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�is research aims to address the problem of discriminating benign cysts frommalignantmasses in breast ultrasound (BUS) images
based on Convolutional Neural Networks (CNNs). �e biopsy-proven benchmarking dataset was built from 1422 patient cases
containing a total of 2058 breast ultrasound masses, comprising 1370 benign and 688 malignant lesions. �ree transferred models,
InceptionV3, ResNet50, and Xception, a CNN model with three convolutional layers (CNN3), and traditional machine learning-
based model with hand-cra�ed features were developed for dierentiating benign and malignant tumors from BUS data. Cross-
validation results have demonstrated that the transfer learning method outperformed the traditional machine learning model and
the CNN3 model, where the transferred InceptionV3 achieved the best performance with an accuracy of 85.13% and an AUC of
0.91. Moreover, classi�cationmodels based on deep features extracted from the transferredmodels were also built, where themodel
with combined features extracted from all three transferred models achieved the best performance with an accuracy of 89.44% and
an AUC of 0.93 on an independent test set.

1. Introduction

Breast cancer is regarded as one of the high-incidence cancer
types among women worldwide [1, 2]. Early detection of
masses and nodules is crucial for successful treatment and
reducing the mortality rate [2]. Ultrasonography is consid-
ered themost important adjunct method in clinical detection
and diagnosis of breast cancer for its high availability, cost-
eectiveness, acceptable diagnostic performance, and nonin-
vasive and real-time capabilities [3].

As a valuable and bene�cial means for breast can-
cer detection and classi�cation, computer-aided diagnosis
(CAD) system helps radiologists to detect and classify
abnormalities like masses as either benign or malignant [4].
Current CAD system relies on multiple pipelines includ-
ing preprocessing, tumor segmentation, feature extraction,
feature selection, and machine learning-based classi�cation

[5]. Preprocessing is used to reduce speckle noise and facil-
itates segmentation, which aims to identify the surrounding
tumors. Feature extraction is one of the most important steps
in CAD system, followed by feature selection that reduces
data dimension and improves model generalization. Most
extracted features are explicitly designed or handcra�ed,
including tumor shape, intensity statistics, and texture fea-
tures [6]. Based on a selected subset of features, a classi�er
can be built. �e design of hand-cra�ed features signi�cantly
aects the classi�cation performance.

Recently, LingyunCai et al. proposed a novel phase-based
texture descriptor for a robust support vectormachine (SVM)
classi�er to discriminate benign and malignant tumors in
BUS images [7]. Similarly, Menon R V et al. adopted SVM
method for classi�cation through textural, morphological,
and histogram feature metrics with principal component
analysis (PCA) for dimension reduction [8]. In [9], a novel
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feature selection approach based on dual evaluation criteria
was proposed to select 457 texture and shape features,
with which Arti�cial Neural Network (ANN) and SVM
were both used for classifying benign and malignant breast
tumors. In general, current approaches mostly rely on man-
ually designed features and a traditional classi�er (such as
AdaBoost [10] and SVM [11]) for masses type prediction.
Although the number of handcra�ed features has reached
tens of thousands, these features are shallow and of low
order, which may not fully characterize the heterogeneous
pattern within the tumor. Moreover, extracting domain-
speci�c image features extremely depends on a good under-
standing of the tumor in the radiological level. On the other
hand, most previous studies require tedious operations like
extensive preprocessing, image normalization, and lesion
segmentation, whichmay signi�cantly aect the repeatability
of the classi�cation method.

Deep learning algorithm, in particular Convolutional
Neural Network (CNN), has been widely recognized as a
reliable approach to learn predictive features directly from
original images [12]. Many deep CNN models are presented
for object detection and classi�cation such as ResNet [13],
InceptionV3 [14], and Xception [15]. �e ResNet model [13]
won the ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC) [16] in 2015 with an error rate of 3.6%,
outperforming human level (5%-10%) incredibly. Xception
[15], proposed in 2016, is an extension of the inception
architecture, which performs slightly better than InceptionV3
[14] in the ImageNet dataset. At present, deep CNN has
become popular in the �eld of computer vision, as well as
in the community of medical imaging analysis. For breast
ultrasound image classi�cation, several studies have been
proposed [12, 17].

Although deep CNNs have been shown to be e�cient
classi�ers, they always require a large amount of training
data, which can be a di�cult task for medical imaging data.
When the target dataset is signi�cantly smaller than the base
dataset, transfer learning is believed to be a powerful tool for
training deeper networks without over�tting [18]. In transfer
learning, the training is performed in a two-step way that
involves pretraining a deep neural network on a large dataset
followed by a �ne-tuning step by means of freezing the layers
up to several convolutional blocks on a small local dataset.
However, few studies have been done on developing and
comparing transfer learning-basedmodels for discriminating
benign cysts from malignant masses in breast ultrasound
images.

In this study, we proposed and compared �ve dierent
models for classi�cation of benign and malignant masses in
BUS images. �e �ve proposed models were a three-layer
CNN model trained from scratch, a traditional classi�cation
model with hand-cra�ed features, and three transfer learning
models built with pretrained CNNmodels: ResNet50, Incep-
tionV3, and Xception. Moreover, a deep feature-combining
model was built with an ANN model and deep features
extracted from the above three transfer learning models. �e
contributions of our study are summarized as follows. (1)
Instead of training speci�c CNNs from scratch, the proposed
transfer learning method was able to learn eective features

from the training data and achieved automatic classi�cation
of ultrasonic breast masses. (2)�e transfer learning method
outperformed the traditional machine learning model and
the CNN model, while the deep feature-combining model
achieved an improved performance compared to all the other
tested classi�cation models.

2. Materials and Methods

2.1. Convolutional Neural Network. In the case of lacking
enough samples to train deep neural networks, a shallow
CNN model was designed. Figure 1 illustrated the overall
architecture of the CNN model (denoted CNN3) used in
the paper. �e breast ultrasound images were resized into
150×150 as the input of CNN3. Our architecture, CNN3,
was made up of three convolutional layers and two fully
connected layers with a so�max classi�cation function. �e
number of model layers was experimentally determined in
order to design a CNN model with optimized classi�ca-
tion performance. All convolutional layers had 3×3 kernels
stacked togetherwithRecti�ed LinearUnits (ReLUs) between
each other followed bymaxpooling layers with a stride of two.
Particularly, the CNN3 model used global average pooling,
which averages out the channel values across the 2D feature
map a�er the last convolutional layer in order to reduce the
total number of parameters. �e two neurons in the output
layer indicated class scores of benign and malignant masses.

2.2. Transfer Learning. When training dataset is relatively
small, transferring a network pretrained on a large annotation
dataset and �ne-tuning it for a particular task are an e�cient
way to achieve acceptable accuracy and less training time
[18]. Although classi�cation of breast masses in BUS images
diers from object recognition in natural images, they may
share similar learned features [19]. It is expected that the
deep features learned from top performing networks in the
ILSVRC would also perform well in dierent task. Next, we
will introduce three popular deep neural networks used for
transfer learning in our study: ResNet50, InceptionV3, and
Xception.

�e ResNet model consists of a stack of similar (so-
called residual) blocks, with each block being in turn a stack
of convolutional layers [13]. �e output of a block is also
connected with its own input through an identity mapping
path. �is design alleviates the vanishing gradient problem
and improves the gradient backward �ow in the network, thus
allowing training much deeper networks.

InceptionV3 [14] is a rethinking for the initial structure of
InceptionV1 [20] and InceptionV2 [21]. �e model is trained
on the ImageNet dataset, which can identify 1000 classes with
a top 5 error rate of 3.5% and top 1 error rate down to 17.3%.
In addition, InceptionV3 manages memory more e�ciently
than other CNN models.

Xception [15] is based on the assumption that the cor-
relation between the input channels is completely separable
from the spatial correlation. Speci�cally, Xception extends
the inception architecture by replacing standard convolution
with depthwise independent convolution. It is a linear stack
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Figure 1: �e architecture of CNN3. �e network has 3 convolutional layers followed by 2 fully connected layers. 32-64-128-256-2 is the
number of feature maps generated in each layer. 74-36-17 is the size of the feature maps. Global average pooling is used to reduce the total
number of parameters. �ere are 256 neurons in the �rst fully connected layer and 2 neurons in the output layer indicating class scores of
benign and malignant masses.

of deep collapsible layers with residual connections. Xception
performs slightly better than InceptionV3 on the ImageNet
dataset and outperformsmuch on a larger scale image dataset
with 17000 categories using same number of parameters.

In the �eld of computer vision, many deep CNN archi-
tectures have been well trained for object detection and
classi�cation, and the models mentioned above are publicly
available. �erefore, there is no need to train those deep
neural networks from scratch [22]. We used the Keras
module built on top of TensorFlow as the deep learning
framework, where most top performing pretrained model
weights were provided. Our approach included a two-step
training process: (1) leveraging a network pretrained on a
large dataset in source domain, which shares general features
for most computer vision problems, and then (2) �ne-tuning
it on a small-scale local dataset in target domain by means of
freezing the layers up to several convolutional blocks.

�e transfer learning framework used in this paper is
illustrated schematically in Figure 2. For example, when
InceptionV3 was selected as the base CNN (denoted as CNN-
A), speci�c operation was described as follows. First, to adapt
to the target domain, the number of the fully connected layers
and neurons in each layer was modi�ed accordingly. �en a
new network model, CNN-B, was obtained. In addition, only
the convolutional layers of CNN-B were instantiated with
weights of the CNN-A model pretrained on the ImageNet
dataset. Finally, to improve the classi�cation performance,
the parameters of the last several convolutional blocks of the
InceptionV3model were �ne-tuned on our own BUS dataset.

2.3. Feature Combination. Figure 3 illustrates the feature-
combining model. �e above three pretrained deep neu-
ral network models were �ne-tuned on our BUS dataset
�rstly. �en features were extracted and combined by
means of feature concatenation. Finally, ANN was adopted

for classi�cation of breast masses. Note that dierent
combination of the three groups of deep features was used
for classi�cation.

3. Experiments

Experiments were conducted to evaluate the performance
of �ve models on breast masses classi�cation, including a
traditional machine learning-based model, a CNN3 model,
and three transfer learning models. Finally, a deep feature-
combining model was built with features extracted from
the above three �ne-tuned pretrained deep CNNs, where an
ANN was used for performance evaluation and comparison
in classifying breast masses. Experiments were based on a 64-
bit Ubuntu 16.04 operating system with a 32GB memory and
a NVIDIA GTX1080 GPU.

3.1. Data. In this retrospective study, a cohort of 1422 patients
was collected from the �ird A�liated Hospital of Sun Yat-
sen University between 2014 and 2017. In total, 2058 masses
were observed and used for building and validating the mod-
els: 688 malignant solid masses and 1370 benign masses. All
masses were con�rmed by tissue samples obtained via biopsy
or operation. �e contours of the masses were manually
delineated by an experienced radiologist. Figure 4 shows
three representative cases, each of which is provided with
annotation of category label and lesion contours.

During training, standard data augmentations such as
rescale, �ip, and zoom were applied. However, we did not
apply rotation to the images tagged as ”habit,” as it may
change some key diagnostic properties of breast masses like
aspect ratio. �e converted images were resized to meet
requirement of speci�c models. For ResNet50, Xception, and
InceptionV3models, the input image was resized to 224×224,
299×299, and 299×299, respectively.
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Figure 2: Overview of transfer learning framework in our paper. Top row: the CNN-A is pretrained on the ImageNet database for
classi�cation, which consists of many convolutional blocks and fully connected layers. Bottom row: a�er modifying the structure of fully
connected layers, the CNN-B model (except fully connected layers) is initialized with the previous trained weights from CNN-A, the �rst
n convolutional blocks of which are locked, while the le� are unlocked. �en the entire network is trained on breast ultrasound images to
�ne-tune the remaining unlocked layers.

Figure 3: Illustration of feature combination conducted in this paper.

Label:malignant Label:benignLabel:malignant

Figure 4: �ree representative breast masses.
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3.2. Implementation Details. In the traditional model, the
lesion contours of breast ultrasound images were segmented
by an experienced radiologist. Within the segmented mass,
we extracted various hand-cra�ed features for model build-
ing, including 18 �rst-order features, 12 texture features, and
8 morphological features (listed in Table 1). We built the clas-
si�er using both AdaBoost and SVM. Before classi�cation,
feature selection was required to reduce the data dimension.
Here we employed the Linear Discriminant Analysis (LDA)
as the feature selection method.

For CNN3 and three transfer learning models, Batch
normalization [21] was employed to speed up the training
of fully connected layers. Dropout [23] was applied with P
= 0.5. �e probability of each image sample belonging to
the malignant or benign mass was computed with a so�max
classi�er. We used the recti�ed liner unit activation function
in each layer. �e objective function used was categorical
cross-entropy. And the model was trained using Adam with
a batch size of 16 as learning rule. Additionally, in the process
of transfer learning, three fully connected layers were added
with {1024, 512, 2} units.

10-fold cross-validation was used to assess the traditional
model, CNN3, and the transfer learning models, where all
BUS images were split into two parts, training set (90%)
and validation set (10%), during each round of validation.
Training set was used to train the model, while the perfor-
mance of each model was evaluated on the validation set.
Speci�cally, there were 1852 masses (1233 benign masses and
619malignant masses) in the training set and 206masses (137
benignmasses and 69malignantmasses) in the validation set.

In the deep feature-combiningmodels, we randomly split
the BUS images into three parts, namely, training set (80%),
validation set (10%), and test set (10%). Training set was
used to train the model, while the validation set was used
for selecting the model with the smallest error. �e test set
was used for independent performance evaluation.�e ANN
classi�er containing three-layer neural networks with a 1024-
512-2 architecture was trained using the Adam algorithm.

3.3. Performance Evaluation Criteria. In our study, the classes
(benign and malignant mass) were not equally represented.
�is imbalance may cause poor classi�cation accuracy for
the minority class [24]. To comprehensively evaluate the
classi�cation performance on the imbalanced dataset, the
accuracy, sensitivity, speci�city, receiver operating character-
istic (ROC) curve, precision recall (PR) curve, and F1 score
were calculated. �e sensitivity, speci�city, accuracy, and F1
score can be calculated as

speci�city = TN

TN + FP (1)

sensitivity = TP

TP + FN (2)

accuracy = TP + TN
TP + TN + FN + FP (3)

F1 = 2TP
2TP + FN + FP (4)

TP is the number of correctly predictedmalignant lesions,
while FP is the number of mistakenly predicted ones.
Likewise, TN represents the number of correctly predicted
benign lesions, and FN represents the number of mistakenly
predicted omes. Based on the ROC curve, the area under
ROC curve (AUC) was also calculated.

4. Results

Table 2 summarizes the performance of traditional machine
learning model in breast masses classi�cation. In terms of
classi�cation accuracy, the eect of morphological features
(70.41%) was better than texture features (66.52%) and
�rst-order features (67.35%). �rough experimental analysis,
the combined morphological features and texture features
used in AdaBoost classi�er can achieve an accuracy of
69.53%, sensitivity of 55.42%, and speci�city of 74.85%.When
combining all the features above, an accuracy of 69.67%,
sensitivity of 55.57%, and speci�city of 75.13% were achieved
using AdaBoost classi�er. It can be also observed that both
AdaBoost and SVM classi�ers with LDA feature selection
achieved improved performance.

�e performance of the CNN3 model directly learned
from our local ultrasound data is also shown in Table 2.
Compared with all tested traditional models, the CNN3
model achieved the highest performance in terms of accuracy
(74.44%), sensitivity (63.19%), speci�city (79.22%), AUC
(0.78), and F1 score (0.60).

�e classi�cation performance of the three transferred
deep neural networks is displayed in Table 3. �ese models
are InceptionV3, ResNet50, andXception. It can be found that
transfer learningmodel with pretrained InceptionV3network
achieved the top performance with the highest accuracy of
85.13%, AUC of 0.91, and F1 score of 0.78. �e accuracy rates
of ResNet50 and Xception models were slightly degraded to
84.94% and 84.06%, respectively. From Tables 2 and 3, it is
observed that the transferred InceptionV3 model achieved
the best accuracy among all �ve compared models. �e
speci�city re�ects the diagnostic ability to exclude benign
breast cancers, while sensitivity re�ects the ability to detect
malignant breast cancers. It is shown in Table 3 that transfer-
ring InceptionV3model on our ownBUSdataset achieved the
highest sensitivity (77.44%) and speci�city (89.06%) among
all tested models.

Figure 5 shows the ROC curves of all tested models. �e
transferred InceptionV3 and ResNet50 models achieved an
equal AUC of 0.91, while the AUC of the transferred Xception
model was slightly lower (0.90). Moreover, the AUC of the
transfer learning models signi�cantly outperformed both the
CNN3 (0.78) and the traditionalmodel (0.73). Figure 6 shows
the PR curves of the tested models. It can be also observed
that the transfer learning models signi�cantly outperformed
the CNN3 and the traditional model, where the transferred
InceptionV3 model achieved the best performance among all
the models.

Furthermore, Figure 7 indicates how the number of
�ne-tuned convolutional blocks in�uenced the classi�cation
performance. For all tested deep neural models, �ne-tuning
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Table 1: Features extracted in traditional model.

Feature category Feature description

First-order features

FT1: Energy, FT2: Entropy, FT3: Minimum, FT4: 10th percentile, FT5: 90th
percentile, FT6: Maximum, FT7: Mean, FT8: Median, FT9: Interquartile Range,
FT10: Range, FT11: Mean Absolute Deviation (MAD), FT12: Robust Mean Absolute
Deviation (rMAD), FT13: Root Mean Square (RMS), FT14: Standard Deviation,
FT15: Skewness, FT16: Kurtosis, FT17: Variance, FT18: Uniformity

Texture features

Global texture features:
FM1: Variance, FM2: Skewness, FM3: Kurtosis
Gray-Level Cooccurrence Matrix (GLCM) texture features:
FM4: Energy, FM5: Contrast, FM6: Correlation, FM7: Homogeneity, FM8: Variance,
FM9: Sum Average, FM10: Entropy, FM11: Dissimilarity, FM12: Autocorrelation

Morphological features
FB1: Circularity, FB2: Elongation, FB3: Compactness, FB4: Roughness, FB5:
Orientation, FB6: Radial distance standard deviation, FB7: Maximum chord length,
FB8: Second moment

Table 2: Quantitative classi�cation results based on traditional approaches and CNNmodel.

Model Speci�city Sensitivity Accuracy AUC F1

First-order features + AdaBoost 71.00% 52.02% 67.35% 0.66 0.38

Texture features + SVM 66.80% 48.69% 66.52% 0.52 0.04

Morphological features + AdaBoost 75.18% 57.22% 70.41% 0.72 0.51

First-order features + Morphological features + AdaBoost 74.73% 54.95% 69.29% 0.73 0.49

Texture features + First-order features + AdaBoost 70.38% 49.87% 66.52% 0.65 0.36

Texture features + Morphological features + AdaBoost 74.85% 55.42% 69.53% 0.72 0.50

Texture features + Morphological features + First-order features + AdaBoost 75.13% 55.57% 69.67% 0.72 0.50

Texture features + Morphological features + First-order features + AdaBoost with LDA 74.61% 58.10% 70.55% 0.73 0.49

Texture features + Morphological features + First-order features + SVM 66.93% 37.50% 64.53% 0.53 0.15

Texture features + Morphological features + First-order features + SVM with LDA 77.00% 58.96% 71.77% 0.68 0.55

CNN3 79.22% 63.19% 74.44% 0.78 0.60

Figure 5: ROC curves of evaluated classi�cation models on BUS
dataset.

the last convolutional blocks can improve the performance
compared with keeping the weights of all the convolutional
layers �xed. For example, �ne-tuning the last convolutional
block of ResNet50 network achieved an accuracy of 81.48%.

Figure 6: Precision-recall curves of evaluated classi�cation models
on BUS dataset.

However, the performance does not solely depend on how
deep the base model is �ne-tuned. �ere was a decrease
in classi�cation accuracy when �ne-tuning more than three
convolutional blocks for ResNet50 model.
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Table 3: Comparison of quantitative classi�cation results based on dierent models.

Model Speci�city Sensitivity Accuracy AUC F1

ResNet50 88.74% 77.39% 84.94% 0.91 0.78

Xception 87.16% 77.44% 84.06% 0.90 0.76

InceptionV3 89.06% 77.44% 85.13% 0.91 0.78

CNN3 79.22% 63.19% 74.44% 0.78 0.60

Traditional model 74.61% 58.10% 70.55% 0.73 0.49
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Figure 7: Classi�cation performance versus the number of �ne-
tuned convolutional blocks (Conv block 0 indicates the performance
without �ne-tuning convolutional blocks).

�e classi�cation performance of the deep feature-
combining model is summarized in Table 4. It can be
found that the model built with combined deep features
extracted from all three transferred models achieved the
best performance in terms of accuracy (89.44%), sensitivity
(88.73%), speci�city (89.91%), AUC (0.93), and F1 score
(0.87). Generally, the models built with deep features from
two transferred models were better than those built with
features from only one model.

Figures 8 and 9 are the ROC curves and PR curves for
all tested deep feature-combining models, respectively. It can
be found that the model built with features extracted from
all the three transferred models achieved the best overall
performance.

5. Discussion

�emain �nding of this study was that the transferred CNN
models outperformed both the CNN trained from scratch
and the traditional model, while the deep feature-combining
model achieved the best performance for classi�cation of
benign andmalignant breast masses from ultrasound images.
Traditional models were built with hand-cra�ed image fea-
tures and a machine learning-based classi�er. �e extraction

Figure 8: ROC curves of evaluated models with feature combina-
tion on BUS dataset.

Figure 9: Precision-recall curves of evaluated models with feature
combination on BUS dataset.

of domain-speci�c imaging features largely depends on the
designer’s prior knowledge. Our experiments show that
the classi�cation problem can be well addressed by using
transferred CNN models, which were able to learn eective
features based on the pretrained models and achieved better
performance in breast masses classi�cation.
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Table 4: Comparison of quantitative classi�cation results with feature combination.

Features Speci�city Sensitivity Accuracy AUC F1

Transferred features based on ResNet50 83.05% 87.10% 84.44% 0.91 0.79

Transferred features based on Xception 80.53% 77.61% 79.44% 0.87 0.74

Transferred features based on InceptionV3 82.20% 85.48% 83.33% 0.89 0.78

Transferred features based on InceptionV3 and Xception 80.99% 86.44% 82.78% 0.89 0.77

Transferred features based on ResNet50 and InceptionV3 86.49% 85.51% 86.11% 0.92 0.83

Transferred features based on ResNet50 and Xception 87.39% 86.96% 87.22% 0.92 0.84

Transferred features based on ResNet50, Xception, and InceptionV3 89.91% 88.73% 89.44% 0.93 0.87

Our study investigated the technique of transfer learning
that �ne-tuned the deep neural network models pretrained
on large-scale natural image dataset. According to Table 3
and Figures 5 and 6, the proposed approach performed well
in breast masses classi�cation by transferring three CNN
models (InceptionV3, ResNet50, and Xception). Among the
three models, the transferred InceptionV3 achieved the best
accuracy. Our result demonstrated that transferring Incep-
tionV3 model pretrained on natural image dataset could be
an eective way to build deep neural network model for
classi�cation of breast masses in medical ultrasonic images.

It is revealed in the experiments that CNNs initialized
with large-scale pretrained networks outperformed those
directly learnt from small-scale ultrasound data with accu-
racy improvements of 7% to 11%. �is can be explained by
the fact that the CNN model cannot learn the true data
distribution from a small dataset and therefore is likely to
over�t the training data. �us, with small-scale ultrasound
image dataset, we suggest the use of transferred CNNmodels
for classi�cation of breast masses rather than learning a deep
neural network from scratch.

Our results also indicated that there was a trade-o
between the number of �ne-tuned convolutional blocks and
the classi�cation accuracy as shown in Figure 7. �erefore, it
is promising to apply transfer learningwith a balance between
the scale of image dataset and the complexity of CNNmodels.
In fact, features learned from pretrained deep neural models
on a large natural image dataset without �ne-tuning could
be speci�c to natural images, which may not generalize well
in medical images. When �ne-tuning certain convolutional
blocks, the model was further generalized on BUS dataset
by learning new representative features. �us, the model
was capable of classifying masses in BUS images. When the
depth of the �ne-tuned convolutional blocks exceeds a certain
number, the deep network model may not be well trained
based on the small-scale image samples in our BUS data. In
such a case, over�tting was prone to occur, resulting in a
decrease in classi�cation accuracy.

From Table 4 and Figures 8 and 9, the deep feature-
combining model built with features extracted from the
three �ne-tuned CNN models (ResNet50, InceptionV3, and
Xception) achieved the highest accuracy. �ese three models
were pretrained on a large-scale dataset, so we believe feature
derived from these models can fully characterize the image
heterogeneity, which is of essential importance for classi�ca-
tion of tumor types. Combination of features extracted from

multiple deep convolutional models can capture more image
patterns, which may be useful for identifying malignant
breast masses.

6. Conclusion

In this paper, we proposed and compared �ve dierent
models for classi�cation of benign and malignant masses in
BUS images. �e �ve proposed models are a CNN model
trained from scratch, a traditional classi�cation model with
hand-cra�ed features, and three transfer learning models
built with pretrained CNN models: ResNet50, InceptionV3,
and Xception. Finally, a deep feature-combining model was
built with an ANN model and deep features extracted from
the above three transfer learning models. Among the CNN
models discussed in this paper, transferred InceptionV3
achieved the best results on our own BUS dataset with
an accuracy of 85.13% and an AUC of 0.91, outperforming
not only traditional machine learning models but also the
CNN3 model directly learnt from small-scale ultrasound
data. Transferring InceptionV3 model pretrained on a large-
scale natural image dataset could be an eective way to build
deep neural networkmodel for classi�cation of breast masses
on a small-scale ultrasonic image dataset. Additionally, com-
bining transferred features frommultipleCNNs could further
improve the classi�cation accuracy.

In future work, with a larger BUS image dataset, we
can exploit and design speci�c neural networks for tumor
classi�cation. In addition, it should be noted that although
transferred InceptionV3 achieved a better performance, it
is memory-consuming and therefore may not be suitable
for embedded devices. For embedded devices, some more
memory-savingmodels such as shallower architecturesmight
be a better choice.

Data Availability

Breast ultrasound images in this research were acquired
directly from the �ird A�liated Hospital of Sun Yat-
sen University. And the diagnostic data captured is from
patients from 2014 till now. It consists of 2058 cases with
688 malignant solid masses and 1370 benign masses. All the
diagnosis results of the cases were con�rmed by both biopsy
and operation with high credibility. Meanwhile, all tumors
were annotated by an experienced reader.
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