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This paper reports a detailed comparison of a range of different types of 2D fingerprints when used for similarity-
based virtual screening with multiple reference structures. Experiments with the MDL Drug Data Report database 
demonstrate the effectiveness of fingerprints that encode circular substructure descriptors generated using the 
Morgan algorithm. These fingerprints are notably more effective than fingerprints based on a fragment dictionary, 
on hashing and on topological pharmacophores. The combination of these fingerprints with data fusion based 
on similarity scores provides both an effective and an efficient approach to virtual screening in lead-discovery 
programmes.

Introduction
Virtual screening is widely used to enhance the cost-effectiveness 
of drug-discovery programmes, by ranking databases of 
chemical structures in decreasing probability of activity; this 
prioritisation then means that biological testing can be focused 
on just those few molecules that have significant a priori 
probabilities of  activity.1, 2 There are many different ways in 
which a database can be prioritised; here, we focus on similarity 
searching methods.3, 4 Similarity searching is one of the most 
widely used virtual-screening approaches, and involves matching 
a known active molecule, the reference structure, against each 
of the database molecules, computing a measure of structural 
similarity in each case, and then ranking the database molecules 
in order of decreasing similarity score. Structurally similar 
molecules are likely to have similar biological activities5–7 
and there is hence an extensive literature associated with the 
similarity measures that can be used to quantify the degree 
of resemblance between a reference structure and each of the 
database molecules.

Most of the studies of similarity searching that have been 
reported thus far have considered the use of only a single 
bioactive reference structure. It is, however, increasingly the 
case that several, structurally diverse, reference structures 
may be available, e.g., published competitor compounds or 
hits from high-throughput screening (HTS), and this has 
stimulated interest in the use of multiple reference structures to 
identify further molecules for biological screening.8, 9 We have 
recently reported a detailed comparison of several different 
search algorithms that can be used in such circumstances, and 
identified two, data fusion and binary kernel discrimination 
(BKD), that provided a high level of effectiveness in simulated 
virtual screening experiments.10

An important component of any similarity procedure is the 
structure representation that is used to encode the molecules 
that are to be searched, with 2D fragment bit-strings (or finger-
prints) of various types being by far the most commonly used in 
current chemoinformatics systems.11, 12 A fingerprint is a binary 
string that encodes the presence of substructural fragments, i.e. 
topological patterns of atoms and bonds, in a molecule. This is 

clearly a very simple representation of molecular structure but 
one that has been used with considerable success ever since the 
earliest reports of similarity searching,13, 14 and also for related 
chemoinformatics tasks such as molecular diversity analysis15 
and database clustering.16 In two much-cited papers, Brown and 
Martin compared several different types of fingerprint when 
used for cluster-based physicochemical property prediction;17, 18 
here, we report an analogous comparison of fingerprints when 
they are used for similarity-based virtual screening using mul-
tiple reference structures.

Results and discussion
Taking account of the different search algorithms, fingerprint 
types and normalisation schemes described in the experimental 
section, there is a total of  30 different similarity procedures 
available for evaluation. Each such procedure was used with 
each of 11 different activity classes from the MDL Drug Data 
Report (MDDR)19 database, with ten searches being carried 
out for the actives in each particular activity class. A different 
set of  ten active reference structures was used for each of the 
ten searches, this set remaining constant across the 30 different 
similarity procedures. The results of  the searches are shown in 
Tables 1–4, the first two listing the average recall obtained from 
the top 1% of the rankings for each of the activity classes, and 
the second two listing the average recall from the top 5% of the 
rankings. The mean recalls, averaged over all of the 11 activity 
classes, are shown in Figs. 1 and 2 (which also show the mean 
recall for data fusion and BKD averaged over all of the different 
fingerprint types considered here).

Inspection of these tables reveals the very marked superiority 
of the circular substructure descriptors; indeed, there was only 
a single case where one of these fingerprints did not provide the 
best result, viz. the average recall at 1% using BKD for the set 
of  cyclooxygenase inhibitors. This general effectiveness of the 
circular substructures (with the notable exception of FCFP_2) 
is highlighted in Figs. 1 and 2. Of these circular substructure 
fingerprints, the ECFP_4 ones, irrespective of the normalisation 
method (method A or method B) or of the search algorithm 
(data fusion or BKD), are the descriptors of choice for virtual 
screening of the sort advocated here. The FCFP_4 and ECFP_2 
descriptors are also very effective: the former fingerprints seem 
to perform relatively better with the more heterogeneous (i.e., 
low self-similarity) classes, such as the cyclooxygenase and pro-
tein kinase C inhibitors, while the ECFP_2 fingerprints yield 

† This is one of a number of contributions on the theme of molecular 
informatics, published to coincide with the RSC Symposium “New 
Horizons in Molecular Informatics”, December 7th 2004, Cambridge 
UK.
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Fig. 1 Comparison of the average recalls obtained in the top 1% of the 
ranked test-set using BKD and data fusion.

Fig. 2 Comparison of the average recalls obtained in the top 5% of the 
ranked test-set using BKD and data fusion.

ally higher recalls than the hashed fingerprints, i.e., Unity, Day-
light and Avalon. This finding is in agreement with the studies 
of cluster-based property prediction by Brown and Martin17, 18 
(although they used different types of dictionary and hashed 
fingerprints from those studied here).

Perhaps our most surprising finding is the performance of the 
pharmacophore descriptors, with both the CATS and Similog 
fingerprints yielding consistently poorer recall values. Previous 
studies of these descriptors, for chemogenomics and scaffold-
hopping applications,9, 28, 29 have demonstrated that they can 
be highly effective in operation, but this was certainly not the 
case for the present application. We note in the experimental 
section that both of these molecular characterisations are based 
on the encoding of the occurrences, rather than the incidences, 
of  substructural fragments in a molecule, yielding an integer 
vector rather than a binary fingerprint. Here, however, they 
have been encoded in a binary form since the kernel function 
used in our BKD implementation requires a binary string. It is 
hence possible that the poor performance of the two pharma-
cophore fingerprints arose from the use of an inappropriate 
encoding mechanism. To test this, searches were carried out 
with the original, occurrence-based vectors; these searches used 
just data fusion, as this search algorithm does not necessarily 
require binary fingerprints for the generation of the ranked sets 
of  scores that are fused together. Specifically, the rankings for 
the individual reference structures were computed using the 
non-binary form of the Tanimoto similarity coefficient and 
the Floersheim distance, as defined in the experimental section 
below. The use of the integer vectors and the non-binary coeffi-
cients did not improve the recall of the data fusion searches, and 
we hence conclude that the use of binary representations does 
not explain the poor performance of these 2D pharmacophore 
descriptors that is observed in Tables 1–4. It is perhaps worth 
noting in passing that previous comparisons of 2D fingerprints 
with 3D pharmacophore descriptors have often shown the for-
mer to be superior,17, 18, 30 despite the claimed effectiveness of the 
latter methods for diversity analysis and similarity searching.31

Thus far, we have evaluated the various approaches solely 
in terms of the numbers of active molecules that have been re-
trieved. It is, however, also of importance to consider the diver-
sity of these sets of retrieved actives, since it is clearly preferable 
for the outputs also to maximise the numbers of chemotypes 
that are identified. We have hence analysed the outputs sum-
marised in Tables 1–4 and Figs. 1 and 2 in terms of the numbers 
of distinct ring systems identified in the sets of retrieved actives. 
We have considered two levels of ring description, as illustrated 
in Fig. 3, and as discussed previously by Bemis and Murcko32 
and by Xu and Johnson;33, 34 these authors refer to these levels 
of description as atomic frameworks or cyclic systems (Fig. 3a), 
and molecular frameworks or skeletal cyclic systems (Fig. 3b), 
respectively. Fig. 4 shows the percentages of the atomic frame-
works in the complete set of  actives that are retrieved in the 
top 1% of the ranking by each of the search procedures when 
averaged over all of the activity classes (i.e., as in Fig. 1); Fig. 5 
gives the top 1% distribution for the molecular frameworks and 
Figs. 6 and 7 the corresponding top 5% distributions. It will be 
seen that the relative performance of the various procedures in 
terms of retrieving chemotypes (and hence in their suitability 
for scaffold-hopping applications) mirrors closely the relative 
performance based on numbers of actives (as shown in Figs. 1 
and 2).

All the experiments carried out so far were performed using 
a version of the MDDR database in which every molecule was 
characterised by its neutral structure. However, drugs are used in 
vivo and further searches were hence carried out in order to see if  
any improvements in recall could be obtained by using the pro-
tonated states of the MDDR molecules. The pH component of 
Scitegic’s Pipeline Pilot software35 was used to derive protonated 
molecular representations corresponding to a pH 6.8. However, 
very little difference was observed in the recalls obtained from 

better results with the more homogeneous (i.e., high self-simi-
larity) classes, such as the renin inhibitors.

As an alternative way of considering the figures in Tables 1–4, 
consider the enrichment factors20 to which these results corres-
pond. The enrichment factor is the number of times better (in 
terms of active molecules retrieved) that a particular search 
algorithm is than a random selection of molecules from the data-
base. Thus, the average enrichment values for ECFP_4B at 1% 
are 42.3 and 43.5 for BKD and data fusion, respectively, with 
the corresponding 5% values being 13.1 and 13.5, respectively, 
demonstrating the utility of the methods discussed here for vir-
tual screening purposes.

Circular substructures of various sorts have been widely 
used for applications such as structure and substructure search-
ing,21–23 constitutional symmetry.24 structure elucidation25 and, 
most recently, probabilistic modelling of bioactivity where a 
full training-set is available.26, 27 The work reported here dem-
onstrates that this type of fragment is also very well suited to 
virtual screening using multiple reference structures.

When comparing the normalisation methods used for the 
circular substructure representations (see experimental sec-
tion), method A, where all the initial features are just assigned 
a new bit-position, always provides descriptors that are more 
effective than method B. However, the differences are generally 
very small, and we would hence recommend the use of method 
B for the processing of these descriptors as this method is faster 
and, more importantly, is reproducible over different databases. 
There is little to choose between data fusion and BKD over the 
entire class of circular substructures, although it does appear 
that the use of these substructures with data fusion was par-
ticularly successful for the more heterogeneous classes like the 
cyclooxygenase and protein kinase C inhibitors. Conversely, 
when these descriptors were used with BKD, they worked par-
ticularly well for the more homogeneous activity classes, such as 
the renin inhibitors and the angiotensin II AT1 antagonists.

The dictionary-based descriptors, represented here by the 
BCI fingerprints, were ranked second overall, returning gener-
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virtual screening applications where multiple reference struc-
tures are available, and evidence of the general effectiveness of 
fingerprints based on 2D circular substructures, in particular the 
ECFP_4 fingerprints. If  a single choice is required, then the best 
overall performance would seem to result from data fusion of 
the similarity scores of searches based on the ECFP_4B finger-
prints. This is indicated as the combination of choice for several 
reasons. If  we consider the choice of fingerprint first, then whilst 
the ECFP_4 descriptors achieved an excellent overall level of 
performance, they gave particularly good results when searching 
for structurally heterogeneous sets of  molecules, a more chal-
lenging task than for highly self-similar sets of  molecules. For 
this descriptor, the type-B binning scheme results in a very com-
pact, reproducible representation that is only marginally inferior 
to the much larger, non-reproducible type-A binning scheme. 
Turning now to the search algorithms: data fusion is far less 
demanding of computational resources than is BKD and also 
does not require the specification of values for the latter’s tune-
able parameters; and an inspection of the standard deviations in 
Tables 1–4 shows that these tend to be larger (corresponding to 
a high level of variation in search performance) for BKD than 
for data fusion, suggesting a greater degree of consistency for 
the latter algorithm.

When considering the two search algorithms, it must be 
emphasised that we are dealing with a combination of charac-
teristics, as evidenced by the fact that BKD does better than data 
fusion for some of the fingerprint types (e.g., Unity or Daylight): 
however, when used in combination with ECFP_4, the data 
fusion searches are to be preferred. It should also be emphasised 
that this preference for score-based data fusion over BKD is spe-
cific to the circumstances of these experiments, which involve 
just a limited number of active reference structures, as we have 
found that BKD is to be preferred when a proper training-set is 
available containing large numbers of both known actives and 
known inactives.36

Experimental
Our virtual screening system involves three main parts: a struc-
tural representation that is used to encode the molecules that 
are being searched; a searching method that ranks a database 
of molecules in order of decreasing probability of activity in 

Fig. 3 Hydrogen-free example of (a) atomic framework (or cyclic system) and (b) molecular framework (or skeletal cyclic system) of Diovan®.

Fig. 4 Comparison of the average percentage of atomic frameworks 
retrieved in the top 1% of the ranked test set obtained using BKD and 
data fusion.

Fig. 5 Comparison of the average percentage of molecular 
frameworks retrieved in the top 1% of the ranked test set obtained using 
BKD and data fusion.

Fig. 6 Comparison of the average percentage of atomic frameworks 
retrieved in the top 5% of the ranked test set obtained using BKD and 
data fusion.

Fig. 7 Comparison of the average percentage of molecular 
frameworks retrieved in the top 5% of the ranked test set obtained using 
BKD and data fusion.

the compounds in their protonated and neutral forms, with the 
latter normally being the more effective. There would hence 
appear to be little point in carrying out the additional process-
ing required to produce the protonated representations.

The results presented here provide further evidence of the 
general effectiveness of the BKD and data fusion methods for 
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response to a set of active reference structures; and a quantita-
tive measure of the effectiveness of those rankings. The focus 
of this paper is the first of these factors, but it is appropriate to 
describe briefly the last two factors before discussing the many 
different types of 2D fingerprint that were evaluated.

Searching algorithms

A previous study10 investigated a range of search algorithms that 
could be used when multiple reference structures were available. 
These experiments all involved a single type of fingerprint, spe-
cifically the Unity fingerprints produced by Tripos Inc.37 Two of 
the algorithms were found to provide a consistently high level of 
screening effectiveness: these algorithms were data fusion using 
the maximum of similarity scores and an approximate form of 
the BKD machine learning technique.

Data fusion (or consensus scoring) involves combining the 
results of  different similarity searches of a chemical database. 
Previous studies have involved the use of a single reference 
molecule, but characterised by several different representations 
or using several different similarity coefficients (see e.g. refs. 38, 
39). An alternative approach, and the one used here, is to have 
a fixed representation and similarity coefficient, but to combine 
the search outputs obtained with several different reference 
structures. Assume that some database molecule i yields similar-
ity scores of s1, s2...sn with the n different reference structures, 
then we have shown that effective searches are obtained by 
ranking the database molecules on the basis of the maximum of 
these scores, i.e., max{s1, s2...si...sn − 1, sn}; such searches are more 
effective than those resulting from the use of ranks, rather than 
scores, or the use of a fusion rule based on averaging.9, 10

The similarity scores were computed using the Tanimoto 
coefficient; for a molecule having a fingerprints with a bits set, 
of which c are also set in the fingerprint for a molecule that has b 
bits set, then the Tanimoto coefficient, Tc, is defined to be

                                          
T

c
a b cc= + −

.
                                         

Some of the similarity scores necessitated the use of two non-
binary similarity coefficients. Let xjA denote the occurrence of 
the j-th fragment (1  j  n, the length of the integer vector) 
in molecule A (and similarly for molecule B). Then the similar-
ity coefficients used were the non-binary form of the Tanimoto 
similarity coefficient3
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which is a Novartis coefficient that has been used in-house with 
the Similog descriptors.

Binary kernel discrimination (BKD) is a machine learning 
technique that was first applied to virtual screening by Harper 
et al.40 The similarity between two compounds i and j, charac-
terised by binary fingerprints of length M, that differ in dij posi-
tions, is computed by the kernel function Kk(i,j),

                               Kk(i,j) = (kM−dij(1 − k)dij)k/M                               

where k is a smoothing parameter to be determined and where k 
is an integer less than M. This kernel was developed for use with 

a training-set containing both active and inactive molecules, 
with the scoring function
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being used to rank the molecules in the test-set, using the optimum 
values of k and k found for the training set.36 When just a set of 
active reference structures is available, we have shown that the 
characteristics of the inactives can be approximated with a fair 
degree of accuracy by the characteristics of the entire database 
that is to be searched: a training-set can hence be generated 
by taking the set of  reference structures and adding to it 100 
molecules randomly selected from the database.10 The optimal 
values of k and k were found to vary across the various types of 
fingerprint studied here, and extensive preliminary testing was 
required to identify the values that were used to obtain the main 
results that are discussed in the results and discussion section 
above. This variation in parameter value is a clear limitation of 
the BKD approach

Effectiveness of virtual screening

The experiments involved simulated virtual screening searches 
on the MDL Drug Data Report (MDDR) database.19 After 
removal of duplicates and molecules that could not be processed 
using local software, a total of 102 535 molecules was available 
for searching that were represented by each of the types of finger-
print described below. These molecules were searched using the 
eleven sets of active compounds that are listed in Table 5, which 
also contains the numbers of actives in each class and the num-
bers of active atomic and molecular frameworks (ring-system 
descriptors that are discussed above) in each class. The table also 
contains a numeric estimate of the level of structural diversity in 
each of the chosen sets of bioactives. The diversity estimate was 
obtained by matching each compound with every other in its 
activity class, calculating similarities using the Unity fingerprint 
and the Tanimoto coefficient and computing the mean of these 
intra-set similarities. The resulting similarity scores are listed in 
the right-hand part of Table 5, where it will be seen that the renin 
inhibitors are the most homogeneous and the cyclooxygenase 
inhibitors are the most heterogeneous.

For each of the 11 activity classes, ten active compounds were 
selected for use as reference structures. The selections were done 
at random, subject to the constraint that no pair-wise similarity 
in a group exceeded 0.80 (using Unity fingerprints and the Tani-
moto coefficient). The set of reference structures was searched 
against the MDDR database using the data fusion and BKD 
search algorithms described above, with the search being car-
ried out once for each of the different types of fingerprint. The 
procedure was then repeated using ten different sets of reference 
structures, and in each search, a note was made of the recall, 
that is the percentage of the active molecules (i.e., those in the 
same class as those in the reference set) that occurred in the top 
1% and the top 5% of the ranking resulting from that search. 
Formally, if  a search retrieves the top x% of a ranked database, 
and this subset contains a of  the A actives for that activity class, 
then the recall, Rx, is defined to be20

                                           
R

a
Ax=

100
.

                                           

The results presented in Tables 1–4 are the mean and standard 
deviations for these recall values, averaged over each set of ten 
searches.

Fingerprint types

Having summarised the virtual screening environment and the 
two search algorithms, we now describe in some detail the four 
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classes of  fingerprint descriptors that we have studied. These 
are structural keys, hashed fingerprints, circular substructures 
and pharmacophores; in all, we evaluated ten different descrip-
tors, of  which seven are commercially available, two are used 
in-house at Novartis, and one was implemented from the lit-
erature description. Moreover, some of these descriptors were 
encoded in more than one way, to give a total of  15 types of 
fingerprint.

Structural keys have been used in chemoinformatics for many 
years, and are usually encoded by a binary array, each element of 
which denotes the presence or absence of a specific 2D fragment. 
A predefined fragment dictionary lists the various fragment sub-
structures that are encoded in the fingerprint. This study used 
the 1052 bit Barnard Chemical Information (BCI) fingerprints, 
which encode the following types of fragment substructure: aug-
mented atoms, atom sequences, atom pairs, ring composition 
and ring fusion substructural fragments.41

Hashed fingerprints differ from structural keys in that they do 
not use a predefined dictionary. Instead, patterns are encoded 
in the fingerprint, where a pattern describes, for example, a 
path of length n bonds, i.e., (atom–bond–atom)n with the 
natures of the atoms and bonds defined. The set of  patterns 
produced from any molecule of non-trivial size is obviously 
very large and differs from molecule to molecule. It is hence 
not possible to assign each potential pattern to a specific bit 
position in a fingerprint of predefined length; instead, the 
pattern is passed to a hashing function to generate a position 
(or positions) within the available length of the bit-string. The 
study used three different hashed fingerprints: 2048 bit Daylight 
fingerprints,42 988 bit Unity fingerprints37 and 2048 bit Avalon 
fingerprints. Daylight fingerprints encode each atom’s type, 
all augmented atoms and all paths of length 2–7 atoms. Unity 
fingerprints encode paths of length 2–6 atoms, and also include 
60 structural keys for common atoms and ring counts. Avalon 
fingerprints are used for similarity search in Novartis’ corporate 
data warehouse and encode atoms, augmented atoms, atom 
triplets and connection paths.

A circular substructure is a fragment descriptor where each 
atom is represented by a string of extended connectivity values 
that are calculated using a modification of the Morgan Algo-
rithm.43 The study evaluated two different circular substructure 
descriptors from Scitegic’s Pipeline Pilot Software:35 Extended 
Connectivity Fingerprints (ECFPs) and Functional Connectiv-
ity Fingerprints (FCFPs). The initial code assigned to an atom 
is based on the number of connections, the element type, the 
charge, and the mass for ECFPs and on six generalised atom-
types (viz., hydrogen-bond donor, hydrogen-bond acceptor, pos-
itively ionisable, negatively ionisable, aromatic and halogen) for 
FCFPs. This code, in combination with the bond information 
and with the codes of its immediate neighbour atoms, is hashed 
to produce the next order code, which is mapped into an address 
space of size 232, and the process iterated until the required level 
of description has been achieved. The experiments here used the 

ECFP_2, ECFP_4, FCFP_2 and FCFP_4 fingerprints, where 
the numeric code denotes the diameter in bonds up to which 
features are generated.

The Scitegic software represents a molecule by a list of 
integers, each describing a molecular feature and each in the 
range −231 to 231. These integer lists were normalised in two 
ways, referred to as method A and method B. In method A, all 
the features present in the database were enumerated, so that 
each feature was given as its new code its rank in the sorted list 
of codes, with the length of the resulting fingerprints being the 
number of distinct features in the database. In method B, the 
integers describing a molecule were hashed to a bit-string of 
length 1024 bits. This inevitably means that collisions occur, 
with the result that method B loses some of the structural 
information that is retained by method A; however, the latter 
representation is dependent on the precise database that is being 
processed.

Pharmacophore points are features (such as a heteroatom 
or the centre of an aromatic ring) that are thought to be 
required for a molecule to show bioactivity. Pharmacophore 
fingerprinting involves generating all of  the patterns of three 
or four pharmacophore points in a molecule, together with the 
corresponding inter-point distances, and then using the resulting 
3D structural codes as descriptors for similarity searching or 
diversity analysis (see, e.g., refs. 17, 18, 30, 31). When used 
with 2D, rather than 3D, structural representations, the inter-
atomic distances can be replaced by through-bond distances, 
and this approach forms the basis of  the two pharmacophore 
fingerprints studied here: Similog keys9 and the Chemically 
Advanced Template Search (CATS) descriptor,28 both of 
which are based on generalised atom-types describing potential 
pharmacophores.

The Similog keys use a “DABE” atom-typing scheme based 
on the following four properties: hydrogen-bond donor (D), 
hydrogen-bond acceptor (A), bulkiness (B) and electropositivity 
(E). The presence or absence of these properties for an atom is 
encoded in a 4 bit string, and each triplet of atoms is represented 
by the three DABE strings and by the associated topological dis-
tances: in all, 8031 different codes were identified in the MDDR 
database. The Similog keys store the occurrence of each distinct 

Table 5 MDDR activity classes used in the study

Activity class Number of   Similarity

 Actives Assemblies Frameworks Mean SD

5HT3 antagonists 752 438 237 0.35 0.12
5HT1A agonists 827 478 271 0.34 0.10
5HT Reuptake inhibitors 359 193 126 0.35 0.12
D2 antagonists 395 270 187 0.35 0.10
Renin inhibitors 1130 595 339 0.57 0.11
Angiotensin II AT1 antagonists 943 496 285 0.40 0.10
Thrombin inhibitors 803 451 295 0.42 0.13
Substance P antagonists 1246 633 380 0.40 0.11
HIV protease inhibitors 750 475 331 0.45 0.12
Cyclooxygenase inhibitors 636 308 139 0.27 0.09
Protein kinase C inhibitors 453 190 134 0.32 0.14

Table 6 Binning schemes to convert the occurrence of Similog keys to 
incidences

Method A Method B 8 bit string

1 occurrence 20  occurrences < 21 10000000
2 occurrences 21  occurrences < 22 11000000
3 occurrences 22  occurrences < 23 11100000
4 occurrences 23  occurrences < 24 11110000
5 occurrences 24  occurrences < 25 11111000
6 occurrences 25  occurrences < 26 11111100
7 occurrences 26  occurrences < 27 11111110
8 and more occurrences 27  occurrences 11111111
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code, and not just their presence or absence as in a conventional 
bit-string. A binning scheme was hence used to bin the occur-
rence data into 8 bit strings: the two binning schemes used 
(called method A and method B) are shown in Table 6.

The CATS descriptor is based on counts of atom-pair topo-
logical distances, with the following generalised types of atom 
being considered in the generation of the descriptor: lipophilic, 
positive, negative, hydrogen-bond donor and hydrogen-bond ac-
ceptor. The occurrences of the 15 possible pairs of pharmaco-
phores are determined for distances up to 10 bonds to give a 150 
element (i.e., 15 × 10) vector. The vectors were generated using 
the description in Fechner et al.29 and then converted to a binary 
fingerprint using method B in Table 6 (we only used method B 
for CATS as a substantial fraction of the keys occurred more 
than seven times in a molecule).

Table 7 lists the abbreviated names that are used in the paper 
for each of the 15 types of fingerprints, where the A and B 
subscripts denote the type of normalisation scheme used for 
binning in the case of the ECFP, FCFP and Similog descriptors. 
The table also details statistical characteristics of each of these 
fingerprints: an inspection of the average numbers of bits and 
the densities (i.e., the mean number of bits that are set divided by 
the bit-string length and then expressed as a percentage) shows a 
very wide range of levels of molecular description.
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