.954 0.976 0.968 0.736 0.788 0.759 0.886 0.923 0.903 0.956 0.978 0.971

E3 0.882 0.919 0.918 0.973 0.987 0.987 0.996 0.997 0.997 0.883 0.902 0.896 0.969 0.980 0.975 0.992 0.996 0.996

The notation of Ei is described in Table 2

Table 4 Type I error rate (when σ 2
b= 0) and the statistical power (when σ 2

b �= 0) of homogeneity tests under within-
center inequality.

σ 2
u= 0.1 σ 2

u= 0.5
K = 4 K = 6 K = 8 K = 4 K = 6 K = 8

σ 2
b nk LR BD DL LR BD DL LR BD DL LR BD DL LR BD DL LR BD DL

0 W1 0.039 0.057 0.037 0.047 0.064 0.041 0.059 0.064 0.041 0.041 0.045 0.039 0.039 0.042 0.039 0.042 0.043 0.034

W2 0.035 0.041 0.041 0.045 0.041 0.045 0.043 0.053 0.044 0.035 0.060 0.048 0.041 0.044 0.040 0.039 0.043 0.045

W3 0.037 0.044 0.044 0.046 0.055 0.050 0.041 0.057 0.052 0.032 0.043 0.040 0.041 0.058 0.053 0.041 0.055 0.049

0.2 W1 0.091 0.185 0.129 0.177 0.275 0.198 0.154 0.292 0.209 0.127 0.175 0.118 0.133 0.200 0.117 0.173 0.254 0.159

W2 0.271 0.395 0.394 0.412 0.531 0.501 0.474 0.626 0.596 0.282 0.392 0.360 0.381 0.499 0.455 0.477 0.585 0.533

W3 0.501 0.629 0.621 0.695 0.757 0.755 0.758 0.840 0.835 0.517 0.572 0.559 0.678 0.742 0.728 0.759 0.838 0.828

0.4 W1 0.191 0.305 0.221 0.279 0.417 0.323 0.341 0.518 0.371 0.236 0.294 0.219 0.269 0.364 0.250 0.372 0.481 0.436

W2 0.466 0.593 0.580 0.655 0.768 0.746 0.742 0.856 0.832 0.452 0.558 0.530 0.643 0.723 0.676 0.774 0.844 0.811

W3 0.723 0.807 0.802 0.880 0.918 0.914 0.939 0.969 0.965 0.716 0.784 0.775 0.887 0.910 0.906 0.949 0.966 0.965

0.6 W1 0.294 0.430 0.352 0.399 0.574 0.469 0.494 0.652 0.537 0.286 0.399 0.318 0.387 0.497 0.391 0.484 0.599 0.468

W2 0.615 0.703 0.682 0.780 0.853 0.828 0.862 0.918 0.906 0.599 0.686 0.648 0.771 0.830 0.799 0.895 0.919 0.894

W3 0.817 0.858 0.855 0.949 0.957 0.957 0.976 0.987 0.985 0.795 0.845 0.832 0.926 0.951 0.941 0.968 0.981 0.977

0.8 W1 0.356 0.471 0.398 0.530 0.647 0.540 0.641 0.767 0.663 0.363 0.459 0.362 0.516 0.608 0.514 0.631 0.715 0.594

W2 0.687 0.769 0.742 0.837 0.888 0.868 0.915 0.969 0.966 0.694 0.751 0.701 0.835 0.887 0.843 0.922 0.944 0.915

W3 0.857 0.891 0.889 0.957 0.970 0.968 0.990 0.995 0.993 0.845 0.874 0.861 0.955 0.966 0.963 0.982 0.984 0.983

The notation of Wi is described in Table 2
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11.62% in the power of LR test for within-center
inequality, when K was equal to 4, 6 and 8, respectively.
In addition, the power of the BD statistic decreased
approximately by 10.67%, 7.79% and 7.15% and the
power of DL was reduced approximately by 14.46%,
11.24% and 9.76% for K = 4, 6 and 8, respectively. It
should be noted that, for a given value of K, the
reported amount of reduction was the average reduction
for all values of σ 2

b .
Type I error rate and the power of the homogeneity

tests under among-centers inequality are illustrated in
Table 5. In fact, when σ 2

u = 0.1 as compared with the
equal sample size design, there were decreases of
approximately 17.15%, 11.78% and 11.89% in the power
of LR test and 16.63%, 13.62% and 12.57% in the power
of the BD statistic for among-centers inequality, when K
was equal to 4, 6 and 8, respectively. In addition, this
amount of reduction in the power of DL test was more
critical and approximately equal to 21.56%, 18.4% and
16.61% for the same sequence of K.
It should be pointed out that the amount of reduction

in the power of the three homogeneity tests for σ 2
u = 0.5

under two forms of unequal sample size designs was
approximately similar to those of σ 2

u = 0.1.

Type I error rate
Tables 3, 4 and 5, when σ 2

b = 0, represent empirical type
I error rate of the three homogeneity tests at the nom-
inal significance level of 0.05. As indicated, LR test
showed conservative behavior when K = 4, otherwise,

the type I error rate was close to the nominal level. In
addition, BD performed adequately in terms of type I
error rate in almost all cases. On the other hand, type I
error rate of the DL statistic was close or below the
nominal level.

Discussion and conclusions
In a simple randomized clinical trial, the use of unequal
allocation ratios, particularly the allocation ratio of 3:1,
will significantly reduce the power of study for detecting
significance difference between two treatments [13-15].
To our knowledge, few published studies investigated the
impact of within-center and among-centers inequality on
the statistical properties of the tests of homogeneity of
odds ratios in multicenter clinical trials [1,3,4]. As illu-
strated in Tables 3, 4 and 5, the type I error rate of the
three homogeneity tests is approximately close to the
nominal level of 0.05 except for LR when K = 4. Since
the results show that these tests have almost the same
type I error rate, power comparisons are possible. As
compared with the equal sample size design, the power
of the LR, BD and DL tests will decrease if the same total
sample size, which can be allocated equally within one
center or among centers, is allocated unequally. In this
case, the power ranking of the tests was BD≥DL≥LR. It is
worth mentioning that, as compared with within-center
inequality, among-centers inequality has stronger adverse
effect on the power of the homogeneity tests. Despite the
use of different tests, these findings are inconsistent with
those of Paul, who reported the adverse effect of within-
center inequality to be stronger [3].

Table 5 Type I error rate (when σ 2
b= 0) and the statistical power (when σ 2

b �= 0) of homogeneity tests under among-
centers inequality.

σ 2
u= 0.1 σ 2

u= 0.5
K = 4 K = 6 K = 8 K = 4 K = 6 K = 8

σ 2
b nk LR BD DL LR BD DL LR BD DL LR BD DL LR BD DL LR BD DL

0 A1 0.030 0.045 0.041 0.045 0.045 0.037 0.041 0.041 0.036 0.031 0.041 0.036 0.045 0.041 0.038 0.044 0.040 0.036

A2 0.031 0.047 0.043 0.048 0.046 0.039 0.045 0.056 0.043 0.037 0.053 0.042 0.039 0.049 0.040 0.039 0.044 0.040

A3 0.033 0.057 0.054 0.043 0.045 0.041 0.046 0.042 0.045 0.039 0.055 0.044 0.041 0.047 0.042 0.049 0.042 0.041

0.2 A1 0.121 0.168 0.120 0.176 0.225 0.161 0.215 0.259 0.168 0.105 0.149 0.108 0.182 0.165 0.090 0.248 0.236 0.131

A2 0.265 0.362 0.334 0.395 0.479 0.440 0.472 0.583 0.534 0.281 0.343 0.309 0.378 0.458 0.407 0.459 0.508 0.451

A3 0.512 0.602 0.595 0.645 0.749 0.739 0.723 0.817 0.805 0.492 0.577 0.560 0.699 0.701 0.676 0.710 0.795 0.767

0.4 A1 0.187 0.262 0.194 0.312 0.397 0.306 0.359 0.469 0.352 0.251 0.299 0.244 0.339 0.360 0.248 0.369 0.385 0.254

A2 0.437 0.555 0.518 0.587 0.707 0.658 0.720 0.814 0.765 0.457 0.550 0.501 0.601 0.687 0.617 0.692 0.796 0.721

A3 0.676 0.754 0.744 0.838 0.896 0.885 0.884 0.941 0.934 0.686 0.744 0.728 0.802 0.871 0.853 0.902 0.929 0.924

0.6 A1 0.292 0.367 0.289 0.397 0.493 0.390 0.493 0.564 0.457 0.281 0.346 0.272 0.402 0.469 0.353 0.538 0.562 0.421

A2 0.602 0.692 0.651 0.720 0.810 0.762 0.831 0.906 0.874 0.574 0.631 0.575 0.726 0.809 0.745 0.791 0.856 0.797

A3 0.755 0.824 0.811 0.909 0.937 0.929 0.937 0.972 0.969 0.740 0.801 0.784 0.902 0.935 0.917 0.959 0.971 0.960

0.8 A1 0.345 0.430 0.355 0.466 0.586 0.473 0.580 0.668 0.551 0.384 0.430 0.356 0.490 0.547 0.459 0.605 0.631 0.492

A2 0.670 0.755 0.710 0.816 0.878 0.829 0.870 0.933 0.889 0.644 0.729 0.664 0.805 0.868 0.806 0.868 0.926 0.869

A3 0.817 0.867 0.856 0.930 0.952 0.940 0.973 0.980 0.979 0.819 0.850 0.836 0.928 0.952 0.942 0.966 0.990 0.981

The notation of Ai is described in Table 2
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Also, this paper shows how to use a mixed logistic
model to test homogeneity of odds ratios in multicenter
trials. In Model 1, there are two types of homogeneity:
homogeneity of odds ratios among centers and homoge-
neity of centers. However, removing the center-by-treat-
ment interaction from Model 1 leads to a model which
can only be used to test homogeneity of centers. This
model, which has been previously discussed by Gao,
assumes that the odds ratios are constant over centers
[16]. Therefore, it should not be used to generate data
for comparing the tests of heterogeneity of odds ratios.
Furthermore, the power of the three tests of homogene-
ity increases more when we increase the number of K
and nk compared to when we increase the number of K
and σ 2

b . This result is in agreement with previous studies
which have evaluated the influence of K and nk on the
power of the homogeneity tests [5,17-19]. Nevertheless,
our simulation study shows that the degree of among-
centers heterogeneity, σ 2

u , has little or no effect on the
power of the three tests of homogeneity, except for DL
when σ 2

b ≤ 0.4 and sample size is small.
In addition, it is noteworthy that we used the DL sta-

tistic calculated from the one-way random effects
model, which has approximately a chi-square distribu-
tion. However, Biggerstaff and Jackson [20] have calcu-
lated the exact distribution and power of the well-
known Q statistic based on the same random effects
model, which can be used for testing homogeneity of
odds ratios and be compared with the tests used in the
present study.
In conclusion, of the three tests of homogeneity, the

BD seems to be the most appealing with regard to its
statistical properties: its type I error rate is close to the
nominal level and its power is greater than that of DL
and LR. Moreover, it has the advantage of simplicity of
calculation and is recommended by a number of authors
[1,4-6]. However, one limitation of BD test is that it has
low power when the sample size within each center is
small, even if the number of centers is large [1,2].
Nevertheless, despite having low power under small
number of centers and its complexity, Model 1 has its
own advantages. Firstly, when the centers are a random
sample themselves, the LR test from the Model 1
enables inferences to extend to the population of cen-
ters. Secondly, a further consideration is that common
odds ratio can be estimated from the fixed part of the
Model 1, even when the odds ratios are not homoge-
neous. Thirdly, in each center, Model 1 provides a pre-
dicted log-odds ratio that shrinks the sample value
toward the mean. This is especially useful when the
sample size in a center is small and the ordinary sample
odds ratio has a large standard error [8]. In addition,

the mixed logistic model described in this study will
potentially be applicable to meta-analysis studies.
It is clear that, based on Model 1, the odds ratio in

the kth center, as given in the appendix 4, is exp(b + b1k
- b2k), which can be written as C × exp(b1k - b2k) where
C = exp(b) .This indicates that the odds ratio in each
center is absolutely independent of a and uk. Indeed,
the odds ratios are affected by b1k and b2k, and b has
the same effect on odds ratio in all centers. Hence, to
generate heterogeneous odds ratios among centers, the
fixed simulation parameters, ie a and b, can be chosen
arbitrarily.
It should be noted that, although using unequal sam-

ple size designs in multicenter clinical trials reduces
both the power of the study and the power of the
homogeneity tests, a substantial reduction in the total
cost of the trial will compensate for the reduction in the
power of the statistical tests [14,15]. Finally, further
research is warranted to investigate the influence of the
number of centers, unequal sample size design, sparse-
ness and also deviation from normal assumption of the
random effects on the robustness and accuracy of the
estimates of the fixed and random parameters of the
Model 1.

Appendix
1. Breslow-Day statistic
Breslow and Day [9] proposed the test statistic:

BD =
K∑
k=1

[
y1k − E(y1k|ORMH)

]2
V(y1k|ORMH)

Where ORMH is the Mantel-Haenszel estimator of
common odds ratio. E(y1k|ORMH) and V(y1k|ORMH) are
the expected value and variance of y1k under the null
hypothesis of homogeneity of odds ratios. Under the
assumption of large sample size in each 2 × 2 table, BD
has approximately chi-square distribution with k - 1
degree of freedom [9].

2. DerSimonian-Laird statistic
The Dersimonian and laird statistic is based on random
effects model, which obtained by:

DL =
∑
k

wk(yk − ȳw)
2

When log-odds ratio is used as a summary measure ie,
common treatment effect, yk = ln(ORk) where ln(ORk) is
the log-odds ratio in kth center and wk = 1/s2k where

S2k = [p̂1k(1 − p̂1k)n1k]
−1 + [p̂2k(1 − p̂2k)n2k]

−1. DL statis-
tic has approximately chi-square distribution with k - 1
degree of freedom [10].
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3. Likelihood ratio test based on mixed logistic models
To test homogeneity of odds ratios based on mixed
logistic models, we compare the model

logit(πik) = α + βxik + uk + bik∗
to the simpler model not containing the random effect

term of the center-by-treatment interaction, namely:

logit(πik) = α + βxik + uk

which is equivalent to test the null hypothesis of
H0:σ 2

b = 0 versus H1:σ 2
b > 0[8]. As the null hypothesis is

on the boundary of the parameter space, the asymptotic
null distribution for the likelihood ratio test is a mixture
of a χ2

0 and a χ2
1 with equal probability 1/2, rather than

classical single chi-square distribution [11,12].

4. Calculation of odds ratio based on the mixed logistic
model with two random effects
Based on Model * which was presented above, the odds
of success in treatment 1 in kth center is derived as:

x1k = 1 → logit(π1k) = log
(

π1k

1 − π2k

)
= α+β+uk+b1k → π1k

1 − π1k
= exp(α+β+uk+b1k)

and in a similar manner the odds of success in treat-
ment 2 is derived as:

x2k = 0 → logit(π2k) = log
(

π2k

1 − π2k

)
= α + uk + b2k → π2k

1 − π2k
= exp(α + uk + b2k)

therefore, the odds ratio for treatment 1 versus 2 in kth
center is exp(b+b1k - b2k).

5. SAS code for performing likelihood ratio test in a 2 × 2
× 2 contingency tables
data binomial;
input center treat y n; * y successes out of n trials;
cards;

1 1 30 100
1 2 50 100
2 1 45 100
2 2 75 100

;
run;
proc nlmixed data = binomial qpoints = 15; *Mixed

logistic model with one random effect, no interaction;
parms alpha = -1 beta = 1 su = 0.2; *Initial values for

parameters estimates;
bounds su>=0;
z=alpha+beta*treat+u; *Logistic formula;
expz=exp(z);
pi=expz/(1+expz);
model y~binomial(n,pi);
random u~ normal(0,su*su) subject=center;

ods output FitStatistics=test1;
ods listing select test1;
run;
proc nlmixed data=binomial qpoints = 15; *Mixed

logistic model with two random effects, interaction;
parms alpha=-1 beta = 1 su = 0.2 sb = 0.8; *Initial

values;
bounds su>0; bounds sb>0;
z=alpha+beta*treat+a+b*treat; *Logistic formula;
expz=exp(z);
pi=expz/(1+expz);
model y~binomial(n,pi);
random a b~ normal([0,0],[su*su,0,sb*sb])

subject=center;
ods output FitStatistics=test2;
ods listing select test2;
run;
data mixed; *Calculating likelihood ratio statistic;
merge test1(rename=(value=d1)) test2(rename=

(value=d2));
if descr=’-2 Log Likelihood’;
run;
data combmix; set mixed;
delta=d1-d2;
run;
data lr; set combmix;
x=probchi(delta,1); *Testing hypothesis of homogeneity

of odds ratios, based on mixture chi-square;
run;
data rejectmixed;
set lr;
rej1 = 0.5*(1-x);
a=(rej1<0.05);
run;

Additional material

Additional file 1: SAS simulation code for performing the three
homogeneity tests of odds ratios in a certain case, in which K = 6,
nik = 100, σ 2

u = 0.1 and σ 2
b = 0.8.
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