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Abstract. This study compares two models that are used to describe the elastic properties of

fiber-reinforced materials with dispersed fibers, in particular some soft biological tissues such

as arterial walls and cartilages. The two model approaches involve different constitutive frame-

works, one being based on a generalized structure tensor (GST) and the other on the method of

angular integration (AI). By using two representative examples, with the same number of pa-

rameters for each model, it is shown that the predictions of the two models are virtually identical

for a significant range of large deformations, which contradicts conclusions contained in several

papers that are based on faulty analysis. Additionally, each of the models is fitted to sets of uni-

axial data from the circumferential and axial directions of the adventitia of a human aorta, both

models providing excellent agreement with the data. While the predictions of the two models

are comparable and exclusion of compressed fibers can be accommodated by either model, it

is well known that the AI model requires more computational time than the GST model when

used within a finite element environment, in particular if compressed fibers are excluded.

Keywords: Fiber dispersion model; generalized structure tensor; angular integration model;

fibrous tissue

1 Introduction

Collagen fibers are ubiquitous load-bearing and reinforcing elements in fibrous tissues and are

thus important from both structural and mechanical perspectives. Experimental data confirm
∗Based in part on the Rodney Hill Prize Lecture presented by Ray W. Ogden at the 24th International Congress

of Theoretical and Applied Mechanics, Montréal, Canada, August 24, 2016.



that the arrangement of collagen fibers is in general highly dispersed, depending on, e.g., the

type of tissue, such as for human arterial tissues [1, 2] and articular cartilage [3, 4]. In addition,

the collagen fiber arrangement also changes with disease such as in the abdominal aorta [5]

and the myocardium [6, 7]. Structural quantifications of the collagen fabric can be identified

by a variety of imaging methods such as polarized light microscopy [1], synchrotron X-ray

diffraction [8], second-harmonic generation [2] and ultra-high field diffusion tensor magnetic

resonance imaging [9], inter alia. These approaches allow a detailed geometrical reconstruction

of the micro-architecture, which serves as a basis for continuum mechanical modeling and

computational analysis. Continuum models that accommodate fiber dispersion within a non-

collagenous matrix have been developed in recent years with particular reference to the elastic

response of arteries [10, 11] and the myocardium [12], but have also been used for heart valves

[13], corneas [14], articular cartilage [9], etc.

There are two main approaches for modeling fiber dispersion in the context of the mechan-

ics of soft biological tissues, namely the ‘angular integration’ (AI) and ‘generalized structure

tensor’ (GST) approaches. In order to describe and compare these we make use of the defor-

mation gradient F, the right Cauchy–Green tensor C = FTF, and the stretch λ =
√

N · CN in

the direction of the unit vector N in the reference configuration corresponding to the direction

of the orientation of an arbitrary individual fiber.

The AI approach was formulated by Lanir [15]. In this approach, an individual fiber within

a dispersion is considered to have a strain energy w(λ), with the properties w(1) = w′(1) = 0

in the reference configuration assuming that there is no residual stress. Whereas in [15] the

possibility of w being different for different fibers was considered, here, for simplicity, we

assume that w is the same for each of the fibers. Supposing that there are n such fibers per

unit reference volume which are dispersed according to the angular density distribution ρ(N),

with ρ(−N) = ρ(N), the strain-energy function ΨAI of the combined fibers and matrix per unit

reference volume is given by

ΨAI = n

∫

Ω

ρ(N)w(λ)dΩ + Ψiso, (1)

where Ψiso refers to the energy stored in the non-collagenous matrix material in which the

fibers are embedded. The contribution Ψiso, which is normally assumed to be isotropic, was not

included by Lanir [15]. It is assumed that ΨAI vanishes in the reference configuration and is

not associated with any residual stress. In addition, Ω is the unit sphere, and ρ is normalized

according to
1

4π

∫

Ω

ρ(N)dΩ = 1. (2)

2



The GST approach, formulated by Gasser et al. [10], is based on a so-called generalized

structure tensor defined by

H =
1

4π

∫

Ω

ρ(N)N⊗ NdΩ, (3)

which is the mean of the individual structure tensors N ⊗ N of the fibers in the dispersion

weighted by the orientation density ρ. From the normalization (2) it follows that trH = 1. In

this approach the energy function per unit reference volume associated with the fibers is denoted

by Ψf with the condition Ψf(I,H) = 0, where I is the identity tensor, and it is also assumed

that it is not associated with any residual stress. The total energy function including that of the

matrix is then

ΨGST = Ψf(C,H) + Ψiso. (4)

It should be emphasized that ΨAI and ΨGST are in general completely different functions. For a

summary of models based on these two approaches, see the introduction in [11].

In other studies we have also introduced modifications of both the AI and GST models that

exclude the contributions of compressed fibers [16–19], and we refer to these works for detailed

discussion. We note, however, that for either model, depending on the considered deformation,

exclusion of compressed fibers can have a significant effect on the material response, but, for

purposes of comparison here these modifications are not needed. It should be pointed out that

previous comparisons of the AI and GST models in the literature have been based on incorrect

arguments; see, e.g., [20], repeated in [21–24] and other studies, as recently discussed in [17].

The main purpose of the present paper is therefore to show that the predictive powers of the two

models are virtually identical for a significant range of large deformations, in contrast of the

conclusions in [20–24] .

2 The Cauchy stress tensors of the AI and GST models

For further development of the energy functions and the related stresses we now define a number

of invariants associated with the kinematics. In general, since the matrix is considered to be

isotropic, Ψiso depends on the isotropic invariants

I1 = trC, I2 =
1

2
(I2

1 − trC2), I3 = det C. (5)

For incompressible isotropic materials I3 = 1 and the energy function Ψiso depends only on I1

and I2, but for incompressible soft tissues, on which we focus here, Ψiso is normally treated as a
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function of I1 alone. Associated with the fiber direction N there are two invariants that combine

C and N⊗ N. These are denoted by I4(N) and I5(N) and defined by

I4(N) = N · CN = n · n, I5(N) = N · C2N = n · Bn, (6)

where I4(N) = λ2, n = FN, which is the push forward of N under the deformation, and

B = FFT is the left Cauchy–Green tensor. In addition, we introduce the generalized invariants,

denoted I?4 , I?5 , as

I?4 = tr(HC), I?5 = tr(HC2). (7)

The Cauchy stress tensor σ for a general energy function Ψ for an incompressible material

is given by

σ = 2F
∂Ψ

∂C
FT − pI, (8)

where p is a Lagrange multiplier. Then, by taking Ψ = ΨAI and Ψ = ΨGST from eqs. (1) and

(4), respectively, we obtain

σAI = n

∫

Ω

ρ(N)λ−1w′(λ)n⊗ ndΩ + σiso − pI, (9)

σGST = 2F
∂Ψf(C,H)

∂C
FT + σiso − pI, (10)

where w′ = dw/dλ, and σiso = 2ψiso 1B + 2ψiso 2(I1B − B2) is the contribution of Ψiso to the

isotropic stress in the matrix material, with ψiso i = ∂Ψiso/∂Ii, i = 1, 2, but ψiso 2 is taken to be

zero in the present context. For detailed reference to the relevant background from continuum

mechanics, see the textbooks [25, 26].

3 Rotationally symmetric dispersion

For simplicity we now assume a rotationally symmetric dispersion for which the mean fiber

direction is the unit vector M. We use the notation m for its image FM in the deformed configu-

ration, and note that m is not, in general, the mean fiber direction in the deformed configuration,

nor is it a unit vector. The generalized structure tensor in this case reduces to

H = κI + (1− 3κ)M⊗M, (11)

where the constant κ is referred to as a dispersion parameter and is defined by [10]

κ =
1

4

∫ π

0

ρ(Θ) sin3 ΘdΘ, (12)
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N
M = E3

E1

E2

Θ

Φ

Figure 1: The direction N of an arbitrary fiber within a rotationally symmetric dispersion with

mean fiber direction M = E3. The fiber is referred to rectangular Cartesian coordinates with

basis vectors E1, E2 and E3, while Θ ∈ [0, π] and Φ ∈ [0, 2π] are spherical polar angles.

The normalization condition (2) reduces to

1

2

∫ π

0

ρ(Θ) sinΘdΘ = 1 (14)

with ρ(Θ) having the symmetry properties

ρ(π +Θ) = ρ(π −Θ) = ρ(Θ). (15)

With the generalized structure tensor (11), and the definitions in (7), the generalized invariants

I⋆4 and I⋆5 become

I⋆4 = κI1 + (1− 3κ)I4(M), I⋆5 = κ(I21 − 2I2) + (1− 3κ)I5(M), (16)

where I1 and I2 are defined in (5), and I4(M) and I5(M) in (6) with N replaced by M.

As an example, we now consider the energy function

ΨGST = Ψf(I
⋆
4 ) + Ψiso(I1), (17)

from which the Cauchy stress tensor (10) is given by

σGST = 2Ψ′
f(I

⋆
4 )h + 2ψiso 1B − pI, (18)

where a prime here denotes the derivative with respect to the argument of the considered func-

tion, and

h = FHFT = κB + (1− 3κ)m ⊗ m (19)
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Figure 1: The direction N of an arbitrary fiber within a rotationally symmetric dispersion with

mean fiber direction M = E3. The fiber is referred to rectangular Cartesian coordinates with

basis vectors E1, E2 and E3, while Θ ∈ [0, π] and Φ ∈ [0, 2π] are spherical polar angles.

where ρ, which now depends only on Θ, is the fiber orientation density, rotationally symmetric

about the mean fiber direction M from which the angle Θ is measured; see Fig. 1, in which

E1, E2 and E3 = M are rectangular Cartesian coordinates and Θ ∈ [0, π] and Φ ∈ [0, 2π] are

spherical polar angles. A general unit vector N is defined in terms of Θ and Φ by

N = sin Θ cos Φ E1 + sin Θ sin Φ E2 + cos Θ E3. (13)

Note that κ is normally restricted to the interval [0, 1/3], with κ = 0 corresponding to the case

with no dispersion (in which limit ρ is a delta function) and κ = 1/3 to an isotropic dispersion

in 3D with fibers equally distributed in all directions (and ρ ≡ 1), as detailed in, for example,

[10]. It is in principle possible for κ to lie in the interval [1/3, 1/2], with κ = 1/2 associated

with a 2D isotropic dispersion, but in 3D this interval can sometimes yield unphysical results,

as shown in [27].

The normalization condition (2) reduces to

1

2

∫ π

0

ρ(Θ) sin ΘdΘ = 1 (14)

with ρ(Θ) having the symmetry properties

ρ(π + Θ) = ρ(π −Θ) = ρ(Θ). (15)

With the generalized structure tensor (11), and the definitions in (7), the generalized invariants

I?4 and I?5 become

I?4 = κI1 + (1− 3κ)I4(M), I?5 = κ(I2
1 − 2I2) + (1− 3κ)I5(M), (16)
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where I1 and I2 are defined in (5), and I4(M) and I5(M) in (6) with N replaced by M.

As an example, we now consider the energy function

ΨGST = Ψf(I
?
4 ) + Ψiso(I1), (17)

from which the Cauchy stress tensor (10) is given by

σGST = 2Ψ′f(I
?
4 )h + 2ψiso 1B− pI, (18)

where a prime here denotes the derivative with respect to the argument of the considered func-

tion, and

h = FHFT = κB + (1− 3κ)m⊗m (19)

is the spatial version of the structure tensor H introduced in (11), and it is worth noting that

I?4 = trh. There is no corresponding simple expression for σAI since the integrand in eq. (9)

depends on Θ and Φ through λ, N and n in general.

A particular example of (17), which we use later, is the simple model for one family of fibers

for which

Ψiso(I1) =
µ

2
(I1 − 3), Ψf(I

?
4 ) =

k1

2k2

{
exp

[
k2(I?4 − 1)2

]
− 1
}
, (20)

where µ, k1 and k2 are positive material parameters. It is composed of the neo-Hookean model

Ψiso and an exponential model Ψf . From (18), the Cauchy stress tensor then becomes

σGST = 2k1(I?4 − 1) exp[k2(I?4 − 1)2]h + µB− pI. (21)

If there are two fiber families with the second family having a mean direction M′, with general-

ized structure tensors H′ = κ′I + (1− 3κ′)M′ ⊗M′ and h′ = FH′FT, m′ = FM′, I6 = m′ ·m′,
then the Cauchy stress tensor (21) extends to

σGST = 2k1(I?4 − 1) exp[k2(I?4 − 1)2]h + 2k′1(I?6 − 1) exp[k′2(I?6 − 1)2]h′ + µB− pI, (22)

where κ′ is the dispersion parameter associated with the second fiber family, and k′1 and k′2 are

the counterparts of k1 and k2 for the second family. Likewise, this could be extended to multiple

fiber families and non-symmetric dispersion.

Correspondingly, for comparison, suppose that w(λ) has the exponential form

w(λ) =
c1

2c2

{exp[c2(λ2 − 1)2]− 1}, (23)

where c1 and c2 are constants. Then with (20)1, the formula (9) specializes to

σAI = 2nc1

∫

Ω

ρ(N)(λ2 − 1) exp[c2(λ2 − 1)2]n⊗ ndΩ + µB− pI, (24)

where dΩ = sin ΘdΘdΦ. If, in particular, ρ(N) is symmetric about a mean direction M then ρ

depends on N through N ·M. Note that without loss of generality n can be absorbed into c1.
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4 Representative examples

4.1 Simple tension

We start by considering a uniaxial stretch λ3 ≥ 1 in the direction M (= E3) with a rotation-

ally symmetric dispersion about M, and for the GST model a single family of fibers. By

symmetry, the lateral stretches λ1 = λ2 are λ−1/2
3 so that the matrix of the components of

F is diag[λ
−1/2
3 , λ

−1/2
3 , λ3]. For a general direction N, given by (13), we obtain the stretch

λ =
√

N · CN as

λ =

√
λ2

3 cos2 Θ + λ−1
3 sin2 Θ, (25)

which is independent of Φ. Hence, from (9) we obtain, on performing the integration with

respect to Φ and using the connection E1 ⊗ E1 + E2 ⊗ E2 + E3 ⊗ E3 = I,

σAI = πn

∫ π

0

ρ(Θ)λ−1w′(λ)(2λ2
3 cos2 Θ− λ−1

3 sin2 Θ) sin ΘdΘ E3 ⊗ E3 + µB− p̄I, (26)

where the form of Ψiso given in eq. (20)1 has been used together with the expression (13) for N,

and n = FN. In (26) the notation

p̄ = p− πnλ−1
3

∫ π

0

ρ(Θ)λ−1w′(λ) sin3 ΘdΘ (27)

has been introduced. For simple tension with σAI 11 = σAI 22 = 0 we then obtain

σAI 33 = πn

∫ π

0

ρ(Θ)λ−1w′(λ)(2λ2
3 cos2 Θ− λ−1

3 sin2 Θ) sin ΘdΘ + µ(λ2
3 − λ−1

3 ), (28)

and there are no shear stress components.

We now consider the specific kinematics in order to find the Cauchy stress σGST 33 for the

GST model. First we need to compute h and I?4 from (19) and (16)1, respectively, which give

h = κλ−1
3 I + [λ2

3(1− 2κ)− κλ−1
3 ]E3 ⊗ E3, I?4 = λ2

3 − 2κ(λ2
3 − λ−1

3 ). (29)

The non-zero components of h are h11 = h22 = κλ−1
3 and h33 = λ2

3(1− 2κ). Then, from (21),

we reduce the stress in the direction of the applied stretch λ3 to

σGST 33 = 2k1[λ2
3 − 1− 2κ(λ2

3 − λ−1
3 )](λ2

3 − 2κλ2
3 − κλ−1

3 )

× exp
{
k2[λ2

3 − 1− 2κ(λ2
3 − λ−1

3 )]2
}

+ µ(λ2
3 − λ−1

3 ), (30)

where the Lagrange multiplier p has been eliminated by use of σGST 11 = σGST 22 = 0.

A possible way to describe the fiber dispersion is by the use of the von Mises distribution of

the form [28]

ρ(Θ) = 4

√
b

2π

exp(2b cos2 Θ)

erfi(
√

2b)
, (31)
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Figure 2: Comparison of the GST (dashed curves) and AI (solid curves) predictions for simple

tension for the normalized uniaxial stress σ33/µ against the stretch λ3 for three different disper-

sions. The plots are based on the eqs. (30) and (28), respectively. The parameters for the three

pairs of curves are provided in the text.

Plots of the AI model prediction of the normalized Cauchy stress σ33/µ versus the stretch λ3
for simple tension, which are based on eq. (28) with (23), are shown as solid curves in Fig. 2

for parameter values nc1 = 5 and c2 = 0.01 in each case. For the three curves the concentration

parameter b is taken to be 10 for curve a, 1.5 for curve b, and 0.1 for curve c. For comparison

the dashed curves are calculated for the GST model based on eq. (30), with k2 = 0.01 in each

case, while for curve a k1 = 5, κ = 0.026, for curve b k1 = 5.3, κ = 0.15, and for curve c
k1 = 5.7, κ = 0.26. In order to compute the integrals in (28) for the plotting, MATHEMATICA

[28] was used.

As can be seen from Fig. 2 both models are able to provide the same uniaxial stress versus

stretch curves. This is in complete contrast to the flawed comparative study in [21].

4.2 Fitting to tissue data

We now consider the two models in relation to uniaxial data from two orthogonal directions

obtained from the adventitia of a human non-atherosclerotic abdominal aorta [11]. It is assumed

that the tests take place in the (1, 2) plane with corresponding principal stretches λ1 and λ2. For

the GST model we consider two families of fibers with equal properties (κ′ = κ, k′1 = k1,

k′2 = k2) and with mean fiber directions in the (1, 2) plane, symmetrically disposed with respect
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tension for the normalized uniaxial stress σ33/µ against the stretch λ3 for three different disper-

sions. The plots are based on the eqs. (30) and (28), respectively. The parameters for the three

pairs of curves are provided in the text.

where erfi is the imaginary error function and b is the concentration parameter. By substituting

(31) in the definition (12) and using MATHEMATICA [29] we obtain a specific expression for the

dispersion parameter κ, i.e.

κ =
1

2
+

1

8b
− 1

4

√
2

πb

exp(2b)

erfi(
√

2b)
. (32)

Plots of the AI model prediction of the normalized Cauchy stress σ33/µ versus the stretch λ3

for simple tension, which are based on eq. (28) with (23), are shown as solid curves in Fig. 2

for parameter values nc1 = 5 and c2 = 0.01 in each case. For the three curves the concentration

parameter b is taken to be 10 for curve a, 1.5 for curve b, and 0.1 for curve c. For comparison

the dashed curves are calculated for the GST model based on eq. (30), with k2 = 0.01 in each

case, while for curve a k1 = 5, κ = 0.026, for curve b k1 = 5.3, κ = 0.15, and for curve c
k1 = 5.7, κ = 0.26. In order to compute the integrals in (28) for the plotting, MATHEMATICA

[29] was used.

As can be seen from Fig. 2 both models are able to provide the same uniaxial stress versus

stretch curves. This is in complete contrast to the flawed comparative study in [21].
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4.2 Fitting to tissue data

We now consider the two models in relation to uniaxial data from two orthogonal directions

obtained from the adventitia of a human non-atherosclerotic abdominal aorta [11]. It is assumed

that the tests take place in the (1, 2) plane with corresponding principal stretches λ1 and λ2. For

the GST model we consider two families of fibers with equal properties (κ′ = κ, k′1 = k1,

k′2 = k2) and with mean fiber directions in the (1, 2) plane, symmetrically disposed with respect

to the (1, 2) axes. We therefore take

M = cosαE1 + sinαE2, M′ = cosαE1 − sinαE2, (33)

where the angle α defines the orientation of the mean fiber directions relative to the E1 direction.

Then,

m = λ1 cosαE1 + λ2 sinαE2, m′ = λ1 cosαE1 − λ2 sinαE2, (34)

and it follows that I1 = λ2
1 + λ2

2 + λ−2
1 λ−2

2 and I4 = I6 = λ2
1 cos2 α+ λ2

2 sin2 α, and, according

to (16)1,

I?4 = I?6 = κ(λ2
1 + λ2

2 + λ−2
1 λ−2

2 ) + (1− 3κ)(λ2
1 cos2 α + λ2

2 sin2 α). (35)

Hence, from (29)1, h′11 = h11, h′22 = h22, h′12 = −h12, and by specializing (22) and

eliminating p using σGST 33 = 0, the in-plane normal stresses become

σGST 11 = (ξκ+ µ)(λ2
1 − λ2

3) + ξ(1− 3κ)λ2
1 cos2 α, (36)

σGST 22 = (ξκ+ µ)(λ2
2 − λ2

3) + ξ(1− 3κ)λ2
2 sin2 α, (37)

where the notation ξ = 4k1(I?4 − 1) exp[k2(I?4 − 1)2] has been introduced, and by symmetry

there is no shear stress (σGST 12 = 0).

Next, we derive the corresponding equations for the AI model. The deformation gradient F
is diagonal with respect to the Cartesian axes according to F = diag[λ1, λ2, λ3]. For n = FN,

using (13), we obtain

n = λ1 sin Θ cos ΦE1 + λ2 sin Θ sin ΦE2 + λ3 cos ΘE3, (38)

and, consequently, λ2 = n · n is

λ2 = sin2 Θ(λ2
1 cos2 Φ + λ2

2 sin2 Φ) + λ2
3 cos2 Θ. (39)

Next the form of the distribution ρ(N) needs to be considered. In general, for a mean fiber

direction M, as given above, the von Mises distribution (31) is adjusted to

ρ(N) = 4

√
b

2π

exp[2b(N ·M)2]

erfi(
√

2b)
, (40)
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where

N ·M = sin Θ cos(Φ− α), (41)

for which the expressions (13) and (33) have been used. However, to avoid shear stresses and

to capture the general biaxial deformation with just the two in-plane normal stresses, ρ should

be symmetric about both E1 and E2, so that, when considering ρ as a function of Θ and Φ we

must have

ρ(Θ, 2π − Φ) = ρ(Θ, π − Φ) = ρ(Θ,Φ). (42)

This can be met by taking either α = 0 or α = π/2. For definiteness, we take α = 0. Then all

the shear components in (24) vanish, and the normal components are given by

σAI 11 = 2λ2
1nc1

∫

Ω

β cos2 Φ sin3 ΘdΘdΦ + µλ2
1 − p, (43)

σAI 22 = 2λ2
2nc1

∫

Ω

β sin2 Φ sin3 ΘdΘdΦ + µλ2
2 − p, (44)

σAI 33 = 2λ2
3nc1

∫

Ω

β cos2 Θ sin ΘdΘdΦ + µλ2
3 − p, (45)

where the notation

β = ρ(N)(λ2 − 1) exp[c2(λ2 − 1)2] (46)

has been introduced, and λ2 is given by (39).

By eliminating the hydrostatic pressure p from (43) and (44) by using the condition σAI 33 =

0, we get

σAI 11 = 2nc1

∫

Ω

β(λ2
1 cos2 Φ sin2 Θ− λ2

3 cos2 Θ) sin ΘdΘdΦ + µ(λ2
1 − λ2

3), (47)

σAI 22 = 2nc1

∫

Ω

β(λ2
2 sin2 Φ sin2 Θ− λ2

3 cos2 Θ) sin ΘdΘdΦ + µ(λ2
2 − λ2

3), (48)

which are the analogues of σGST 11 and σGST 22 listed in (36) and (37), respectively.

Equations (36), (37), (47) and (48) are appropriate for general biaxial deformations. How-

ever, it suffices to fit the two models to representative experimental data from uniaxial extension

tests presented in [11], rather than biaxial tests. Equations (36) and (37) are used respectively

for the axial and circumferential directions, with measured values of the appropriate lateral

stretches. Likewise, for eqs. (47) and (48).

We now fit the two models to representative experimental data from uniaxial tension tests

on the adventitia of a human non-atherosclerotic abdominal aorta [11]. The tests were per-

formed on orthogonal strips of the tissue taken from nearby positions. The experimental data

are presented as solid dots in Fig. 3. The response of the strip aligned in the axial direction is

10
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Figure 3: Comparison of experimental data (solid dots) obtained from the adventitia of a human

non-atherosclerotic abdominal aorta [11] with model predictions (solid curves): (a) GST model;

(b) AI model. The individual parameters for the two constitutive models are provided in the text.

THE FITTING. FOR THE GST MODEL THE CORRELATION COEFFICIENTS FOR THE AXIAL

AND CIRCUMFERENTIAL DATA WERE OBTAINED AS 0.999 AND 0.998, WHILE FOR THE AI

MODEL THEY WERE 0.999 AND 0.994, RESPECTIVELY. THE FITS OF THE TWO MODELS

IN FIG. 3 ILLUSTRATE THE CAUCHY STRESS (IN KPA) VERSUS STRETCH BY THE SOLID

CURVES, FOR THE GST MODEL IN (A) AND FOR THE AI MODEL IN (B). IN EACH CASE σ11

IS PLOTTED AGAINST λ1 FOR THE AXIAL STRIP, WHILE σ22 VERSUS λ2 IS SHOWN FOR THE

CIRCUMFERENTIAL STRIP. AS CAN BE SEEN, THE AGREEMENT OF BOTH MODELS WITH

THE EXPERIMENTAL DATA IS VERY SATISFACTORY.
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Figure 3: Comparison of experimental data (solid dots) obtained from the adventitia of a human

non-atherosclerotic abdominal aorta [11] with model predictions (solid curves): (a) GST model;

(b) AI model. The individual parameters for the two constitutive models are provided in the text.

stiffer than that aligned with the circumferential direction. The two sets of data are fitted by

the GST model with the same set of parameters, which are given by κ = 0.3, c = 7.267 kPa,

k1 = 54.11 kPa, k2 = 20.41 and α = π/8, while the AI model yields the parameters b = 0.95,

µ = 8.5 kPa, c1 = 0.59 kPa, c2 = 2.15 and α = 0. MATHEMATICA [29] was used for the fitting.

For the GST model the correlation coefficients for the axial and circumferential data were ob-

tained as 0.999 and 0.998, while for the AI model they were 0.999 and 0.994, respectively. The

fits of the two models in Fig. 3 illustrate the Cauchy stress (in kPa) versus stretch by the solid

curves, for the GST model in (a) and for the AI model in (b). In each case σ11 is plotted against

λ1 for the axial strip, while σ22 versus λ2 is shown for the circumferential strip. As can be seen,

11



the agreement of both models with the experimental data is very satisfactory.

4.3 Simple shear in the (1, 2) plane

In the next example we consider simple shear in the (E1,E2) plane in the E1 direction, with a

dispersion for which the fibers are all located in this plane, with an arbitrary fiber direction N
having the form

N = cos ΘE1 + sin ΘE2, (49)

where the polar angle Θ is different from the Θ used in Fig. 1, and it satisfies−π/2 ≤ Θ ≤ π/2.

Let the mean fiber direction be denoted by M in the considered plane according to the relation

(33)1, with a single family of fibers for the GST model. The components of the deformation

gradient F are, in matrix notation,

[F] =




1 γ 0

0 1 0

0 0 1


 , (50)

where γ ≥ 0 denotes the amount of shear. The stretch λ in the direction N is then given by

λ2 = n · n = 1 + γ sin Θ(γ sin Θ + 2 cos Θ), (51)

where n = FN = N + γ(N · E2)E1, and we assume that Ψiso is again the neo-Hookean model

(20)1. Since attention is now being confined to the (1, 2) plane we introduce a superposed hat

to indicate this, so that, e.g., F̂ is the restriction of F to the (1, 2) plane. From (9) specialized to

two dimensions we obtain

σ̂AI = n̂

∫ π/2

−π/2
ρ(Θ)λ−1w′(λ)n⊗ ndΘ + µB̂− pÎ, (52)

where n̂ is here the number of fibers per unit reference area, B̂ = F̂F̂
T

, and Î is the two-

dimensional identity. Note that the hat is not needed on N or n because they are two-dimensional

(2D) anyway.

In particular, the in-plane shear stress is given by

σ̂AI 12 = n̂

∫ π/2

−π/2
ρ(Θ)λ−1w′(λ)(cos Θ + γ sin Θ) sin ΘdΘ + µγ. (53)

We now use the GST model and continue by assuming the symmetry ρ(Θ + π) = ρ(Θ) for the

2D dispersion with ρ(Θ) satisfying the normalization condition

1

π

π/2∫

−π/2

ρ(Θ)dΘ = 1. (54)

12



The 2D generalized structure tensor has the form [27]

Ĥ = κÎ + (1− 2κ)M⊗M, (55)

where κ is the associated dispersion parameter defined by

κ =
1

π

π/2∫

−π/2

ρ(Θ) sin2 ΘdΘ, (56)

which is analogous to (12), but we have not included a superposed hat in this case. The value

of κ defined in (56) is independent of M for a dispersion which is symmetric about M. For the

2D version of the von Mises distribution, ρ(Θ) has the form

ρ(Θ) =
exp(b cos 2Θ)

I0(b)
, (57)

where I0 is the modified Bessel function of the first kind of order 0. Then, by substituting (57)

into (56) and using MATHEMATICA [29] the associated dispersion parameter κ is given by [11]

κ =
1

2

(
1− I1(b)

I0(b)

)
, (58)

where I1(b) is the modified Bessel function of the first kind of order 1. Note that in 2D κ lies in

the interval [0, 1/2].

Consider the model ΨGST, given by (17), specialized to the plane strain case. The 2D

Cauchy stress is obtained by specializing (18) to give

σ̂GST = 2Ψ′f(I
?
4 )ĥ + 2ψiso 1B̂− pÎ, (59)

with ĥ = κB̂+(1−2κ)m⊗m. With (50) and [M] = [M1, M2, 0]T the components of m = FM
are m1 = M1 + γM2, m2 = M2, m3 = M3 = 0, where M1 = cosα and M2 = sinα. The

associated in-plane invariants are

Î1 = trB̂ = 2 + γ2, Î?4 = trĥ = κ(2 + γ2) + (1− 2κ)(1 + 2γM1M2 + γ2M2
2 ), (60)

where M2
1 + M2

2 = 1 has been used. The strain-energy function (17), with Ψf and Ψiso given

by (20), has the same form with I1 and I?4 replaced by Î1 + 1 and Î?4 , respectively. Hence, from

(59), the Cauchy shear stress component is given by

σ̂GST 12 = µγ + 2Ψ′f(I
?
4 )[κγ + (1− 2κ)(M1 + γM2)M2]. (61)

Plots of the normalized shear stress σ̂12/µ against the amount of shear γ for the AI model

prediction for simple shear in the (1, 2) plane, which are based on (53), are shown as solid

13
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Figure 4: Comparison of GST (dashed curves) and AI (solid curves) predictions for simple

shear for the normalized shear stress σ̂12/µ against the amount of shear γ for three different

dispersions. The plots are based on the eqs. (53) and (61). The parameters for the three pairs of

curves are provided in the text.

PLOTS OF THE NORMALIZED SHEAR STRESS σ̂12/µ AGAINST THE AMOUNT OF SHEAR

γ FOR THE AI MODEL PREDICTION FOR SIMPLE SHEAR IN THE (1, 2) PLANE, WHICH ARE

BASED ON (53), ARE SHOWN AS SOLID CURVES IN FIG. 4 FOR PARAMETER VALUES n̂c1 =

5, c2 = 0.01 IN EACH CASE. FOR THE THREE CURVES THE CONCENTRATION PARAMETER

b = 10 FOR THE CURVE a, 1.5 FOR THE CURVE b, AND 0.1 FOR THE CURVE c. FOR COM-

PARISON THE DASHED CURVES ARE CALCULATED FOR THE GST MODEL BASED ON (61).

FOR THE CURVE a κ = 0.026, k1 = 5.1, k2 = 0.01, FOR THE CURVE b κ = 0.15, k1 = 4.6,

k2 = 0.0163 AND FOR THE CURVE c κ = 0.26, k1 = 4.05 AND k2 = 0.014. THE ANGLE α

WAS TAKEN TO BE π/3.

SIMILARLY TO THE CASE OF SIMPLE TENSION BOTH MODELS ARE ABLE TO PROVIDE

THE SAME SHEAR STRESS VERSUS AMOUNT OF SHEAR CURVES.

5 Linearized model comparison

SO FAR WE HAVE CONSIDERED THE NONLINEAR CASE AND HAVE SHOWN THAT THE TWO

DIFFERENT MODELS ARE ABLE TO RECOVER THE SAME MECHANICAL RESPONSE, EVEN

THOUGH THEORETICALLY THEY ARE NOT THE SAME. INDEED, EVEN IN THE LINEAR THE-

ORY THEY DO NOT COINCIDE, AND WE NOW EMPHASIZE THIS BY RESTRICTING ATTEN-
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Figure 4: Comparison of GST (dashed curves) and AI (solid curves) predictions for simple

shear for the normalized shear stress σ̂12/µ against the amount of shear γ for three different

dispersions. The plots are based on the eqs. (53) and (61). The parameters for the three pairs of

curves are provided in the text.

curves in Fig. 4 for parameter values n̂c1 = 5, c2 = 0.01 in each case. For the three curves the

concentration parameter b = 10 for the curve a, 1.5 for the curve b, and 0.1 for the curve c. For

comparison the dashed curves are calculated for the GST model based on (61). For the curve a
κ = 0.026, k1 = 5.1, k2 = 0.01, for the curve b κ = 0.15, k1 = 4.6, k2 = 0.0163 and for the

curve c κ = 0.26, k1 = 4.05 and k2 = 0.014. The angle α was taken to be π/3.

Similarly to the case of simple tension both models are able to provide the same shear stress

versus amount of shear curves.

5 Linearized model comparison

So far we have considered the nonlinear case and have shown that the two different models are

able to recover the same mechanical response, even though theoretically they are not the same.

Indeed, even in the linear theory they do not coincide, and we now emphasize this by restricting

attention to the linear theory. We start by referring to the strain-energy function (1) but with the

Ψiso term omitted. Since w(1) = 0 the Taylor expansion of w = w(λ) gives

w(λ) = (λ− 1)w′(1) +
1

2
(λ− 1)2w′′(1) + . . . , (62)
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where w′(1) = 0 if there is no residual stress. In addition, we have I4 − 1 = N · (CN) − 1 =

2N · (EN), where E = (C− I)/2 denotes the Green–Lagrange strain tensor, and hence

λ = 1 + N · (EN)− 1

2
[N · (EN)]2 + . . . (63)

to the second order in E. By substituting (62) and (63) into (1) we obtain

ΨAI = 4πnw′(1)H : E + 2πn[w′′(1)− w′(1)]E : H : E + . . . , (64)

where H is defined in (3) and the fourth-order structure tensor H is given by

H =
1

4π

∫

Ω

ρ(N)N⊗ N⊗ N⊗ NdΩ. (65)

The related index notation reads

Hij =
1

4π

∫

Ω

ρNiNjdΩ, Hijkl =
1

4π

∫

Ω

ρNiNjNkNldΩ. (66)

Note thatHijkl has complete i, j, k, l symmetry and satisfies (in the summation convention)

Hiijj = 1, H11jj = H22jj = κ, H33jj = 1− 2κ, (67)

where (67)1 was obtained by using the normalization condition (2), and (67)2 and (67)3 by using

(11) with M = E3. The only non-zero components ofHijkl are

H1111 = H2222 = 3H1122 =
3

4
κ1, H1133 = H2233 = κ− κ1, H3333 = 1− 4κ+ 2κ1, (68)

where the additional dispersion parameter

κ1 =
1

4

∫ π

0

ρ(Θ) sin5 ΘdΘ (69)

has been introduced. The relations (68) are obtained by using the components of N given in

(13), carrying out the integration over Φ, and using (12) and (14).

For the GST approach we use (4), again without Ψiso, so that the Taylor series expansion of

ΨGST, with Ψf(I,H) = 0, gives

ΨGST =
∂Ψf(I,H)

∂C
: (C− I) +

1

2

[
∂2Ψf(I,H)

∂C2 (C− I)
]

: (C− I) + . . . (70)

By assuming the simple energy function Ψf = Ψf(I
?
4 ), with I?4 = κI1 + (1 − 3κ)I4 and the

Green–Lagrange strain tensor E we obtain

ΨGST = 2Ψ′f(1)H : E + 2Ψ′′f (1)(H : E)2 + . . . , (71)
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where H is defined in (11) for fibers distributed with rotational symmetry about the mean direc-

tion M, and Ψ′f(1) = 0 if there is no residual stress.

It is now straightforward to calculate the second Piola–Kirchhoff stress tensor SAI for the

AI model and SGST for the GST model. By recalling (64) and (71) we obtain

SAI =
∂ΨAI

∂E
= 4πnw′(1)H + 4πn[w′′(1)− w′(1)]H : E + . . . , (72)

SGST =
∂ΨGST

∂E
= 2Ψ′f(1)H + 4Ψ′′f (1)(H : E)H + . . . . (73)

From these two equations it can be seen immediately that even when linearized the two

models are not in general the same. In particular, the H tensor involves κ1 and κ, whereas H
involves only κ.

6 Discussion

In this paper we have compared the predictions of the two main modeling approaches that are

used for the description of the elastic properties of fiber-reinforced materials with dispersed

fibers, in particular of soft biological tissues such as arterial walls and cartilages. For each of

the models the fibers are considered to be embedded within an isotropic matrix, for which the

elastic properties are modeled as a neo-Hookean material. For the GST model the properties

of the dispersed collagen fibers are captured by an exponential strain-energy function based

on generalized structure tensors, with the dispersion symmetrically arranged around the mean

fiber direction for each fiber family [10]. For the AI model, on the other hand, following Lanir

[15], the elastic properties of the individual fibers, modeled with an exponential function and

weighted by an orientation density, are aggregated into an overall fiber-energy function by inte-

grating over a unit sphere.

An important aim of this paper has been to show that the predictive powers of the GST

and AI models are essentially equivalent. In particular, we have shown that for both simple

tension and simple shear the predictions of the two dispersion models are virtually identical for

a significant range of large deformations, which is in sharp contrast with flawed comparisons

in the literature (see, in particular, [20, 21]). In a third example, we have fitted each dispersion

model to experimental data obtained from uniaxial extension tests on human tissue samples

taken from along the circumferential and axial directions of an artery [11]. Excellent fits have

been obtained with both models. However, while the GST model has been used to fit data from

a wide range of tissues, corresponding fits to real data for the AI model are still rare. This is

partly due to the integrations involved in the AI model, which require more computational effort
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compared with the fit of the GST model to real data. To the authors’ knowledge fitting of the

AI model to real data has been limited to the fitting of uniaxial and biaxial data of native bovine

pericardium using a simple constitutive law for the fibers and a planar orientation distribution

[30]. However, this particular constitutive model has not been used within a finite element

environment. The problem with the AI approach is compounded in respect of finite element

computations of realistic boundary-value problems, as is well known. Indeed, because of this

issue, the AI model has not yet been implemented in commercial finite element software. One

important consideration for a model of soft biological tissues is its ability to exclude fibers

that are under compression. As we have shown in the study [18], the numerical integration

(over a subset of the unit sphere) becomes very costly if the AI approach is implemented with

compressed fibers excluded.

The dispersion parameter for a single family of fibers has a clear physical interpretation and

can be determined from measurements of the fiber orientation density. This physical interpre-

tation is carried by the specific form of the GST model used in this study which involves just

a single dispersion parameter. Once the mean fiber direction and the orientation density are

known, the generalized structure tensor is then determined once and for all, and no further inte-

gration is then needed. The GST approach is very flexible and can be extended to accommodate

multiple families of fibers with different mean directions and dispersions. In addition, coupling

between fibers in different families can be included in the model by means of a coupling invari-

ant (M · CM′)2. The AI model, which provides an attractive theoretical framework, integrates

the energy stored in an individual fiber weighted by an orientation density function, and can

accommodate different fiber properties by using different energy functions. Such integrations,

however, need to be performed at every Gauss point within a finite element realization, and are

expensive in CPU time. The present study illustrates that theoretically either model can be used

to represent the response of fibrous materials, but adoption of the AI model remains problematic

from the computational efficiency point of view.

To summarize, the AI approach is certainly an attractive formulation, but it does not appear

to offer any advantages over the GST approach. Advantages of the GST approach include (1)

it is an algebraic formulation and is therefore easier to implement than the AI formulation, (2)

it admits explicit analytical results for a range of different deformations, which is not the case

for the AI approach, (3) the numerical analysis is less costly, in particular if compressed fibers

are excluded, and (4) it is more accurate since the numerical integrations, which have to be

performed for the AI approach, always introduce some errors in the computations, while such

integrations are not required for the GST model.
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Highlights 
 

• Comparison of the predictions of the AI and GST fiber dispersion models for soft 
biological tissues 

 

• It is shown that the predictions of the two models are virtually identical for a 
significant range of large deformations, contrary to claims in the literature 

 

• Each of the models is fitted to sets of uniaxial data from the circumferential and axial 
directions of the adventitia of a human aorta, with both models providing excellent 
agreement with the data 

 
 
 
 


