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ABSTRACT: 
 

Digital Surface Models (DSMs) can assist building change detection in a variety of approaches. Limited to the quality of DSMs from 

satellite stereo imagery, it is hard to reach precise change detection results using only DSMs. Therefore, DSMs should be used in 

combination with the spectral information from original stereo imagery. For that purpose, two fusion based methods, one using 

feature level fusion and the other using decision level fusion are proposed in our previous research. In this paper, these two methods 

are further evaluated and compared based on two different data sets. One test site features a typical urban environment which is 

captured by two pairs of very high resolution stereo imagery (IKONOS and WorldView-2). The other test site is located in an 

industrial area, the corresponding stereo imagery of the two dates are both from Cartosat-1. Quantitative and qualitative experiment 

results obtained from each dataset are analyzed in detail. Over all, the proposed feature fusion model give better results for the 

industrial area, while the decision fusion method works much better for the urban environment based on very high resolution 

imagery. 

 

 

1. INTRODUCTION 

Fast-paced urban and rural developments, as well as more 

frequent natural disasters (e.g., earthquakes, hurricanes, and 

tsunamis) have increased the demand for efficient urban 

monitoring and disaster assessment. Even though 2D data 

obtained from satellite images from different dates can already 

provide plenty of useful information, it is usually insufficient 

when dealing with changes in the vertical direction, especially 

building changes. Therefore, height information provided by 

Digital Surface Models (DSMs) is indispensable when 

analyzing these changes.  

 

DSMs can assist 3D change detection in a variety of 

approaches. Limited to the quality of the DSMs generated from 

stereo imagery, it is hard to reach precise change detection 

results using only the DSMs. Therefore, DSMs should be used 

in combination with the spectral information from the original 

stereo images. As the DSMs are generated using stereo images, 

spectral information of the same time and area is always 

available. After orthorectification of these images using the 

generated DSM, the ortho-image and DSM are well co-

registered and can be used together. Thus, the main challenge 

here is how to fuse the information from DSMs and ortho-

images. 

 

Many methods have been proposed to fuse two or more kinds of 

data. The main difference of these methods is how and when the 

DSM content is fused with the original images. Three kinds of 

data fusion techniques are summarized in Hall and Llinas 

(1997) and Pohl and van Genderen (1998), and show pixel/data 

level fusion, feature level fusion and decision level fusion 

approaches. For our purpose, the selected fusion method should 

be able to resolve the quality restriction of DSMs by using the 

additional information available in the corresponding spectral 

images. Depending on the quality of the DSMs, the availability 

of multispectral channels and the requirements of the change 

detection task, proper 3D change detection methods have to be 

developed. 

 

In our previous research (Tian et al., 2013a; Tian et al., 2013b), 

two fusion methods have been proposed, one is feature-fusion 

based, and the other is decision-fusion based. In this paper, after 

shortly introducing these two methods, they are tested and 

compared in two test sites. Both of the obtained change maps 

and change masks are evaluated by comparing to the manually 

extracted reference data.  

 

2. METHODS 

2.1 Method I: Feature fusion-based (Tian et al., 2013b) 

The input data of this method consists of two pairs of stereo 

imagery obtained from two dates. Each stereo pair can generate 

one DSM. The DSM is generated based on Semi-Global 

Matching (SGM) method. The DSMs generation and 3D co-

registration methods are described in detail in that paper. 

 

DSMs generated from stereo images exhibit relatively low 

quality in boundary areas. Therefore, instead of directly fusing 

pixel based features from both image sources, this method 

extracts regions from the panchromatic images. As shown in 

Figue1, the workflow of proposed method consists of two 

stages. Firstly, segmentation of orthorectified Cartosat-1 images 

is performed to obtain initial regions. Then regions from two 

dates (Date1 and Date2) are combined to get an initial 

segmentation map. To correct the over-segmentation resulting 

from the region combination, a region merging strategy is 

proposed to reach a reasonable segmentation level. And then, 
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change features from DSMs and from images can be combined 

based on a weighted Change Vector Analysis (CVA). 
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Figure 1. Flow chart of Method I (Tian et al., 2013b). 

 

2.2 Method II: Decision fusion-based (Tian et al., 2013a) 

When the detection of building changes is of interest, both of 

the height changes from DSMs and gray value changes from 

original images can contain uncertain information. In our work 

(Tian et al., 2013a), the Dempster-Shafer (DS) fusion theory is 

adopted to combine change indicators that extracted from these 

two data source. The required input data is the same as Method 

I. Differing to Method I, this approach has also used the 

multispectral (MS) channels from original images to extract 

vegetation and shadow maps.  

 

Figure 2 describes the workflow of this method. In that fusion 

model, two fusion steps are designed. In the first fusion step, the 

height changes and Kullback-Leibler divergence similarity 

measure between the original images are used as building 

change indicator. In the second fusion step, vegetation and 

shadow classifications are used as no-building change indicators 

for refining the change detection results. In the end, an object 

based building extraction method based on shape features is 

performed. 

 

Pan1 Pan2 DSM1 DSM1

(KLD) Similartiy (Robust) Height difference

Change Map

MS1

MS2

Shadow

Vegatation

Refined 

Change Map

Building Change 

Mask

Object based selection

DS Fusion 2nd

DS Fusion 1st

 
 

Figure 2. Flow chart of Method II (Tian et al., 2013a). 

 

2.3 Evaluation method 

In order to evaluate the effectiveness of the proposed methods, 

the results obtained from two methods will be compared with 

reference data. The assessment of the change detection results is 

carried out at both pixel and object level. 

1) Pixel-based evaluation 

 

For the pixel-level evaluation, the results are displayed in terms 

of Receiver Operating Characteristics (ROC) curve analysis 

(Hand and Till, 2001). We use the area under the ROC curve to 

evaluate the quality of each change index and the generated 

result. The ROC curve shows the relationship of true positive 

against false positive. The area under the ROC curve is used to 

measure the ability of single or combined features and the 

difference map to detect the real building changes (Hand and 

Till, 2001). 

 

In the pixel-based change mask evaluation, in order to compute 

the agreement of the change detection mask with the reference 

change mask, the following measures are involved. 

 

a) True Positive (TP): the number of changed pixels 

correctly detected as changed. 

b) True Negative (TN): the number of unchanged pixels 

correctly detected as unchanged. 

c) False Positive (FP): the number of unchanged pixels 

incorrectly detected as changed. 

d) False Negative (FN): the number of changed pixels 

incorrectly detected as unchanged. 

e) Overall Accuracy: 𝑂𝐴 =
𝑇𝑃+𝑇𝑁𝑁 × 100% 

f) Kappa Index of Agreement (Congalton, 1991): 𝐾𝐼𝐴 =
𝑃𝑟(𝑎)−𝑃𝑟 (𝑒)1−𝑃𝑟 (𝑒)

 

 

Where  𝑃𝑟(𝑎) is the relative observed agreement between the 

extracted results and reference data, it is calculated in the same 

way as OA; while 

 𝑃𝑟(𝑒) =
(𝑇𝑃 + 𝐹𝑃) ∗ (𝑇𝑃 + 𝐹𝑁) + (𝐹𝑁 + 𝑇𝑁) ∗ (𝐹𝑃 + 𝑇𝑁)𝑁 ∗ 𝑁  

 

represents the hypothetical probability of the agreement 

between the extracted results and reference data; 

N is the total number of pixels. 

 

2) Object-based evaluation 

 

Concerning building change detection accuracy, correctly 

detected building numbers are in some cases more important. 

As a higher level of the analysis, the changed buildings are 

treated as single objects without consideration of their size. 

Only the effectiveness of the detection of distinct changed areas 

(buildings) in the change map is considered in the assessment. 

Therefore, four parameters are measured to evaluate the object-

based change detection result:  

 

a) True detected number (TDN): The number of changed 

objects that are correctly detected as changed 

b) True detected rate (TD): The number of true detected 

objects as a percentage TD = TDN / NR × 100 

c) False detected number (FDN): The number of 

unchanged objects that are incorrectly detected as changed 

d) False detected rate (FD): The number of falsely 

detected objects as a percentage FD = FDN / ND × 100  

 

where NR and ND are the total number of changed objects of 

the reference data and within the change map, respectively. 
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  (a)    (b)    (c) 

 

    
  (d)     (e) 

Figure 3. Dataset for Munich test area, including orthorectified panchromatic image from date 1 (a) and date 2 (b), change reference 

map (c), DSM from date 1 (d) and date 2 (e). 

 

 

       
   (a)    (b)    (c) 

    
   (d)    (e) 

Figure 4. Dataset for Istanbul test area, including orthorectified panchromatic image from date 1 (a) and date 2 (b), DSM from date 1 

(c) and date 2 (d). 
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3. EXPERIMENT 

3.1 Datasets 

Two datasets are used in this study. The first dataset is obtained 

from the center of Munich (Germany). It has an area of 1.69 

km2 and contains the city center of Munich. This dataset 

features a typical urban environment. The first pair of the stereo 

imagery was captured by IKONOS on July 15, 2005 (shown in 

Figure 3a), while the other pair features WorldView-2 data and 

were acquired on July 12, 2010 (shown in Figure 3b). Since the 

datasets have different resolutions the WorldView-2 images are 

down-sampled to 1 m resolution, to be equal to the IKONOS 

data. After that, all images have the size of (1300 × 1300 

pixels). The change reference data and the generated DSMs are 

displayed in Figure 3c, 3d and 3e respectively. 

 

The second dataset is located in an industrial area, with large 

buildings, in the eastern part of Istanbul. Two Cartosat-1 images 

were acquired with a time difference of three years, the first was 

acquired on August 14, 2008 and the second was acquired on 

May 08, 2011. In this industrial area, concerning change 

detection, the focus lies on newly constructed buildings. Figure 

4 shows the original panchromatic images (Figure 4a and 4b), 

the change reference data (Figure 4c) and the generated DSMs 

(Figure 4d and 4e). It has an image size (500 × 500 pixels) and 

totally covers an area of 6.25 km2, and is characterized as an 

industrial area with low-rise buildings and partly high density. 

 

3.2 Results 

The building change detection results from the two datasets are 

depicted in Figure 5 - 8. Figure 5 shows the building map and 

change mask obtained for the Munich test area based on Method 

I. Pixel values in the change map represent the probability of 

building change. Figure 6 shows the results from Method II. As 

can be seen, the change map from Method II (Figure. 6a) shows 

much clearer results than from Method I (Figure 5a).  

 

In order to present the accuracy of the detected mask, the 

detected change mask is overlaid with the change reference 

map. It is represented in four colors, which are explained in 

Table 1. The true detected pixels are shown with green color; 

False alarms (no-change pixels, falsely detected as change) are 

displayed with red color; the blue pixels represent the missed 

alarms (changed pixels falsely detected as no-change). 

 

 

Reference data 

 
Change Mask 

Change No-Change 

Change True detected False alarm 

No-Change Missed alarm  

 

Table 1. The four colors in the overlaid change mask. 

 

In Figure 5a, one big region of false alarm in the center of the 

test area is obvious. Since it exhibits a relatively large size and 

regular shape, the false alarm is also shown in the final change 

mask (Figure 5b). But these five large changed buildings are 

correctly detected, as displayed in Figure 5b with green color. 

Figure 6a show the DS fusion result including all the change 

indices and no-change indices, the values in the images 

represent the probability of each pixel to belong to the building 

change. The changed buildings are mostly highlighted in red 

color. Figure 6b shows the final change masks. It exhibits fewer 

false alarms in comparison to Figure 5b. 

 

Figure 7 and 8 depict the change detection result from the 

Istanbul test site. The advantage of the region based method is 

more obvious than in the urban area. The obtained results from 

Method I shown in Figure 7a are less noisy and the detected 

buildings exhibit much sharper boundaries. Figure 7b shows the 

change map, which is automatically stretched to a change 

probability map. Figure 8a is the obtained fusion result based on 

the two building-change indicators. Due to the lack of 

multispectral channels, the second fusion step of Method II 

cannot be applied. After thresholding and refining it with shape 

features, the change mask is displayed in Figure 8b. Although 

there remain more false alarms than with Method I, most of the 

changed buildings are still correctly highlighted with green 

colors. 

 

3.3 Evaluation and discussion 

3.3.1 Change maps evaluation 
The goal of this experiment was to evaluate and compare the 

effectiveness of the proposed frameworks on different sorts of 

stereo imagery. The change detection results from the two 

methods are compared to the reference data in the evaluation 

procedure. 

 

Table 2 comprises the quality comparison of the change maps 

generated from the two methods for the two datasets. The area 

under the ROC curve (AUC) has been adopted to compare the 

change maps displayed in Figure 5a, 6a, 7a and 8a. A higher 

AUC value indicates a better quality of change map, meaning 

that it is more capable of providing a reliable change mask. The 

result from the Istanbul test area is much easier to understand. 

By visual comparison, the change map from Method I, shown in 

Figure 7a, has better highlighted the real changes compared to 

the result from Method II (shown in Figure 8a), and the 

boundaries are much sharper. Thus Method I obtains larger 

AUC than Method II. In the Munich test area, Figure 6a from 

Method II displays a much clearer change map than Figure 5a. 

But the AUC from Method I is still better than from Method II. 

This can be explained by reconstruction: in the selected test 

area, several change buildings are rebuilt, thus the height 

changes of these buildings are limited, which will influence the 

DS fusion procedure. Although the change map from Method I 

obtain a higher AUC, both of the real changes and false alarms 

have been highlighted (shown in Figure 5a). It is difficult to 

select a proper threshold value to generate an accurate change 

mask.  

 

Method AUC 

 Munich   Istanbul 

I 0.9270 0.9667 

II 0.9025 0.9432 

 

Table 2. Area under ROC curve comparison 
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(a)       (b) 

Figure 5. Change map (a) and change mask (b) generated in the Munich test area with Method I. 

 

   
(a)       (b) 

Figure 6. Change map (a) and change mask (b) generated in the Munich test area with Method II. 

 

   
(a)       (b) 

Figure 7. Change map (a) and change mask (b) generated in the Istanbul test area with Method I. 

 

   
 (a)       (b) 

Figure 8. Change map (a) and change mask (b) generated in the Istanbul test area with Method II.  
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3.3.2 Change masks evaluation 
 

Table 3 and Table 4 illustrate the change mask evaluation 

results. According to the pixel-based change mask evaluation 

result, in the Munich test area Method II obtains a better change 

mask. The KIA obtained from Method II is also much higher 

than for Method I. The object-based evaluation results listed in 

Table 4 again show the weakness of Method I in the Munich 

test area, especially regarding the false detected rate..  

 

The Istanbul test site is located in an industrial area. Therefore it 

is much easier to achieve a proper segmentation level than in 

the urban area. Thus, Method I achieves better OA and KIA 

than Method II; and few false alarm objects remain in the 

obtained change mask. According to the object evaluation result 

(Table 4), Method I has also correctly detected more changed 

buildings and the false alarms drop significantly in comparison 

to Method II. 

 

Method Munich Istanbul 

 OA KIA OA KIA 

I 0.9917 0.5044 0.9823 0.7578 

II 0.9957 0.6899 0.9720 0.6365 

 

Table 3. Pixel-based change masks evaluation 

 

Method True Detected (object) False Detected (object) 

 Number Rete[%] Number Rate [%] 

I (Munich) 7 70.00 10 62.50 

II (Munich) 8 80.00 3 30.00 

I (Istanbul) 29 74.36 5 16.67 

II (Istanbul) 28 71.79 14 35.90 

 

Table 4. Region-based change masks evaluation. 

 

 

4. CONCLUSION 

In this paper, two DSM-assisted change detection approaches 

are summarized and compared. Two representative test sites are 

chosen for the comparison. One test site features a typical urban 

environment. Two pairs of stereo imagery from two dates are 

captured with different sensor, one is from IKONOS and the 

other is from WorldView-2. The other test site is located in an 

industrial area. The corresponding stereo imagery of two dates 

have been both acquired by Cartosat-1. Both methods are 

implied to these two datasets. The obtained change maps and 

change masks are compared visually and numerally.  

 

It has been shown that DSMs generated from satellite stereo 

imagery are suitable for automatic and semi-automatic building 

change detection. These two methods are advanced for different 

situations. It has been proven that these two methods have their 

advantages in different situations. Over all, the region-based 

feature fusion method can normally obtain a clearer change 

mask with high accuracy if proper segmentation can be 

provided. But the decision fusion method is more robust and 

advanced in more variable areas, like dense urban regions 

captured by very high resolution imagery.  
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