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ABSTRACT 

 

This study uses 1356 spectra from 452 geologically-diverse samples, the largest suite of LIBS 

rock spectra ever assembled, to compare the accuracy of elemental predictions in models that use 

only spectral regions thought to contain peaks arising from the element of interest versus those 

that use information in the entire spectrum. Results show that for the elements Si, Al, Ti, Fe, Mg, 

Ca, Na, K, Ni, Mn, Cr, Co, and Zn, univariate predictions based on single emission lines are by 

far the least accurate, no matter how carefully the region of channels/wavelengths is chosen and 

despite the prominence of the selected emission lines. An automated iterative algorithm was 

developed to sweep through all 5485 channels of data and select the single region that produces 

the optimal prediction accuracy for each element using univariate analysis. For the eight major 

elements, use of this technique results in a 35% improvement in prediction accuracy; for minors, 

the improvement is 13%. The best wavelength region choice for any given univariate analysis is 

likely to be an inherent property of the specific training set that cannot be generalized.  

In comparison, multivariate analysis using partial least-squares (PLS) almost universally 

outperforms univariate analysis. PLS using all the same wavelength regions from the univariate 

analysis produces results that improve in accuracy by 63% for major elements and 3% for minor 

element. This difference is likely a reflection of signal to noise ratios, which are far better for 

major elements than for minor elements, and likely limit their prediction accuracy by any 

technique. We also compare predictions using specific wavelength ranges for each element 

against those employing all channels. Masking out channels to focus on emission lines from a 

specific element occur decreases prediction accuracy for major elements but is useful for minor 

elements with low signals and proportionally much higher noise; use of PLS rather than 

univariate analysis is still recommended. Finally, we tested the generalizability of our results by 

analyzing a second data set from a different instrument. Overall prediction accuracies for the 



3 

 

 

mixed data sets are higher than for either set alone for all major and minor elements except Ni, 

Cr, and Co, where results are roughly comparable.  

 

Keywords: Laser-induced breakdown spectroscopy; LIBS; partial least-squares analysis; PLS  

 

1. Introduction 

Obtaining quantitative chemical information from laser-induced breakdown spectroscopy 

(LIBS) spectra of geological samples [1-3] is especially challenging due to textural differences 

and wide variability in the bulk compositions of naturally occurring glasses and rock-forming 

minerals. In situ analyses [4] using field instruments present further challenges due to sampling 

conditions (varying distance [5] and incidence angle [6]), especially when done remotely such as 

on Mars [7,8].  

Perhaps the biggest obstacle to quantitative analyses in all complex materials with LIBS 

is the group of factors known as chemical matrix effects [9,10], which often result in emission 

peak areas that are not directly proportional to element concentrations. This complicates 

conventional univariate analyses of individual element peaks in LIBS spectra. Multivariate 

analyses (MVA) have the potential to alleviate some of the problems introduced by matrix 

effects by incorporating a broad spectral range rather than a single peak, thereby utilizing all the 

possible predictive information in each spectrum. Both univariate and MVA have been used in 

studies of geological materials; in general univariate is employed for quantification of minor 

elements and MVA is used for majors. However, no systematic investigations have compared 

univariate and multivariate analyses in large data sets for a wide range of elements and 

concentrations. 

The existing LIBS literature varies widely with respect to uses of these techniques for 

quantification. Applications can be grouped into those focusing on elements that constitute a 

significant proportion of the materials (major elements) and on elements with low concentrations 
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but high interpretive relevance (minor or trace elements). For example, light elements such as Li 

have been quantified in various types of geological materials including spodumene, tourmaline, 

and topaz [11-13]. These minor elements are generally quantified using univariate analyses, in 

which the area or intensity of a single emission peak is related directly to concentration. When 

the matrix is held constant, as in many industrial applications, this is generally a sound 

assumption. Even in variable matrices, it is often assumed that chemical matrix effects will have 

little influence on such small peaks [14]. For example, the ChemCam LIBS team on Mars uses 

univariate analysis for quantification of some trace elements such as H [15,16], C [17,18], Cr 

[19], Mn [20,21], and Zn [22], though a modified PLS method is employed for Li, Ba, Sr, and 

Rb [23]. 

Several different multivariate approaches have been tested for LIBS applications, 

including principle components analysis [24] and artificial neural networks [25,26]. Boucher et 

al.[27] analyzed a geologic data set using linear regression methods including partial least 

squares (PLS-1 and PLS-2), principal component regression, least absolute shrinkage and 

selection operator (lasso), elastic net, and linear support vector regression. They compared the 

linear methods against results from nonlinear regression methods including kernel principal 

component regression, polynomial kernel support vector regression, and k-nearest neighbor 

regression. Of all these methods, PLS is by far the most common technique used for interpreting 

LIBS data on geological samples. For example, PLS is currently being used as part of a 

combined approach with independent components analysis (ICA) to predict major elements 

compositions of Mars surface materials [28,29]. For minor elements, PLS models may lack 

interpretability due to the problem of geochemical camouflage, in which trace elements are best 

predicted by more intense lines from major elements with similar size and charge for which they 

commonly substitute. This problem can only be overcome by use of artificially-doped standards 

that break the geochemical substitution [30]. 

In this study, we compare univariate and multivariate analyses of LIBS data to evaluate 
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the relative accuracy of these techniques using the largest-ever suite of LIBS data on geological 

samples assembled, including spectra from 171 doped samples. Our goal is to assess the potential 

for improvements in accuracy of elemental predictions by testing models that use only spectral 

regions known to contain peaks arising from the element of interest versus those that use 

information in the entire spectrum. We test the hypothesis that limiting calibration training set 

data to element-specific “masked” regions allows element peaks to be more prominently 

represented in multivariate models, which might improve prediction accuracy. We make direct 

comparisons between quantification of chemical compositions using individual peaks, groups of 

individual peaks, and the multivariate analysis technique of partial least squares. We test four 

permutations of previously-used approaches to elemental prediction accuracy as used for both 

major and minor elements. 

1) Univariate analyses of individual peaks specific to each element, as is typically done in 

many LIBS applications where only a single matrix is employed;  

2) Multivariate (PLS) analysis of the same peaks chosen above for each element, as used 

successfully by Olilla et al. [23] in predicting Li, Ba, Sr, and Rb;  

3) Univariate and multivariate analyses of a wavelength range selected for each element 

by an automated sweep algorithm; and  

4) PLS predictions using unmasked spectra – i.e., the entire spectral region. 

Through these analyses, we inform decisions about choice of univariate analysis peaks, when to 

use PLS versus univariate analysis, and how to construct training sets to yield maximum 

generalizability of predictive models. 

 

2. Samples and spectral acquisition 

Tests performed for this project primarily used a large data set collected at Mount 

Holyoke College (MHC). The first 280 samples were selected at random from the collections of 

geological rock powder standards in our laboratory, while the remaining 171 samples came from 
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a project involving doping of minor elements to create calibration curves. To test the 

generalizability of conclusions reached on the basis of those data, we also compare our results to 

a suite of 400 samples (including 106 that are also in the MHC sample suite) for which spectra 

were acquired at Los Alamos National Laboratory (LANL) as calibrations for the ChemCam 

instrument on the Mars Science Laboratory rover Curiosity [8]. Compositions of all samples 

studied are represented on a plot of total alkalis vs. silica in Fig. 1 and characteristics of each 

data set are given in Table 1. 

The first set of 840 spectra was acquired on the ChemCam-analog LIBS instrument at 

MHC, which uses a Quantel Ultra100 laser operating at 1064 nm and up to 20 Hz with a 7-ns 

pulse width and 3.5-mm beam diameter. A variable attenuator is permanently integrated into the 

laser, allowing power density to be manipulated by the user to match the range used on Mars. 

Energy of every pulse is recorded with a Newport 818E series pyroelectric energy detector and 

meter. Data were recorded under a 7-Torr CO2 atmosphere over three different energy 

ranges/spectrometers with spectral resolutions of 0.15-0.25 nm from 220-330 nm, 0.09 nm for 

380-470 nm, and 0.42 nm for 490-930 nm. Three laser power densities were selected to bracket 

the plasma temperatures observed on Mars as indicated by the ratio of intensities of the Si II 

peak at 634.7 nm to that neutral Si I line at 288.2 nm, which provides a proxy for temperature 

[31]. There were 280 geologic samples in this suite. The laser powers are designated here as 

3.2% (1.9 mJ), 5% (2.8 mJ), and 7% (3.8 mJ), as chosen to reproduce the energy density of 

ChemCam while compensating for the shorter laser-sample distance at MHC (20.2 cm). Each 

sample was analyzed in five locations with 30 laser shots to mitigate effects of heterogeneity and 

the spectra were averaged together to create one spectrum per composition. 

Spectra from that sample suite were merged with a suite created for use in calibrating 

minor elements by LIBS and described in Lepore et al. [30], which evaluates the accuracy of 

univariate minor element predictions as a function of the composition of the samples’ major 

element matrices and examines factors that limit prediction accuracy of univariate calibrations. 
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Five different sample matrices were doped with 10-85,000 ppm Cr, Mn, Ni, Zn, and Co and then 

independently measured in 175 mixtures by XRF, ICP-ES, and LIBS, the latter at three different 

laser energies (1.9, 2.8, and 3.7 mJ). Univariate prediction models for minor element 

concentration were created using varying combinations of dopants, matrices, normalization/no 

normalization, and energy density. Those results show the superiority of using normalization for 

predictions of minor elements where the predicted sample and those in the training set have 

matrices with similar SiO2 contents. Normalization also mitigates differences in spectra arising 

from laser/sample coupling effects and use of different energy densities. Accordingly, we use 

normalization in the current study. 

For the doped samples from Lepore et al. [30], the same three laser energies, 

instrumentation, preprocessing sequence, and averaging protocols were used as for the first set of 

840 spectra. It includes 172 samples that are mixtures of five bulk rocks (two basalts, a 

granodiorite, sea sand, and an ultramafic-analog mixture composed of olivine and 

clinopyroxene) doped with varying amounts of five different trace elements (Ni, Mn, Zn, Cr, and 

Co). It is important to note that although our doped samples contained in many instances up to 

~10 wt.% of the doped element in oxide form, the analyses in this study used only standards with 

minor element concentrations below 6,000 ppm to better match the concentration levels found in 

typical rock-forming parageneses on Earth and Mars. 

It must also be noted that there are three potentially important differences between the 

MHC LIBS and the instrument at LANL. First, the LANL data were acquired using stand-off 

conditions at lower laser power (14 mJ/pulse laser energy from 1.6 m stand-off distance) while 

the MHC data cover a higher power density (3.8 mJ from ~1.6 cm distance). Second, the LIBS 

instrument at Mount Holyoke is limited in sensitivity because the spectrometers utilize 1D CCD 

detectors, making it less sensitive than ChemCam by a factor of (on average) approximately 8 in 

the UV, 4 in the VIS, and 6 in the VIS/NIR regions. Third, the MHC LIBS is limited by detector 
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readout noise, so multiple plasmas must be collected in a single spectrometer integration to 

achieve an acceptable signal-to-noise ratio.  

In all analyses at both laboratories, at least 30 shots were acquired on a minimum of five 

locations on each target, and the resultant >150 spectra were averaged together. The laser beam 

sizes used were consistently much greater than the grain size in each pressed powder pellet (<1 

m), so this mean spectrum likely is a good representation of the sample even if there is some 

heterogeneity in the pellets [32]. Thus, overall we utilized a database containing 452 different 

samples each run at three different laser powers was utilized for the tests in this paper (1356 

unique spectra), creating one of the largest known suites of LIBS data for geologic standards 

available for analysis to date.  

Our MHC data were compared against 400 spectra acquired at LANL on the ChemCam 

Engineering model (flight spare) in a vacuum chamber filled with 7 Torr CO2 that was placed 1.6 

m from the telescope Schmidt plate [31]. Because the laser was optimized to operate under Mars 

surface conditions (-10 to 0°C), the testbed multiplexer unit was placed in an enclosure and 

cooled to 4°C, allowing it to achieve the 14 mJ/pulse laser energy used on Mars; all samples 

were shot using that same laser power. Spectra were collected over three difference ranges, each 

with its own spectrometer spanning the ultraviolet (240.8-340.8 nm), violet (382.1-469.1 nm) 

and visible and near infrared (473.2-905.6 nm) regions. Each sample was analyzed in five 

locations with 50 laser shots per location to mitigate effects of heterogeneity and the spectra 

were averaged. 

 

3. Prediction models 

Univariate (linear least squares) and multivariate (partial least-squares, PLS) analyses of 

LIBS spectra were used to predict eight major (wt. % SiO2, Al2O3, TiO2, FeOT, MgO, CaO, 

Na2O, and K2O) and five trace (Ni, Co, Cr, Zn, Mn reported in ppm) element concentrations with 
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and without wavelength masks. For all of these samples, concentrations of major and trace 

elements were measured independently by XRF [33]. 

Data pre-processing for this project used an adaptation of protocols analogous to those 

described in Wiens et al. [7] with slight variations. The sequence for ChemCam data processing 

of lab data includes subtraction of dark spectrum, denoising, continuum removal, wavelength-

calibration, multiplication times the instrument response function (IRF), conversion to radiance 

units, and normalization (as needed), followed by masking (to subtract out regions of high noise 

in the IRF) in that order. The ChemCam team’s continuum removal [7] decomposes each 

spectrum into a set of cubic spline wavelets, and iteratively finds the local minima in this space 

to within a user-specified scale, concluding with interpolation of a spline function through the 

different minima [7].  

For both MHC and LANL data, gain curves were used to calculate the instrument 

response function as described in Wiens et al. [7]. It was noted there that the gain curves change 

sharply at the edges of each spectrometer’s wavelength range. These small changes in intensity 

result in large changes in calibrated signal, leading to increased noise [8]. Thus in the LANL 

data, the edges of each spectrometer were masked out of the quantitative analysis models. For 

parity with LANL and with ChemCam,the MHC protocols also mask the same regions out of the 

quantitative analysis models, including the channels from 240.811-246.635, 338.457-340.797, 

382.138-387.859, 473.184- 492.427, and 849-905.574 nm. Detailed descriptions of these 

methods and the sample suite are given in Clegg et al. [8].  

Our MHC implementation uses a Matlab code to subtract a dark spectrum, perform 

wavelength calibration using a Ti metal reference run in every carousel, correct for instrument 

response, normalize to total intensity of each of the three spectral regions, and masking to 

remove the regions noted above, as required for a particular experiment. Depending on the trial, 

baseline removal is then applied. For this paper, we used custom baseline removal (Custom 

BLR) as described in Giguere et al. [34] and Dyar et al. [35]. The method generalizes the 
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problem of baseline removal by combining operations from previously proposed methods to 

synthesize new correction algorithms for each application and training set. Custom BLR creates 

novel methods, discovering new algorithms that maximize the predictive accuracy of the 

resulting spectroscopic models and yield significant improvements over existing methods [34]. 

Custom BLR produces significant improvements in prediction accuracy over existing methods 

across varying geological data sets, instruments, and varying analytical conditions [35]. 

Optimizations were done separately for each element, and the resultant baseline-corrected 

spectra (13 sets of them, one for each element of interest) were used for subsequent univariate 

and multivariate models. PLS and univariate predictions used Python code written for this 

project. The NumPy package was used for loading and manipulating the spectra, and the Scikit-

Learn package was used for all PLS models.  

The resulting data were then used to train and evaluate univariate and PLS models. For 

this, our code uses 5-fold cross validation. To train the univariate models, our code simply 

regresses the sum intensity in the chosen frequency range on the variable of interest. Training the 

PLS models requires additional effort because they have a tunable parameter, the number of PLS 

components used in the model. To tune this parameter, our code uses an inner cross validation 

loop. Each iteration of this loop randomly splits the training set into sub-training and sub-testing 

sets. PLS models are trained on the sub-training set, and are then evaluated on the sub-testing set. 

After completing the inner loops, the number of components is set to the one that resulted in the 

most accurate models on average. As a result, there is no single value of n components that is 

used in each experiment – it is decided separately for each fold. We also trained our models with 

a higher upper limit on the number of components (<50); results and analysis are given in the 

supplement to this paper. Finally, a PLS model is trained on the entire training set using the 

chosen number of components. For this, our code uses 5-fold cross validation. The accuracy of 

each model is evaluated using the root mean squared error (RMSE-CV) of cross-validation on 

the testing set against their true values. 
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3.1. Masking  

We tested three different methods for selecting channels to use in our predictions: 

channels highly-correlated to the element being predicted, channels selected by an automated 

sweep routine, and all channels. For the first scheme, we calculated correlation coefficients (r2) 

between concentration and the spectral intensity at each wavelength for each element. We chose 

the top 10-11 peaks with r2 values greater than 0.9 to become the peak centroids for wavelength 

masks that were unique to each element as, described in Lepore et al. [30]. The wavelength 

region around each of the selected channels was broadened using inspection of the data set to 

include the entire peak and its shoulders, in order to maximize the information used in 

predictions. Some elements, including K, Mg, Na, and Si did not give rise to many identifiable 

peaks in our wavelength range. In those cases, we selected as many peaks as possible that were 

identified as good predictors by the r2 calculation, being careful to select relevant regions for the 

element of interest only. Table 2 lists the chosen regions in order with those yielding highest r2 

values first. Data from these regions were then used in univariate and PLS models to predict each 

element. 

In the second channel-selection scheme, we wrote an iterative algorithm to sweep 

through all 5485 channels of data and select the single region that produced the lowest RMSE-

CV for each element using univariate analysis only (PLS models using this method were too 

computationally expensive). This procedure facilitates the best possible accuracy for any given 

univariate procedure; the selected region is designated in Table 2 as “Full Sweep.” There was no 

limit on the wavelength (location) or width of the region chosen, which ranged from a single line 

(308.788 for Al, 648.89 for Na) to a very narrow region for Ca (from 317.23-317.37 nm, where a 

Ca II band is located) to a broad region for Zn (458.36-621.88 nm, spanning a broad region 

where many Zn peaks are located). There was also no requirement for the chosen region to occur 

near or on a known emission line of the element of interest, though in practice, the chosen 
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regions always included an appropriate emission line (Table 2). Data from the selected regions 

were then used in univariate and PLS models to predict each element. 

In the third set of comparative models, we used all 5485 channels, and modeled them 

with PLS only. 

We note that there are only philosophical differences between this method for channel 

and peak selection versus the single-peak approach more generally used by spectroscopists in 

smaller scale studies. In the traditional approach, peak selection is based on first-principles 

knowledge of a specific peak (emission line), often the most intense in the spectrum. The peak is 

generally fit with a Lorentzian, Gaussian, or Voigt (a convolution of Lorentzian and Gaussian) 

function. Most practitioners acknowledge that in LIBS for geological samples, this convention 

has many shortfalls: there is no guarantee that the chosen peak won’t be too highly overlapped 

by other peaks from different elements to be useful, it is time-consuming, and the magnitude of 

the peak is often modified by matrix effects.  In our method, we use a completely unbiased 

selection process to look for the channel that best predicts the variable of interest. By definition, 

this is a peak (or region of adjoining peaks) that is least likely to be overlapped by those from 

other elements and/or influenced by matrix effects. Our approach is designed to improve 

prediction accuracy in large datasets for which it is impractical to use peak fitting or inspect each 

individual spectra to prevent against using overlapped peaks. It may also produce more accurate 

results because it makes no assumptions about peak shape. Because we have also optimized 

baseline removal to improve prediction accuracy, this combination produces the best possible 

accuracy that can be obtained by predicting a single variable (peak area) against concentration. 

Moreover, the practice of summing peak area over the energy range of the peak or peaks 

determined by the above methods does give comparable peak areas to those obtained using 

conventional peak fits. Fig. 2 shows two examples that compare fitted Gaussian peak areas for 

the Al I emission line at 396.3 nm and the Ca II line at 939.4 nm against areas determined by 
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simply summing the counts under each peak. It is obvious that both approaches produce nearly 

identical results. 

3.2. Model Comparisons 

Prediction error results for regression methods are here reported as cross-validated root 

mean squared errors (RMSE-CV) because these have the same units as the original 

measurements of sample compositions. In this project, these are either expressed as wt.% oxides 

for major elements or parts per million for minor elements, in keeping with geochemical 

conventions. For this purpose, we used K-fold cross-validation, which splits the data set into K 

approximately equal-sized parts, to train the model and tune its parameters (e.g., the number of 

components used in partial least squares) before it is tested on a held-out dataset. When models 

are being fit for a sample in Ki, the other K-1 folds (all Kj folds, i ≠ j) are used to train the model 

and the Ki fold is used to test the model.  

 

4. Results and discussion 

4.1. Univariate models 

Univariate prediction models for all elements and all regions chosen on the basis of high 

correlation with each specific element are given in Tables 2 and 3. Emission lines are listed in 

the table in order of correlation coefficient for the peak centroid, with highest r2 first. These 

results immediately show that for any given element, areas of emission peaks selected on the 

basis of correlation with a single channel do not provide accurate univariate predictions of the 

elements with which they are associated. Vagaries in the success of using specific lines here are 

likely due to overlapping lines from the many other elements present in geological samples. The 

observed variation makes it apparent that considerable and time-consuming experimentation is 

clearly necessary to obtain optimal results from individual lines in such complicated matrices. 

However, the regions chosen using highly correlated lines are quite interesting in and of 

themselves, because they are not always the most prominent lines of an element. It is true that in 
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many cases, the chosen lines are predictable. For example, the strongest K emission lines occur 

at 766.5 and 769.9 nm, and both those regions are selected by the r2 method (764.36-768.80 and 

768.80-771.77 nm, respectively). On the other hand, many of the lines selected using the high-r2 

criterion are ionized species with relatively modest intensities but they produce more accurate 

predictions, and the results are sometimes complicated. For example, although the neutral Al line 

at 396.3 nm is one of the strongest Al lines over the UV-NIR region studied here, use of that line 

produces a prediction error of ±6.85 wt.% Al2O3, while the much smaller Al II and Al III lines 

ca. 449.1 and 683.9 nm, respectively, produce more accurate analyses with RMSE-CV values of 

±6.07 and ±6.10 in units of wt.% Al2O3. As a second example, the full sweep algorithm chooses 

the highly specific single-channel at 648.89 nm as the best predictor of Na, but that region is 

represented in the NIST database only as lines at 647.63 and 651.42 nm. Finally, a very broad 

range of wavelengths was selected by the sweep algorithm for Zn. Close inspection of the NIST 

database shows that it tabulates a small number of Zn lines from only three sources; in this case, 

that compilation may not be considered a comprehensive source for Zn emission characteristics. 

Thus the sweep may select a broad region where there are unrecognized Zn lines that improve 

prediction accuracy. There may be many cases where the chosen regions indicate previously un-

tabulated emission lines; indeed, our selection process for identification of lines is likely far 

more rigorous than some of the procedures used in old papers from which the NIST database was 

compiled. 

Although the peaks chosen by the automated sweep algorithm are in many cases 

surprising, their superiority in predicting elemental concentration cannot be disputed. As seen in 

Table 2, the sweep method produced considerably better (more accurate) prediction results than 

any line chosen by the correlation-based regression method, in some cases more than halving 

(for CaO) the prediction error. For the eight major elements, the average improvement in 

accuracy obtained by using the sweep method rather than the highest r2-producing line is 35%; 

for minors, the improvement is 13%. This suggests that human selection of appropriate peaks or 
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wavelength ranges for univariate analysis is not necessarily optimal. These results highlight the 

inherent difficulty of choosing individual peaks by trial and error, and show the superiority of 

automated routines for selection of peaks for optimal prediction accuracy using univariate 

analyses.  

It is important to note that the best peaks for prediction for any given element found by 

this study may not be generalizable. They likely vary from sample suite to sample suite because 

of issues with overlap from other lines in the matrix. Thus, optimal prediction accuracy from 

univariate analysis not only depends greatly on the choice of emission line, but the best choice 

may well be an inherent property of the specific training set. Our recommendations for line 

selections come from a large enough data set that they probably apply to most geological studies. 

But if the matrix in any given sample suite is different, the sweep procedure should be repeated.  

Finally, the brute force method employed in our sweep algorithm is relatively simple and 

can easily be adapted to any data set. It is a useful way to place a boundary on the best possible 

accuracy that can be obtained from any univariate prediction(s). Although code for this analysis 

is available from the authors, we do not endorse its use because, as the following section amply 

demonstrates, PLS produces consistently better results for major elements on the entire data set, 

and comparable results for minor elements. It is difficult to imagine a scenario in which 

univariate analysis would truly outperform PLS, especially in applications with complex 

matrices. 

4.2. PLS models 

The difference in prediction accuracy of our limited-range PLS models over their 

univariate equivalents is shown graphically in a plot that compares their RMSE-CV values in 

Fig. 3. The RMSE-CV numbers are consistently smaller for the PLS models; i.e., they lie below 

the 1:1 line along which univariate and multivariate models produce identical errors. The PLS 

models are using the exact same data as in the univariate models, but their performance 

improvement is impressive. The models benefit from the ability of PLS to exploit the 
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multicollinearity between the X variables (multiple spectral lines related to the same element or 

correlated elements) and the elemental abundances (Y response variables). Almost universally, 

use of PLS produces better prediction accuracy than univariate analysis (Tables 2 and 3) for 

major elements. This conclusion holds even when the number of channels in any given 

regression analysis is extremely small (Fig. 4). The magnitude of the improvement between 

univariate and PLS is generally not proportional to the width of the peak interval.  

Moreover, the improvement in prediction accuracy for PLS over the univariate approach 

is dramatic. Prediction accuracy using the Si I peak at 288.2 nm reduces from ±13.76 wt.% SiO2 

for a univariate model to ±8.18 wt% for PLS. The average improvement in RMSE-CV for major 

elements between univariate and PLS models is 30% for the individual peak models. All of the 

small-range, single-peak models predicted using PLS out-perform all the univariate models 

including the sweep algorithm. PLS using all the masked regions (i.e., those listed in Tables 2 

and 3) produces results that are 63% more accurate than those for univariate. Given these results, 

it seems that the use of any type of univariate analysis for prediction of major elements is 

inadvisable, and would need to be explicitly justified for any given data set. 

For minor elements, the difference between univariate and PLS is muted, highest for Mn 

and least for Zn, with an average improvement of only 3% in prediction accuracy. This 

difference is likely a function of the magnitudes of the peaks, which are far smaller for minor 

elements than for major elements. The considerably great signal to noise ratio for these small 

peaks undoubtedly limits their prediction accuracy by any technique. 

4.3. Masking to focus on specific element-specific emission lines  

All of the models discussed up to this point are masked to focus the predictive analysis on 

individual regions of the spectrum where a known emission line or lines from the element of 

interest occur(s). Although these models are thus highly interpretable, they do not take advantage 

of other lines with potentially different transition probabilities from the same element, nor do 
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they take matrix effects from other elements into account because their contributions are masked 

out. Thus, we calculated two additional sets of prediction for models for each element. 

In the first set, we used all the energy ranges from Tables 2 and 3 together and employed 

that total area to predict each element’s concentration. Results of this comparison are given in 

Table 2 and shown graphically in Fig. 5. For major elements, PLS again gave consistently more 

accurate predictions than univariate, yielding a 63% improvement in prediction accuracy. For 

minor elements, the relative accuracy improved by 25% overall. 

In the second experiment, we used the entire spectral region to predict the elements of 

interest (Figs. 5 and 6). These produced an 11% improvement in accuracy over the all-peaks PLS 

models for major elements except for FeOT, which became less accurate. In contrast, prediction 

accuracy for minor elements got worse by 10% overall when all channels were included in the 

prediction. Zn actually improved slightly, but all the other minor element predictions became 

less accurate. These results might be expected because the major elements have a wealth of lines 

across all spectral regions in our data; masking removes regions of the spectra where there is 

useful predictive information. Minor elements, however, tend to be swamped by the magnitudes 

of major elements, so inclusion of the extra channels in those models decreases their 

effectiveness in multivariate models, though that effect is relatively small. We can conclude from 

these results that for a single data set acquired using a single instrument (albeit at varying power 

densities), masking is not needed (indeed, it is deleterious) for prediction of major elements. 

However, masking is advantageous for prediction of minor elements with low signals and 

proportionally much higher noise, though use of PLS is still recommended. 

4.4. Comparison to ChemCam laboratory calibrations using a different instrument 

To investigate the generalizability of our results regarding masking versus not masking 

for trace and minor elements, we obtained an alternate data set in the form of 400 spectra used by 

the ChemCam team for calibration as described in Clegg et al. [8] and Anderson et al. [29]. 

These papers report on new calibrations for the ChemCam instrument using a laboratory LIBS 
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instrument, Mars-like atmospheric conditions, and standards that span a wider compositional 

range than previously employed. The new Clegg et al. [8] calibration uses a combination of 

partial least squares (PLS1) and independent component analysis (ICA) algorithms, together with 

a calibration transfer matrix to minimize differences between the conditions under which the 

standards were analyzed in the laboratory and the conditions on Mars. Anderson et al. [29] use 

the same data set but only PLS to demonstrate a conceptually simple method for improving the 

accuracy of quantitative LIBS analysis of diverse target materials termed “sub-model” partial 

least squares. The method is based on training several PLS models on sets of targets with limited 

composition ranges and then “blending” these “sub-models” into a single final result. 

To make this comparison effective, we first compared the prediction accuracies of the 

models just discussed against those obtained by the ChemCam team on the engineering model 

(twin of the flight instrument) at Los Alamos National Laboratory (Fig. 7). The team data set 

comprises data acquired using only a single constant laser power density, which ought to make 

their data set more homogeneous than the larger one examined in the current study. The new 

ChemCam team model [8] uses a combination of partial least squares (PLS1) and independent 

component analysis (ICA) algorithms, and employs sub-models to customize the training set for 

any given prediction by using one of three concentration ranges. An alternative to the team 

model has also been proposed by Anderson et al. [29] that trains several different PLS models on 

data sets with small compositional ranges and then blends the resultant sub-models into a single 

final result. Results from these models are presented in Table 4. They show that this smaller, 

more homogeneous data set from LANL actually does not produce more accurate results than 

those from the MHC data set. 

To explore this conclusion further, we predicted the LANL data set using the same data 

processing train and PLS code as in the current study. We predicted the ChemCam data set using 

a single PLS model. There were a few differences in the data sets used. The team identified and 

removed outliers from their training set using an iterative process unique to each element. They 
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also applied an Earth-Mars correction factor to all channels before building their models, using a 

comparison of data from the calibration targets on Mars and in the laboratory to make their 

calibration suitable for predicting Mars. Finally, the team’s approach uses sub-models, in which 

different models are trained for varying ranges of composition for each element, and then 

blended back together. Our analysis used custom baseline removal [34, 35] rather than the team’s 

algorithm and our data pre-processing sequence is slightly modified, but it uses all channels of 

all spectra available. This makes the data set we analyzed rather more heterogeneous than the 

one actually used by the team. 

Results do not support the hypothesis that the smaller LANL data set provides better 

accuracy than our larger one, even though the MHC model was run on the entire data set, 

including the outliers discarded by the ChemCam team. In fact, our simpler model (one PLS 

model trained on all channels of data) provides comparable to or better accuracy than the team’s 

methods [8, 29] for major element predictions. We speculate that models built using the MHC 

data set, which intentionally spans multiple laser power densities, can better accommodate 

variations that result from pulse-to-pulse signal fluctuations typically found in LIBS instruments. 

Interestingly, our minor element models for the LANL data do give significantly better 

accuracy than those from the MHC data set (Fig. 8), but this might be expected for two reasons. 

First, all the LANL data were acquired from naturally occurring samples in which concentrations 

of the minor elements are low, in contrast with the MHC data set in which samples are doped 

with up to 10 wt.% of the “minor” elements. Second, our previous work has documented a 

tendency for multivariate analyses of minor elements to employ the emission lines for major 

elements to which they are related. This is the effect of geochemical camouflage, which occurs 

when the radii between major and minor elements differ by less than 15%, minor element cations 

can substitute into mineral sites typically occupied by major elements with the same charge [36]. 

For example, Rb1+ can be predicted using K1+ emission lines because that is a common 

substitution in feldspar minerals. The 172 doped samples in the MHC data subvert those 
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correlations with major elements. Thus, predictions using the MHC data would be expected to 

show prediction accuracies based only on actual emission lines from each specific minor 

elements rather than lines caused by camouflaging major elements. Clearly, accuracy receives a 

boost when the major element lines can be used in predictions, and for terrestrial studies, such 

camouflage should be exploited. However, for Mars predictions and for the sake of 

interpretability, it may be advantageous to use doped samples. 

Finally, these results provide points of comparison for masked and unmasked models 

employing a hybrid data set that combines the Los Alamos and MHC data suites, as follows. 

4.5. Combining data sets from different instruments together 

As a final test, we investigated the dependence of prediction accuracy on the combined 

data set with a total of 1756 spectra. We make this comparison to illustrate the mingled effects of 

three factors on the question of masking versus not masking: spectrometer differences, training 

set size, and single vs. multiple power densities. Results are shown in Table 4 and Figs. 7 and 8 

for use of both data sets employing the masks from Tables 2 and 3 and without masks. We note 

that baseline removal was again customized as part of the prediction algorithm. 

Overall, absolute prediction accuracies for the mixed data sets are generally higher 

(worse) then for either set alone for most major and minor elements, despite the expectation that 

a larger training set would produce more accurate predictions. Recent work by Thomas Boucher 

in our group suggests that this occurs when merging data sets from very different instruments or 

collected using dissimilar analytical conditions. Those criteria are certainly true in this situation: 

Mount Holyoke data were collected at a 20.2 cm standoff distance with multiple power densities 

(3.2, 2.8, and 3.8 mJ), while LANL results were acquired from a distance of 1.6 m at a single 

power density (14 mJ). When analyzing these data sets together, PLS cannot reconcile those 

differences, and worse prediction accuracy results. This problem can be solved by use of 

calibration transfer techniques that correct systematic differences between data sets and look for 

the most predictive commonalities between them. Those experiments are outside the scope of the 
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current work. However, if we were to repeat this analysis using a calibration transfer method 

(like the correlation analysis domain adaptation we are developing) to first align the results, we 

would expect that the combination data set would perform better than either one alone.  

 

5. Implications and conclusions 

For this data set (the largest suite of LIBS rock spectra ever assembled) and these 

elements, univariate predictions based on single emission lines are by far the least accurate, no 

matter how carefully the region of channels/wavelengths is chosen. This result is expected given 

the wide range of matrix compositions in our geologically-relevant calibration suite, and is likely 

generalizable to any system with similarly variable matrices. The traditional method of 

subjective choice of elemental lines for quantitative analyses in complex systems does not 

produce the best possible results. Univariate analyses based on use of a computationally-

optimized wavelength range for each element (here referred to as the sweep algorithm) show 

improved accuracy over univariate predictions based on individual peaks in all cases, and place a 

bound on the accuracy obtainable using human-chosen ranges. These results support the general 

conclusion that users of univariate analysis for elemental quantification would do well to employ 

an optimization approach to the choice of peaks. Significant improvements in prediction 

accuracy may be anticipated as a result, especially in samples with complex matrices containing 

many different elements. The advantages of the optimization approach over human selection 

should apply to all LIBS applications. Source code for this procedure is available from the 

corresponding author. 

However, univariate analysis is not the recommended technique for prediction of major 

elements in geological samples. In nearly every single test performed in this study, PLS 

outperformed univariate analysis in prediction accuracy. This result is expected for three reasons. 

First, elements that are present in the high concentrations will have many different emission lines 

throughout the spectral region studied. Any type of analysis that excludes regions of the 
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spectrum where there is possibly predictive information will, by definition, denigrate prediction 

accuracy. Second, univariate analyses may be subject to problems from overlap in anything but a 

pure matrix. In complex training sets with compositional diversity, it can be extremely difficult 

to anticipate by trial and error where those overlaps will occur. Finally, matrix effects arise from 

the ensemble of elements that constitute any given plasma. Thus, there is useful data not only in 

the emission lines of an element of interest, but also in those arising from other elements. This 

effect was documented in Table 2 of Dyar et al. [36], where LIBS prediction accuracy was 

evaluated with the least absolute shrinkage and selection operator (lasso), a penalized shrunken 

regression method that selects the specific channels for each element that explain the most 

variance in the concentration of that element. Specific lines chosen for their predictive usefulness 

by the lasso were in no case solely those from the element being predicted. Some of the emission 

lines came from other elements with known geochemical correlations or close overlap of 

emission lines, but many resulted from unrelated elements and thus must arise from matrix 

effects caused by an underlying physical process. The best possible prediction accuracy therefore 

comes when the PLS analysis has access to channels where emission lines of other peaks occur. 

For all these reasons, univariate analysis of LIBS lines should not be the first choice for 

quantitative analysis of major elements in any application, unless it is clear that these three 

problems do not apply. 

The same general conclusion of PLS superiority over univariate can also be made for 

minor elements, though improvements in prediction accuracy when changing from optimally 

masked spectra regions to full-spectral PLS are more nuanced. Our results support the conclusion 

of Ollila et al. [23], who used a small training set with un-doped samples to demonstrate that 

PLS over a limited wavelength range yielded only slightly improved accuracy in predictions of 

Rb and Sr but not for Li and Ba. However, compositional diversity in the matrix does still affect 

quantitative analysis of minor elements. Major element features can act to obscure any extra 

information on minor elements that may be present in the rest of the spectrum. While not a 
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matrix effect per se, the number and magnitude of emission lines from major elements in any 

sample can also have dramatic effects on the magnitudes of minor element peaks in a LIBS 

spectrum when normalization is used to correct for changes in the amount of material ablated 

[30]. Overall, probably the biggest limitation to prediction of minor elements with LIBS is 

simply the low signal to noise ratio of their emission lines, which may be the reason why the 

prediction accuracies for trace elements are generally poor overall (especially when considered 

as percentages of the total concentration present, c.f. Fig. 8). Thus use of limited wavelength 

ranges for PLS and univariate analyses for minor element predictions both employ the same 

essential set of noisy information. Only subtle advantages of one over the other may result, 

depending on the vagaries of signal to noise and the presence of overlapping peaks. 
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  Table 1. Characteristics of Data Sets Used* 

 MHC Data Set LANL Data Set Both 

 Minimum Maximum Average S.D. Minimum Maximum Average S.D. Average 

SiO2 0.05 99.93 57.20 16.65 0.00 98.00 53.9 17.31 56.44 

Al2O3 0.01 41.80 12.08 6.87 0.00 38.79 14.29 6.99 12.59 

TiO2 0.00 7.35 1.21 1.40 0.00 3.59 0.91 0.82 1.14 

FeOT 0.00 57.50 7.20 5.22 0.00 86.28 7.62 7.78 7.30 

MgO 0.00 47.37 7.13 9.55 0.00 56.14 4.65 6.92 6.56 

CaO 0.00 50.30 6.02 6.93 0.00 56.42 6.09 8.74 6.03 

Na2O 0.00 5.91 2.00 1.42 0.00 43.97 2.29 2.92 2.06 

K2O 0.00 7.72 1.82 1.77 0.00 12.11 2.19 1.92 1.91 

Ni 0 5548 291 645 0 2782 103 269 260 

Mn 0 4077 153 443 5 2200 106 228 147 

Zn 0 5809 1057 841 0 4879 731 704 1015 

Cr 0 5995 256 641 1 2908 186 330 245 

Co 0 4428 125 493 0 259 26 30 110 

 *Units are in weight percent for the oxides and parts per million for the minor elements. 
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 Table 2. Wavelength Regions Used for Masking and RMSE-CV Values for Masked Major Element Data*  

 

Range (nm) 

Peak and  

Energy (nm) 

Univariate 

RMSE-CV 

PLS 

RMSE-CV Range (nm) 

Peak and Energy 

(nm) 

Univariate 

RMSE-CV 

PLS 

RMSE-CV 

SiO2 

287.90-288.74 Si I 288.2 13.76 8.18 504.99-508.18 Si II 504.1, 505.6 16.40 16.27 

632.42-639.23 Si II 637.1 15.44 11.89 408.31-409.59 Si IV 409.0 16.37 13.35 

456.63-457.18 Si III 456.9 15.48 14.35 390.36-390.97 Si I 390.5 14.04 10.77 

412.45-414.08 Si II 413.1 15.75 9.77 469.05-474.32 Si I, III many  8.66  

Al2O3 

308.12-308.55 Al I 308.3 6.85 5.43 702.20-707.50 Al II 704.4, 705.9 6.03 6.57 

309.13-309.68 Al I 309.4 6.79 5.30 451.04-451.77 Al II 449.1 6.07 4.80 

395.87-396.57 Al I 396.3 6.85 5.94 465.99-467.13 Al II 466.8 6.89 5.43 

621.64-625.25 Al II 624.5 6.88 4.94 683.32-684.56 Al II 683.9 6.10 5.96 

394.14-394.85 Al I 394.5 6.76 3.47 568.14-570.76 Al III 569.8 6.37 5.34 

    308.787 Al II 308.9 4.93  

TiO2 

323.35-324.65 Ti II 323.5-324.3 1.08 0.74 325.10-325.70 Ti II 325.4, 325.5 1.21 0.89 

334.64-335.44 Ti II 334.7-335.0 1.06 0.74 307.79-308.12 Ti II 308.0 1.37 1.30 

335.92-336.64 Ti I, II 336.2 1.34 1.54 324.65-325.10 Ti II 325.0 1.02 0.91 

336.83-337.70 Ti II 337.1-337.4 1.16 0.67 332.05-332.62 TI II 332.3, 332.4 1.40 1.01 

333.92-334.59 Ti II 334.1, 334.2 1.03 0.95 322.72-323.14 TI II 323.0 1.11 1.01 

    336.68-337.35 Ti II many 0.81  

FeOT 

246.69-277.41 Fe II many 4.84 2.41 388.47-389.29 Fe I 388.7-388.8 4.99 4.63 

283.04-305.08 Fe I-III many 5.12 2.80 404.19-441.15 Fe I 404.7 4.24 2.21 

    263.10-263.25 Fe II 263.2 3.17  

MgO 

292.62-293.27 Mg I 293.7 4.15 4.75 515.39-521.68 Mg I 517.4-518.5 9.47 7.93 

446.09-450.79 Mg II 448.2, 448.3 5.94 3.39 278.54-281.15 Mg II 279.2 5.76 3.28 

293.44-294.16 Mg I 293.8 5.97 5.27 284.99-285.60 Mg I 285.3 6.41 5.29 

786.11-793.42 Mg II 787.9, 789.9 9.53 6.91 445.72-448.12 Mg II, III, V many 3.03  

CaO 

445.31-446.28 Ca I 445.7 6.80 6.29 317.26-318.98 Ca II 318.0 3.27 3.33 

611.05-613.23 Ca I 612.4 6.89 4.51 392.00-394.20 Ca II 393.4 6.75 5.45 

443.17-444.19 Ca I many 5.42 2.55 315.67-316.46 Ca II 316.0 6.88 3.64 

640.99-651.55 Ca I many 5.10 2.66 442.36-443.06 Ca I many 5.69 2.78 

731.25-733.38 Ca I 732.8 4.93 5.38 396.49-397.35 Ca II 397.0 6.65 6.42 

713.02-715.53 Ca I 715.0 4.99 4.82 317.23-317.37 Ca II 317.9 2.39  

Na2O 
586.59-590.74 Na I 589.2, 689.8 1.39 1.24 312.80-313.18 Na II 312.6 1.42 1.36 

816.76-821.37 Na I 818.6 1.41 1.22 648.89 Na II 647.5 0.98  

K2O 

764.36-768.80 K I 766.7 1.74 1.52 690.05-691.65 K I 691.3 1.77 1.75 

768.80-771.77 K I 766.7 1.47 1.45 454.73-456.23 K II 460.0 1.77 1.46 

692.92-694.85 K I 694.1 1.73 1.65 824.24-860.22 K I many  1.20  

*Range for full sweep algorithm results given in bold face and shaded cells. The average number of components and standard deviation on 

components for each model across folds are given in supplementary document Table 2S. 
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Table 3. Wavelength Regions Used for Masking and Univariate and PLS RMSE-CV Values for Masked Minor Element Data* 

 
Range (nm) 

Peak and 

Energy (nm) 

Univariate 

RMSE-CV 

PLS 

RMSE-CV Range (nm) 

Peak and Energy 

(nm) 

Univariate 

RMSE-CV 

PLS 

RMSE-CV 

Ni 

301.15-301.44 Ni I 301.3 599 558 305.37-305.68 Ni I 305.5 602 573 

300.19-300.58 Ni I 300.3 596 536 739.23-739.88 Ni I 739.6 622 616 

440.12-440.33 Ni I 440.3 572 546 741.94-742.78 Ni I 742.4 626 626 

313.31-313.77 Ni I 313.5 609 557 303.65-304.07 Ni I 303.9 593 579 

761.49-762.50 Ni I 761.9 620 626 305.03-305.37 Ni I 305.2 600 564 

    261.03-261.08 Ni II 261.0 508  

Mn 

403.27-403.79 Mn I 403.4 814 708 267.06-267.63 Mn II 267.3 850 848 

270.03-270.39 Mn II 270.2 851 810 294.77-295.26 Mn II 295.0 780 693 

288.89-289.14 Mn II 288.8 848 804 600.75-602.94 Mn I 601.5 839 826 

293.84-294.14 Mn II 294.0 840 774 293.21-293.50 Mn II 293.4 835 803 

403.00-403.27 Mn I 403.2 814 684 404.04-404.36 Mn I 404.3 818 723 

    260.92-261.08 Mn II 260.6, 261.0 832  

Zn 

330.18-331.78 Zn I 330.4 440 443 328.11-328.43 Zn I 328.3 426 441 

467.99-468.50 Zn I 468.1 432 439 758.37-759.63 Zn II 759.0 436 430 

635.52-636.60 Zn I 636.4 437 443 250.08-250.55 Zn II 250.3 435 436 

255.71-256.18 Zn II 255.9 433 440 773.05-773.89 Zn II 773.5 431 443 

334.41-334.81 Zn I 334.7 427 442 609.27-610.79 Zn II 610.4 415 441 

    458.36-621.88 Zn I, II, many 374  

Cr 

519.40-521.42 
Cr I 520.2, 

520.7 
637 641 425.43-425.79 Cr I 425.6 600 478 

283.39-283.84 Cr II 283.6 615 565 313.12-313.53 Cr II 313.3 619 635 

427.45-427.79 Cr I 427.6 631 626 276.53-277.12 Cr II 276.7 626 641 

267.47-268.13 Cr II 268.0 643 655 312.41-312.84 Cr II 312.6 635 625 

284.24-284.54 Cr II 284.4 640 526 301.29-301.68 Cr I 301.5 611 635 

    437.82-553.24 Cr I, II many 555  

Co 

257.95-258.49 Co II 258.3 456 411 389.23-389.80 Co I 389.5 484 483 

399.50-399.74 Co I 399.6 458 483 266.24-266.61 Co II 266.4 485 488 

533.47-534.59 Ci II 533.5 474 487 269.47-269.73 Ci II 269.5 475 492 

255.87-256.18 Co II 256.1 463 487 411.85-412.39 Co II 412.2 486 474 

304.32-304.65  485 490 270.59-271.10 Co II 270.8 476 488 

    258.27 Co II 258.2-258.3 418  

*Range for full sweep algorithm results given in bold face and in shaded cells.  The average number of components and standard deviation on 

components across folds for each model are given in supplementary document Table 3S. 
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Table 4. RMSE-CV Values for Masked Models Compared with Unmasked Models* 

Element 

MHC Data (this paper) Los Alamos Data: 400 Standards** Modeled Together 

Full Sweep 

Univariate 

All Masks 

Univariate 

All 

Masks 

PLS 

No 

Mask 

PLS 

ChemCam 

Team ICA 

Model [8] 

Anderson 

Full PLS 

Model[24] 

Anderson 

Blended 

Sub-Model 

ChemCam 

Team 

Model[8] 

Our 

Model 

No Mask 

All Masks 

PLS 

No 

Masks 

Wt.% SiO2 8.66 14.22 5.23 4.69 8.31 5.66 4.91 5.83 5.18 6.31 5.59 

Wt.% Al2O3 4.93 6.88 2.82 2.11 4.77 2.79 2.26 3.18 2.20 2.88 2.60 

Wt.% TiO2 0.81 0.99 0.51 0.54 1.44 0.51 0.46 1.10 0.37 0.50 0.53 

Wt.% FeOT 3.17 4.13 2.64 2.66 5.17 3.34 2.21 2.90 3.81 3.42 3.38 

Wt.% MgO 3.03 4.65 1.86 1.63 4.08 1.43 1.19 2.30 1.27 2.04 1.87 

Wt.% CaO 2.39 5.56 1.32 1.19 3.07 1.80 1.89 1.14 1.54 1.60 1.47 

Wt.% Na2O 0.98 1.41 0.78 0.57 2.29 0.60 0.57 1.34 1.41 1.05 1.14 

Wt.% K2O 1.20 1.74 0.80 0.61 0.98 0.78 0.72 1.49 0.70 0.93 0.69 

Ni (ppm) 508 590 416 444     255 386 424 

Mn (ppm) 374 427 415 397    22,000[21]  351 503 557 

Zn (ppm) 685 832 450 522    24,100[22]  227 407 372 

Cr (ppm) 555 626 297 526     153 356 476 

Co (ppm) 418 474 357 440     21 338 405 

*The average number of components and standard deviation on components for each model across folds are given in supplementary document Table 4S. 

**LANL models trained on a different, smaller, and less diverse training set of 408 samples with outliers removed for varying elements [8]  
†Model described in Lanza et al. [21] using small data set, valid for compositions with <10 wt.% MnO 
‡Model described in Lasue et al.[22] using small data set for predictions at 95% confidence level 
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FIGURES 

 

 
Fig. 1. Total alkali versus silica diagram showing the range of compositions in the three data sets 

studied here. Some analyses total to ~103 wt.% because of large error bars on SiO2, K2O, and 

Na2O propagated onto the sums. Although this plot is conventionally used to show only volcanic 

rock compositions (for which names are given in regions shown here), it provides a convenient 

graphical representation of our range of compositions, which include both igneous and 

sedimentary rock types. 
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Fig. 2. Comparison of peak areas calculated using summed counts after custom baseline removal 

(x axis) against peak areas calculated by fitting the peaks using Gaussian peak shapes (y axis). 

The two methods yield comparable results, though there is some scatter at very small areas, 

which is to be expected from very small concentrations.  
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Fig. 3. RMSE-CV errors for univariate models compared with multivariate equivalents (PLS) for 

the same peak or multiple peaks. For major elements, multivariate models outperform univariate 

for nearly every case. For minor elements, univariate and multivariate models provide 

comparable results. 
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Fig. 4. Comparison of the number of channels (expressed in nm as the width of the interval used) 

used in univariate or multivariate predictions (the 57 ranges given in Tables 2 and 3) versus the 

improvement (reduced error bar) in accuracy for the two methods. The improvement of PLS 

accuracy over that of univariate is mostly independent of the width of the interval used. 
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Fig. 5. Comparison of RMSE-CV values for six models using only data acquired at Mount 

Holyoke. Data from Tables 2 and 3. Best single models are the lowest RMSE-CV for any 

individual model. For major elements with many emission lines, masks are not needed. For 

minor elements, masking overcomes the effects of geochemical camouflage and focuses the 

predictions on regions where known lines from each element are found, generally resulting in 

more accurate predictions. 
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Fig. 6. Graphical illustration of the selected columns of Table 2 for data collected from two large 

datasets at multiple laser powers on the Mount Holyoke LIBS instrument. RMSE-CV values are 

plotted on the left axis for major elements and on the right axis for minor elements. For major 

elements, it is apparent that optimal accuracy is obtained when all spectral channels are included 

(no masking), likely because major elements have many peaks scattered throughout these 

channels and thus masking results in a loss of predictive information. For minor elements, 

masking gives comparable and sometimes better results than no masking and PLS consistently 

outperforms univariate analyses.  
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Fig. 7. Cross-validation root mean square prediction errors from PLS expressed as absolute 

values (top panel) and as percentages of the average value for each variable (bottom panel) for 

major elements comparing results from use of MHC data only, LANL data only, and the 

combined data set. 
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Fig. 8. Root mean square prediction errors expressed as absolute values (top panel) and as 

percentages of the average value for each variable (bottom panel) for minor elements comparing 

results from use of MHC data only, LANL data only, and the combined data set. The relative 

RMSE-CV values are quite large for these minor elements compared to the major elements 

shown in Fig. 6. Prediction errors do not change significantly when the LANL data are combined 

with the MHC data. Errors for Zn (shown on right axis of lower panel) are especially large 

because there are few useful Zn emission lines in the wavelength range of our spectrometers, As 

hypothesized by Lepore et al. [30], relatively large RMSE-CV values for the minor elements are 

likely limited by their inherently low signal to noise ratios, so that variations in prediction 

models have less of an effect on their accuracy. 
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