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Abstract

Background: Single-cell resequencing (SCRS) provides many biomedical advances in variations detection at the

single-cell level, but it currently relies on whole genome amplification (WGA). Three methods are commonly used

for WGA: multiple displacement amplification (MDA), degenerate-oligonucleotide-primed PCR (DOP-PCR) and

multiple annealing and looping-based amplification cycles (MALBAC). However, a comprehensive comparison of

variations detection performance between these WGA methods has not yet been performed.

Results: We systematically compared the advantages and disadvantages of different WGA methods, focusing

particularly on variations detection. Low-coverage whole-genome sequencing revealed that DOP-PCR had the

highest duplication ratio, but an even read distribution and the best reproducibility and accuracy for detection of

copy-number variations (CNVs). However, MDA had significantly higher genome recovery sensitivity (~84 %) than

DOP-PCR (~6 %) and MALBAC (~52 %) at high sequencing depth. MALBAC and MDA had comparable single-nucleotide

variations detection efficiency, false-positive ratio, and allele drop-out ratio. We further demonstrated that SCRS data

amplified by either MDA or MALBAC from a gastric cancer cell line could accurately detect gastric cancer CNVs

with comparable sensitivity and specificity, including amplifications of 12p11.22 (KRAS) and 9p24.1 (JAK2, CD274,

and PDCD1LG2).

Conclusions: Our findings provide a comprehensive comparison of variations detection performance using SCRS

amplified by different WGA methods. It will guide researchers to determine which WGA method is best suited to

individual experimental needs at single-cell level.
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Background
Variations detection in single-cell resequencing (SCRS) re-

search has enabled numerous advances in heterogeneity

analysis [1], including cancer research [2–5], haplotype

studies [6, 7], single-neuron sequencing [8], and detection

of aneuploidy and unbalanced chromosomal rearrange-

ment in pre-implantation screening/diagnosis [9, 10]. The

direct sequencing of single cells has been limited by the pi-

cogram amount of DNA in individual cells; hence, whole

genome amplification (WGA) is usually used to increase

the amount of DNA before sequencing library preparation.

Currently, three WGA strategies are widely used for

SCRS: degenerate-oligonucleotide-primed polymerase

chain reaction (DOP-PCR) [11, 12], multiple displace-

ment amplification (MDA) [13–15], and a combination

of displacement pre-amplification and PCR amplification

(marketed as PicoPlex kit by Rubicon Genomics [16, 17],

MALBAC kit by Yikon Genomics [7, 18, 19]). These

three WGA strategies differ in the enzymes used and in

the experimental protocol design, which may yield dif-

ferent performances and biases, allowing for different

specific applications. Quake et al. reported the compari-

son of CNVs detection, single-nucleotide variations

(SNVs) detection and de-novo genome assembly using

single-cell Escherichia coli DNA amplified by these three

methods, with the corresponding bulk DNA as control

[20]. He et al. compared the performance of genome

coverage efficiency, reproducibility, GC bias, genome

coverage uniformity and CNVs detection of 11 hippo-

campal neurons also amplified by these three methods

at low-coverage sequencing depth [21]. Voet et al. re-

ported the variations detection performance comparison

using human cell line and blastomeres amplified by

MDA and PicoPlex WGA [22].

However, although it is known that the WGA strat-

egies may introduce artifacts and cause errors in varia-

tions detection [1], there is still no comprehensive

comparison of the amplification bias and variations de-

tection performance of the widely used commercialized

kits completely based on these three strategies. To sys-

tematically evaluate the SCRS performance of commonly

used WGA methods, we performed single-cell WGA

using seven kits, with several experimental replicates for

each kit, and then sequenced the whole genome of the

successfully amplified DNA. We designed a narrowing-

down strategy to investigate the amplification and varia-

tions detection performance cost-efficiently. First, we

evaluated the mapping ratio, duplication ratio, and genome

coverage uniformity using the single-cell low-coverage

whole genome sequencing (LWGS) data or the extracted

single-cell LWGS data. By evaluating the amplification

quality during LWGS comparison, we selected the kits

with best genome recovery sensitivity or uniformity. Using

the further deep-sequenced whole genome sequencing

(WGS) data amplified by the chosen kits, we further inves-

tigated the amplification bias and variations detection abil-

ity. In this way, we found that DOP-PCR methods had the

highest duplication ratio and limited mapping efficiency

and genome recovery - presumably as a result of the PCR

process - but also that DOP-PCR methods had the best re-

producibility and accuracy for detection of CNVs. In

addition, we found that MDA and MALBAC had compar-

able genome recovery sensitivity, higher than that of DOP-

PCR. Furthermore, we found that SCRS data from MDA

also had comparable SNVs detection accuracy and CNVs

detection accuracy to that of MALBAC. Our results pro-

vide a comprehensive comparison of variations detection

performance at single-cell level between different WGA

methods, and guidance for researchers to choose best

suited WGA methods when performing variations detec-

tion at single-cell level.

Data description
As shown in Fig. 1, we used a narrowing-down strategy

to compare the WGA methods cost-effectively. We ob-

tained 29 single cells from the YH cell line (a human

lymphoblastoid cell line from first Asian genome donor

[23]) and amplified them using seven commercialized

kits. The kits tested were: GenomePlex® Single Cell

WGA Kit (which we called DOP-1, Sigma-Aldrich, St.

Louis, MO, USA); Silicon Biosystem Ampli™ WGA Kit

(DOP-2, Silicon Biosystems, Bologna, Italy); NEB Single

Cell WGA Kit (DOP-3, New England Biolabs, Ipswich,

MA, USA); Qiagen REPLI-g Mini Kit (MDA-1, Qiagen,

Düsseldorf, Germany); Qiagen REPLI-g Single Cell Kit

(MDA-2, Qiagen, Düsseldorf, Germany); GE Healthcare

illustra GenomiPhi V2 DNA Amplification Kit (MDA-3,

GE Healthcare, Little Chalfont, Buckinghamshire, England);

and Yikon Genomics Single Cell Whole Genome Amplifi-

cation Kit (MALBAC, Yikon Genomics, China). These kits

were based on DOP-PCR, MDA, or MALBAC method re-

spectively as indicated by their designations. We performed

several experimental replicates for each kit, and se-

quenced the WGA product of each single cell a mean

depth of ~0.5X (Additional file 1: Table S1 and Additional

file 2: Table S2). We performed a low-coverage sequencing

comparison using 20 YH single cells which were amplified

by these seven WGA kits and sequenced them on Illu-

mina Sequencer (Additional file 1: Table S1). Three out of

the 20 YH single cells that showed outstanding uniformity

during low-coverage sequencing comparison and two

other YH single cells amplified by MDA-2 kit were also

selected to further high-coverage sequence to around 30X

on Illumina Sequencer (Additional file 3: Table S3). We

also obtained deep WGS data from two sets of YH cells

(each set was comprised of 10–20 single YH cells) whose

DNA was amplified using the MDA-2 kit (called MDA-

2_M6 and MDA-2_M16; Additional file 3: Table S3). We
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obtained the bulk WGS data from the YH cell line as con-

trol (called YH-mix; Additional file 3: Table S3). Seven

other YH single cells were amplified by MDA-2 or MAL-

BAC, then sequenced on Lifetech Ion Proton Sequencer

to perform CNVs detection (Additional file 2: Table S2).

For the cancer cell line data, we downloaded the

MALBAC-amplified WGS data of five single cells de-

rived from the SW480 human colon cancer cell line and

corresponding bulk SW480 sequencing data from the

NCBI Short Read Archive (SRA060929).

Finally, we obtained 10 single cells from a human gas-

tric cancer cell line (called BGC823), amplified five by

MALBAC and five by MDA-2, and sequenced them to

~0.5X depth on Lifetech Ion Proton Sequencer. We also

obtained the WGS data of the bulk DNA of BGC823 as

a control (Additional file 2: Table S2).

Analyses
Comparison of low-coverage single-cell WGS performance

We first aligned the raw short reads of 20 low-coverage

sequenced YH single cells to the human reference gen-

ome (hg19) using BWA [24] (Methods). The resulting

data, including the read mapping ratio, read duplication

ratio, GC content, depth, and genome coverage, was

summarized and evaluated in Additional file 1: Table S1.

To eliminate the impact of sequencing depth and sequen-

cer bias on the WGA comparison, we randomly extracted

0.1X data from the raw LWGS data (Additional file 4:

Table S4). We found that MDA-2 amplified data had the

highest mean genome coverage (8.84 %), even higher than

that of MALBAC (8.06 %). MDA and MALBAC amplified

data had lower duplication ratio than DOP-PCR amplified

data (Bonferroni-corrected Mann–Whitney-Wilcoxon test,

a

b c

Fig. 1 A narrowing-down strategy used to compare WGA methods cost-effectively. We describe the narrowing-down strategy using 3 panels

(a, b, c). We perform LWGS comparison including genome coverage and uniform using YH single cells which are amplified by seven WGA kits

based on DOP, MDA and MALBAC methods in panel A. We additionally compare the CNVs detection using simulated data of YH single cells in

panel A. In panel B, we perform the deep WGS comparison of biases and SNVs detection using deep-sequenced YH or SW480 single cells

amplified by DOP, MDA or MALBAC respectively. Corresponding bulk data is used as unamplified control. In panel C, we further compare the

CNVs detection between MDA-2 and MALBAC amplified data using real data of BGC823 single cells. *Ion Proton sequencing data; #Illumina and

Ion Proton sequencing data. LWGS, low-coverage whole-genome sequencing; WGS: whole genome sequencing. DOP-1,GenomePlex® Single Cell

WGA Kit; DOP-2, Silicon Biosystem Ampli™ WGA Kit; DOP-3, NEB Single Cell WGA Kit; MDA-1, Qiagen REPLI-g Mini Kit; MDA-2, Qiagen REPLI-g

Single Cell Kit; MDA-3, GE Healthcare illustra GenomiPhi V2 DNA Amplification Kit; MALBAC,Yikon Genomics Single Cell Whole Genome Amplification

Kit. Data marked in purple is downloaded
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p < 0.05), but higher mean mapping ratio than DOP ampli-

fied data (Average 98.36 %, SD 0.92 % for MDA; average

97.68 %, SD 0.17 % for MALBAC; and average 89.31 %, SD

2.41 % for DOP, Bonferroni-corrected Mann–Whitney-

Wilcoxon test, p < 0.05) (Fig. 2a).

To gain more insights into the distinction of the map-

ping ratio between different WGA methods, we then

investigated unmapped reads for their GC content, sequen-

cing quality, and mapping quality. We found no significant

difference in the GC content of unmapped reads between

the methods (Additional file 5: Figure S1). However, we

found a significantly different N ratio for the unmapped

reads among the three WGA methods, with that for

MALBAC being the highest (Bonferroni-corrected

Mann–Whitney-Wilcoxon test, p < 0.001) and that for

MDA being the lowest (Bonferroni-corrected Mann–

Whitney-Wilcoxon test, p < 0.001) (Additional file 6:

Figure S2). The lowest N ratio seen in MDA-amplified

data could be explained by the high fidelity of the

Phi29 polymerase. Also, the different amplification

primers and the different sequencing quality may cause

the N ratio distinction, either.

We compared the read distribution uniformity using

0.1X extracted data from all the YH single cells mentioned

a b

c

Fig. 2 LWGS Comparison of recovery sensitivity and amplification uniformity between WGA methods. a The recovery sensitivity comparison of

three different WGA methods using 0.1X randomly extracted LWGS data. The histogram and line graph show the mean mapping ratio and mean

duplication ratio of different methods, respectively. b The mean normalized depth distribution of the seven WGA kits using the 0.1X sequencing

data. The normalized read depth is defined as the ratio of the mean depth of all reads in each window to the mean depth of the whole

genome. The binning window is 100 kb. The dashed curve is plotted using the simulated data (1000 dots) that followed the Poisson distribution

(λ = 30) and normalized by dividing by 30. c A comparison of mean normalized depth distribution in chr15:q11.1-q26.3 between different WGA

kits. The binning window is 100 kb. YH-mix is used as the unamplified control
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above. We simulated the theoretic sequencing depth dis-

tribution which followed the Poisson distribution (1000

dots, λ = 30) and was normalized by dividing by 30. We

then found that the mean normalized sequencing depth

distribution of DOP-1 data was most similar with the the-

oretic one, whereas all other amplification kits had ob-

served bias (Fig. 2b). Overall, the mean normalized depth

distribution biases for DOP-PCR methods, MDA-2 and

MALBAC were lower than those of MDA-1 and MDA-3.

DOP-PCR and MALBAC showed higher reproducibility

than MDA (Additional file 7: Figure S3, Additional file 8:

Table S5, Bonferroni-corrected Mann–Whitney-Wilcoxon

test, p < 0.05).

Using the 0.1X extracted data, we then assessed the re-

gional reads distribution in one genomic region in which

there were no copy-number alterations in the YH-mix

data (chr15: q11.1-q26.3). The read distribution for DOP-

PCR, MDA-2, and MALBAC had better evenness and re-

producibility than other WGA kits, and the MDA-1 read

distribution demonstrated the highest bias (Bonferroni-

corrected Mann–Whitney-Wilcoxon test, p < 0.001), as

also found in a previous report [18] (Fig. 2c, Additional file

9: Figure S4 and Additional file 10: Figure S5).

In summary, SCRS data amplified by MDA or MALBAC

had a lower duplication ratio, a higher mapping ratio, and

a higher genome recovery than that from DOP-PCR.

DOP-PCR, MDA-2 and MALBAC amplified data showed

high uniformity and reproducibility. All three amplification

strategies could potentially provide a uniform distribution

of sequencing reads, which is important for CNVs analysis

at the single-cell level.

Deep single-cell WGS and bias evaluation

To further explore the genome coverage bias introduced

by WGA, we compared deep-sequenced data (~30×) amp-

lified by DOP-1, MDA-2, MDA-3 or MALBAC respect-

ively (Table 1), because LWGS data amplified by these

four WGA kits had better genome recovery sensitivity or

sequence evenness than other kits. Among 5 deep-

sequenced YH single cells, MDA-3 amplified data covered

more than 94.35 % of the reference genome, and mean

genome coverage of 3 MDA-2 amplified single cells was

97.72 % (SD 2.97 %). We downloaded deep-sequenced

data of five SW480 single cells (derived from a colon cell

line) amplified by MALBAC cells from previous report

[18], which covered a mean of 82 % (SD 9.42 %) of the

whole genome. Of note, DOP-1 amplified YH WGS data

covered only 23.23 % of the reference genome with se-

quencing depth ~30X (we received ~30X raw sequencing

data, and after removing the primer sequences and dupli-

cations we obtained ~3X mapping reads with DOP-1).

The low amplification efficiency of the DOP-PCR method,

which resulted from the random primer PCR and the

enzyme [12], may cause the high duplication ratio

(39.24 %) at the whole genome level.

We next determined the cumulative sequencing depth

distribution across the entire genome to evaluate amplifi-

cation bias. Cumulative depth distribution curves for

DOP-1, MDA-2, MDA-3, and MALBAC fitted a standard

Poisson distribution (Fig. 3a). Although the YH-mix and

bulk SW480 control datasets covered almost whole refer-

ence genome with a sequencing depth of 10X or more

(98.62 % and 96.65 %, respectively), the coverage of WGA

data was much lower – average 82.21 % (SD 11.98 %) in

MDA-2, 59.49 % in MDA-3, 5.93 % in DOP-1, and average

47.33 % (SD 6.32 %) in MALBAC, respectively. All three

WGA strategies therefore introduced amplification bias,

but MDA-2 showed the highest effective covered sequen-

cing depth that may best suited for variations calling

(Bonferroni-corrected Mann–Whitney-Wilcoxon test, p <

0.001, Additional file 11: Table S6).

To further determine the specific regional bias and

GC bias introduced by WGA, we next used the deep-

sequenced data to evaluate the normalized depth distri-

bution in Alu and L1 repeat regions and regions with

different GC content. We plotted the distributions of

normalized depth in each Alu and L1 region, compared

with the distribution in entire genome split into 100 kb

windows. We observed that the normalized depth distri-

bution of DOP-1 amplified data in Alu and L1 regions

was significantly lower than that at whole-genome level,

and DOP-1 amplified data had the greatest difference of

normalized depth distribution between the repeat regions

and whole genome among different WGA methods

(Fig. 3b, Bonferroni-corrected Mann–Whitney-Wilcoxon

test, p < 0.001). In addition, the read distribution of SCRS

data from DOP-1 was influenced slightly by GC content,

as the result of the unamplified control of YH-mix

(Fig. 3c), whereas high GC content influenced the read

distribution of the MDA-3 data (Bonferroni-corrected

Mann–Whitney-Wilcoxon test, p < 0.001).

Using the deep-sequenced data, we performed extra

comparison of assembly performance between MDA and

MALBAC amplified data, and found that MALBAC may

have comparable assembly quality as MDA but lower sta-

bility of the assembly than MDA by mitochondrial assem-

bly (See details in Additional file 12: Supplementary Note).

Assessment of artifacts introduced by different WGA

methods

To gain more comprehensive insights into the single-

nucleotide artifacts introduced by the three amplification

methods, we first defined a ‘golden control’ genotype set

for MDA and DOP-PCR amplified data: a set of genotype

consensus sites from the YH-mix that were also found on

the 2.5 M Illumina Omni SNP Chip (Methods). We also

defined a ‘golden control’ genotype set for MALBAC:
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shared genotype consensus sites between bulk sequencing

data of SW480-SCD and SW480-HET that were also

found on the 2.5 M Illumina Omni SNP Chip. We com-

pared the consensus genotypes from the DOP-1, MDA-2,

MDA-3, and MALBAC deep-sequenced data with the cor-

responding golden controls (Table 2 and Additional file

13: Table S7), and evaluated the consensus genotypes de-

tection efficiency (CGDE) and concordant ratio (Methods).

The mean CGDE of MDA-2 data was 84.57 % (up to

94.62 %) , and the mean concordant ratio was 97.10 % (up

to 99.88 %). By contrast, data from DOP-1, MDA-3, and

MALBAC sequencing had a substantially lower CGDE

(6.00 %, 66.63 %, and a mean of 51.87 %, respectively), with

concordant ratio of 82.05 %, 97.12 % and a mean of

96.74 %, respectively (Fig. 3d). The limitations of CGDE in-

dicated a common WGA bias in these different methods;

however, data from MDA-2 had less bias.

To further investigate the potential biological impact

of these discordant genotypes sites (present in single

cells but not in the golden control) in SCRS data intro-

duced by the WGA, we sorted out the discordant SNVs

among these discordant genotype sites in three deep-

sequenced single cells amplified by MDA-2, and then

annotated these discordant SNVs using ANNOVAR [25]

(Additional file 14: Table S8). We found that most of the

altered genes that contained discordant SNVs occurred

only in one of the three cells, and only ~ 4 % of the al-

tered genes were shared among all of the three cells

(Additional file 15: Figure S6), indicating that the arti-

facts introduced by the MDA-1 were unlikely to influ-

ence the gene category analysis.

Because MDA frequently introduced chimeras [26], we

used deep WGS data of two single YH cells (MDA-2_47

and MDA-2_66) and another two sets of 10–20 single YH

cells (MDA-2_M6 and MDA-2_M16, Additional file 3:

Table S3) to evaluate the amplification chimeras. We per-

formed breakpoints identification using CREST [27] in

these samples as well as YH-mix as a control (Methods).

We defined the chimeras as the breakpoints appeared only

in the single-cell data rather than in YH-mix. Of the

different types of breakpoints such as the insertion

(INS), deletion (DEL), inversion (INV), intra-chromosomal

translocation (ITX) and inter-chromosomal translocation

(CTX), we found that chimeric ITX (Additional file 16:

Figure S7) was the dominant chimera type (82.08 %,

Fig. 3e). In addition, we found a significant difference of

length distribution between true ITXs (shared by the YH-

mix) and chimeric ITXs in single cells (Fig. 3f), suggesting

that the chimeras tended to be produced by neighboring

amplicons randomly connecting on the same chromosome,

as previously reported [26]. The percentages of other

chimera types, such as chimeric CTX (Additional file 17:

Figure S8), deletion, insertion and inversion, were 1.13 %,

8.09 %, 5.07 %, and 3.68 %, respectively.

Single-cell SNVs and CNVs detection accuracy of the WGA

methods

Owing to the amplification bias discussed above, SCRS

may lose one or both alleles at specific genome loci during

amplification (we termed sites with the loss of one allele

‘allele drop-out’ sites, ADO) (Methods). In addition, WGA

may introduce additional alleles that might lead to false-

positive mutations at the single-cell level (we termed sites

with WGA-introduced alleles as false-positive sites, FP).

The high duplication ratio and low genome coverage of

DOP-PCR methods limited their application in SNVs de-

tection; so we just compared the SNVs detection accuracy

of MDA with MALBAC (downloaded data from the previ-

ous reports [18]). Taking the YH-mix as the golden con-

trol for MDA-2 amplified data, we calculated the SNVs

Table 1 Deep-sequencing statistics of single cells amplified by different kits

Sample index Number of mapped
bases (bp)

Read mapping
ratio (%)

Read duplication
ratio (%)

GC content (%) Mean depth (X) Genome coverage (%)

MDA-2_46 109,113,164,019 98.42 2.44 43.63 38.20 94.30

MDA-2_47 82,746,143,862 98.49 1.73 42.74 28.95 99.63

MDA-2_66 102,165,179,471 98.54 6.52 40.66 35.84 99.24

MDA-3_45 52,911,771,602 99.09 6.17 39.40 18.52 94.35

DOP-1_97 8,294,107,956 86.18 39.24 40.65 3.00 23.23

SW480-1 55,385,452,648 94.34 7.50 42.95 19.45 91.33

SW480-2 57,344,758,117 94.69 7.51 42.86 20.15 91.63

SW480-3 66,569,935,382 93.54 19.64 40.40 23.42 83.33

SW480-4 78,746,822,579 92.56 21.83 39.91 27.76 70.88

SW480-5 40,966,360,470 89.53 7.05 40.36 14.50 74.87

SW480-HEC 104,576,495,349 96.49 3.82 42.84 36.59 99.01

SW480-SCD 88,079,534,311 91.39 3.43 39.42 30.99 99.13

YH-mix 109,269,489,080 95.97 10.77 41.39 38.30 99.68
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detection accuracy of deep-sequenced single cells ampli-

fied by MDA-2, and showed the results in Table 3. We de-

tected a mean of 3,044,473 SNVs in MDA-2 amplified

single cells compared with 3,649,573 SNVs in the YH-mix,

thus the overall detection efficiency for the MDA-2 data

was 83.42 %. We then calculated the ADO ratio and FP

ratio of SCRS data amplified by MDA-2, founding that the

mean ADO ratio was 12.47 % (0.78 %, 3.23 % and 33.40 %,

respectively), and the mean FP ratio was 5.31 × 10−5 (SD

0.007 %) which was comparable with ~4 × 10−5 of the FP

ratio of MALBAC in previous report [18]. Although the

5.31 × 10−5 false-positive ratio for SNVs detection (due to

the amplification enzyme) appeared to be a problem for

accurately genotyping single-cell whole human genomes

(3 × 109 sites), by integrating the consensus sequence of

two or three independent cells, the false-positive ratio

could be decreased to ~10−8 with two replicate cells

and to ~10−12 with three replicate cells, as described in

previous report [18]. In conclusion, we inferred that

the SCRS data generated using MALBAC and MDA-2

had a comparable performance for SNVs detection, with

up to ~10−12 false positives across the entire genome of a

single cell.

To systematically compare the performance of the

SCRS data from MALBAC, MDA, and DOP-PCR for

CNVs detection, we first used the 0.1X LWGS data de-

scribed in Additional file 4: Table S4 to compare the

CNVs detection accuracy (Methods). Because the YH

cell line was derived from normal lymphocytes with few

CNVs (≥1 Mb), we only observed few large CNVs at the

single-cell level (Additional file 18: Figure S9) in most of

the SCRS data amplified with DOP-PCR, MALBAC or

MDA. To further compare the CNVs detection of differ-

ent WGA method using these data, we simulated some

Fig. 3 Bias and chimeras comparison using WGS data. a The cumulative distribution of sequencing fold depth of deep WGS data amplified by

DOP-1, MDA-2, MDA-3, and MALBAC, respectively. The standard Poisson Cumulative Distribution (λ = 30) is plotted (dashed), and YH-mix and

SW480 bulk data are presented as a control. It was related to Additional file 11: Table S6. b Normalized read depth distribution in repeat regions

(Alu and L1 regions) and the entire genome of deep-sequenced data amplified by different WGA kits. The normalized read depth is calculated for

each Alu/L1 region and for each window binning 100 kb of the entire genome. c Normalized read depth distribution in regions with different GC

content of deep-sequenced data amplified by different WGA kits. The 100 kb windows with GC content >50 % are defined as ‘HighGC’ windows,

<35 % as ‘LowGC’ windows, and others as ‘MiddleGC’ windows. d Histogram of effective consensus genotype efficiency, and line graph of the

concordant ratio of all deep-sequenced cells amplified by different WGA kits compared to the golden control. e The percentage of different types

of chimeras detected in MDA-2-amplified YH single cells. CTX, inter-chromosomal translocation; ITX, intra-chromosomal translocation; DEL,

deletion: INS, insertion: INV, inversion. f Boxplot of the length distribution of ITXs shared between MDA-2-amplified cells and YH-mix versus the

chimera ITXs that are unique in single cells. p < 0.01, Mann–Whitney-Wilcoxon test
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CNVs candidates into each single YH cell data and YH-

mix data (Methods). These CNVs candidates were deter-

mined as the concordant CNVs of the SW480-SCD bulk

data and the SW480-HET bulk data. We then called

CNVs using a pipeline modified from Baslan’s method

[28] (Methods). Comparing each single cell data with

the YH-mix data as control, we found that DOP-PCR had

the best accuracy for CNVs detection (≥1 Mb, Bonferroni-

corrected Mann–Whitney-Wilcoxon test, p < 0.05), with a

mean sensitivity of 94.15 % (SD 4.84 %) and a mean speci-

ficity of 94.00 % (SD 6.51 %). Simulated data from MAL-

BAC could detect CNVs (≥1 Mb) with a mean sensitivity

of 91.40 % (SD 1.61 %) and a mean specificity of 87.80 %

(SD 1.98 %), whereas simulated SCRS data from MDA

could detect CNVs (≥1 Mb) with only a mean sensitivity

of 74.04 % (SD 20.21 %) and a mean specificity of 67.93 %

Table 3 Comparison of consensus genotypes and SNVs detection accuracy of deep-sequenced data amplified by MDA and MALBAC

Control/sample Heterozygous (FP/ADO/Efficiency) Homozygous (FP/Efficiency) Total (FP/Efficiency) FP ratio ADO Ratio

YH-mix (Unamplified control) 2051,282 1,598,291 3,649,573 - -

MDA-2_46 777,908 (5563/390,038/37 %) 1,747,004 (390,107/84 %) 2,524,912 (395,670/58 %) 1.32E-04 0.3340

MDA-2_47 1,807,282 (6517/14,124/87 %) 1,562,036 (14,177/96 %) 3,369,318 (20,694/91 %) 6.90E-06 0.0078

MDA-2_66 1,651,733 (6347/55,158/80 %) 1,587,456 (55,195/95 %) 3,239,189 (61,542/87 %) 2.05E-05 0.0323

Table 2 Comparison of consensus genotypes and SNVs detection accuracy of deep-sequenced data amplified by MDA and MALBAC

Allele type

Golden control for SW480 cells

HOM ref. HOM mut. HET ref. Total Consistency (%)

1,762,437.00 403,431.00 173,098.00 2,338,966.00

MALBAC mean

HOM ref.

2 849,057.40 - -

1 - - 10,352.40 859,455.20 98.79

0 - 45.40 -

HOM mut.

2 - 266,889.00 -

1 - - 18,507.40 285,625.60 93.44

0 213.40 11.20 4.60

HET ref.

2 - - 58,948.80

1 2,287.20 6,860.40 8.80 68,105.20 86.56

0 - 0.00 -

Total 851,558.00 273,806.00 87,822.00 1,213,186.00 96.84

Coverage (%) 48.32 67.87 50.74 51.87 -

Allele type

Golden control for YH cells

HOM ref. HOM mut. HET ref. Total Consistency (%)

1,584,649.00 270,225.00 351,490.00 2,206,364.00

MDA mean

HOM ref.

2 1,373,228.00 - -

1 - - 21,871.00 1,395,113.33 98.43

0 - 14.33 -

HOM mut.

2 - 256,682.67 -

1 - - 27,674.00 284,365.67 90.26

0 7.33 1.67 0.00

HET ref.

2 - - 256,185.67

1 212.67 326.33 2.33 256,727.00 99.79

0 - 0.00 -

Total 1,373,448.00 257,025.00 305,733.00 1936,206.00 97.41

Coverage (%) 86.67 95.12 86.98 87.76 -

Mean coverage and consistency are calculated using the data amplified by the same WGA method according to Additional file 13: Table S7. HOMref, homozygotes

where both alleles are identical to the reference; HOMmut, homozygotes where both alleles are different from the reference; HETref, heterozygotes where only one

allele is identical to the reference. We formulate the mean counts of genotyped alleles of single cell sequencing sites that are consistent with ‘golden control’ at both

alleles, at one allele, or that are inconsistent at both alleles as 2, 1, and 0, respectively
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(SD 25.97 %) (Fig. 4a; see also Additional file 19: Table S9

and Additional file 20: Figure S10). We found that al-

though the mean CNVs detection sensitivity and specifi-

city for the SCRS data from MDA was lower than those of

DOP-PCR and MALBAC, the mean CNVs detection

mean sensitivity and mean specificity for the SCRS data

from MDA-2 were 78.91 % and 76.47 %, respectively,

and one specific MDA-2 cell (cell MDA-2_66) even

reached 93.84 % and 96.13 %, respectively. We also cal-

culated the pair-wise Pearson correlation of copy-

number ratio of all single cell data, and found that the

SCRS data from MALBAC and DOP-PCR had signifi-

cantly higher consistency than MDA, indicating that

MALBAC and DOP-PCR have better reproducibility in

CNVs detection (Additional file 21: Table S10, Bonferroni-

corrected Mann–Whitney-Wilcoxon test, p < 0.05).

To further investigate the power of CNVs detection

using real SCRS data amplified by MALBAC and MDA-

2, we amplified 10 additional cells from a human gastric

adenocarcinoma cell line (BGC823) using MALBAC (5

cells) and MDA-2 (5 cells) respectively, and sequenced

them on Lifetech Ion Proton sequencer. BGC823 bulk

sequencing data was used as the unamplified data con-

trol. We also introduced 7 YH single cells data which

were amplified by MALBAC (3 cells) or MDA-2 (4 cells)

and then sequenced on Lifetech Ion Proton sequencer.

We found no recurrent CNVs (≥1 Mb) in the single YH

cells and YH-mix, and did not identify any obvious dif-

ferent CNVs compared with YH cells sequenced on Illu-

mina platform (Additional file 2: Table S2), indicating

that different sequencing platforms (Illumina and Life-

tech Ion Proton Sequencers) made few impacts on the

CNVs detection comparison. We observed 213 major

CNVs larger than 1 Mb in the bulk sequencing data of

BGC823 (Additional file 22: Table S11), and most of the

major CNVs in bulk sequencing data of BGC823 over-

lapped with CNVs in single BGC823 cells, including

amplification regions that include the oncogene KRAS

(12p11.22-p11.21) and the recently reported recurrent

amplification at 9p24.1 at the locus containing JAK2,

CD274, and PDCD1LG2 (which augments the anti-

tumor immune response) [29] (Fig. 4b, Additional file

23: Figure S11a, Additional file 24: Figure S11b and

Additional file 22: Table S11). Treating the bulk sequen-

cing data of BGC823 as control, we estimated that the

MALBAC-amplified BGC823 SCRS data achieved a mean

sensitivity of 84.72 % (SD 0.82 %) and a mean specificity

of 85.18 % (SD 1.61 %), while MDA-2 amplified BGC823

SCRS data achieved a mean sensitivity of 85.86 % (SD

10.27 %) and a mean specificity of 81.18 % (SD 8.90 %), in-

dicating that MALBAC provided a higher specificity and

slightly lower sensitivity than MDA-2 (Additional file 25:

Table S12). This result is different with our simulated data,

which may be caused by difference in CNVs complexity

between different cancer cell lines. In addition, MALBAC

showed a higher reproducibility among replicates than

MDA-2 in CNVs detection (Additional file 26: Table S13,

Mann–Whitney-Wilcoxon test, p < 0.01), which is consist-

ent with simulation data result. However, taking our find-

ings on CNVs together, we concluded that the SCRS data

from both MALBAC and MDA-2 could robustly identify

CNVs larger than 1 Mb.

Discussion
Here, we provided a comprehensive comparison of single-

cell variations detection performance basing on different

WGA methods. We first performed LWGS analysis of sin-

gle cells using three major WGA methods: MDA, DOP-

PCR, and MALBAC. The results indicated that SCRS data

generated by MDA-2 (MDA using the Qiagen REPLI-g

Single Cell Kit) presented higher genome recovery sensi-

tivity than those generated by MALBAC and DOP-PCR

with the same sequencing depth. SCRS data from DOP-

PCR had the lowest amplification bias along the entire

genome, as well as high reproducibility and the highest

single-cell CNVs detection accuracy (>90 %). In contrast

to previous reports [18], our analysis showed that MDA-2

and MALBAC had similarly favorable detection accuracy

and efficiency for single-cell SNVs and CNVs detection,

although MDA and MALBAC introduced FP sites, ADO

sites, and amplification bias.

DOP-PCR based sequencing data showed high duplica-

tion ratio and limited genome recovery sensitivity in our

study, indicating that this method may not be suitable for

detecting additional SNVs and structural variations at deep

sequencing depth. However, DOP-PCR has also been re-

ported to accurately detect aneuploidy and unbalanced

chromosomal rearrangements, achieving 99.63 % sensitiv-

ity and 97.71 % specificity for detecting CNVs larger than

1 Mb [30]. Considering our result together, we suggest that

DOP-PCR methods are suitable for studies focusing on the

analysis involving number of sequencing reads, such as

CNVs or aneuploidy detection in pre-implantation screen-

ing/diagnosis, cancer research or other disease research.

We found that MALBAC sequencing data had inter-

mediate genome recovery sensitivity, and uniformity for

CNVs detection. A previous study showed that MAL-

BAC was advantageous for SNVs and CNVs detection in

SCRS data compared with MDA (based on the kit called

MDA-1 here) [18]. However, when we compared the

SNVs and CNVs detection performance of the MDA-2

kit (an optimized version of the MDA-1 kit), we found

that the MDA-2 data had higher genome recovery than

the MALBAC data with the same sequencing depth

(Additional file 4: Table S4, Additional file 27: Table

S14). More importantly, we found that the MDA-2 data

had a comparable SNVs detection accuracy and CNVs

detection accuracy with those of the MALBAC data; and
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this accuracy was greater than that indicated by a previ-

ous report for MDA-1 [18]. Taken together, these data

suggest that optimization of MDA experimental proto-

cols may significantly improve SNVs and CNVs detec-

tion in SCRS data. Thus, we conclude that both MDA

and MALBAC can be used for research that require

low duplication ratio and high genome coverage, for

example, the detection of SNVs in disease research. In

addition, if researchers need to perform SNVs and

CNVs detection at the same time in some fields like

tumor heterogeneity and evolution research, we recom-

mend using MDA-2 and/or MALBAC because of their

higher efficiency and accuracy in variations detection.

However, MALBAC may have higher reproducibility of

uniformity and of CNVs detection performance than

MDA-2, making MALBAC more conducive to the het-

erogeneity research related to variations detection.

Although MDA method would introduce chimeras

during WGS, our analysis indicated that chimeras of

MDA-2 had potential to detect the breakpoints of struc-

tural variations for specific types of structural variations

at the single-cell level, such as inter-chromosomal struc-

tural variations, with the possibility of increasing the

specificity by reducing the number of random chimeras

in an increasing number of replicate cells.

A remaining challenge for variations detection at the

single-cell level is the cost. Unlike bulk sequencing,

single-cell analysis needs to amplify the whole genome

of the single cell first. The cost, especially for a large

number of cells to be amplified before sequencing, will

be considerable when taking the failure ratio into con-

sideration. The MDA and DOP-PCR are the most

widely used WGA methods even before the single-cell

sequencing occurs, and their costs are relatively low,

especially if using homemade reagents following the

freely available protocol. However, MALBAC is a new

method with more complex experimental procedure

that was developed especially for single-cell sequencing,

and thus the cost will be higher than that of MDA and

DOP. We believe that more detailed published proto-

cols and more users will help further reduce the cost of

MALBAC for single-cell amplification. Another ap-

proach that may reduce the cost significantly for all

three amplification methods could be microfluidics,

which would limit the reaction into a very small volume

(several nanoliters) for a large number of amplified sin-

gle cells [31].

Our results provide a comprehensive comparison of

variations detection performance in SCRS with different

WGA methods. It will guide researchers to choose the

most optimal WGA method to perform specific single

cell sequencing project in research areas such as analysis

of circulating tumor cells and tumor evolution, and pre-

implantation screening and diagnosis.

Methods
Sample preparation before WGA

A total of 39 single cells were collected in our study, 29

from a lymphoblastoid cell line (YH cell line) established

from the first Asian genome donor [23], the rest from a

widely known gastric cancer cell line, BGC823. Corre-

sponding bulk DNA was extracted as an unamplified

control. The BGC823 cell line was provided by Youyong

Lv at Beijing Cancer Hospital. All samples and experi-

mental protocols were approved by the Institutional Re-

view Board of BGI-Shenzhen.

Single cells were isolated as described previously [3].

Briefly, following sufficient dissociation and dilution of

cells, single cells were randomly picked up using a

mouth pipette under a microscope and washed three

times in phosphate-buffered saline to avoid exogenous

DNA contamination, then transferred into a PCR tube.

Single-cell isolation was confirmed by microscopy to en-

sure that only one cell was inside each tube.

WGA of single-cell genomic DNA with different WGA

methods

WGA was performed using seven different commercial

kits based on MDA, DOP-PCR or MALBAC strategies.

The kits used were Qiagen REPLI-g Mini Kit (MDA-1),

Qiagen REPLI-g Single Cell Kit (MDA-2), GE Healthcare

illustra GenomiPhi V2 DNA Amplification Kit (MDA-3),

GenomePlex® Single Cell WGA Kit (DOP-1), Silicon

Biosystem Ampli1™ WGA Kit (DOP-2), NEB Single Cell

WGA Kit (DOP-3), and Yikon Genomics Single Cell

WGA Kit (MALBAC). All experimental operations

followed the manufacturers’ protocols strictly and with-

out any modification.

Library construction and whole-genome DNA sequencing

The Illumina sequencer and LifeTech Ion Proton se-

quencer were used as the sequencing platforms in this

study. To construct the library for each cell on the Illu-

mina platform, 1–2 μg amplified genomic DNA was

used. After fragmentation, the ‘A’ adaptor was ligated to

each fragment. Next, 10 cycles of PCR using 8-base bar-

code primers was performed. After the DNA concentra-

tion and insert size measurement, the libraries were

processed for paired-end high-throughput sequencing on

Illumina HiSeq2000/HiSeq2500/MiSeq sequencer with a

mean depth of ~ 0.5X. Libraries with outstanding per-

formance in either recovery sensitivity or evenness of low-

coverage sequencing were further deeply sequenced to

around 30X. For LifeTech Ion Proton sequencing, a Bior-

uptor instrument was used to fragment DNA. The desired

size of DNA fragments were obtained and ligated with Ion

Proton A and P1 adaptors at each end, and then selected

using E-Gel EX 2 % Gel (Invitrogen, Carlsbad, CA) for

150- to 200-bp fragments. The fragments were amplified,
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and the DNA was purified with Agencourt AMPure XP

beads (Beckman Coulter Genomics, High Wycombe,

UK). As assessed by the BioAnalyzer High Sensitivity

LabChip Agilent, the resulting library had a median

fragment size of 180 bp. After dilution, emulsion PCR

reactions were set up for each nanoball in the library.

Before the nanoballs were placed onto the ION PI chip,

a sequencing primer and polymerase were added to the

final enriched spheres.

Read processing and mapping

Paired-ended reads generated by Illumina sequencer

Published data [18] of SW480 SCRS data and bulk SW480

sequencing data were downloaded from the NCBI Short

Read Archive with accession no. SRA060929. The WGA

primer was trimmed by Trimmomatic [32] from the 5′

ends of each read: 30 bases for YH cells amplified by

DOP-PCR [11, 12] and 35 bases for SW480 and YH cells

amplified by MALBAC [7, 18, 19]. Reads of YH cells amp-

lified by MDA [13–15] did not need to be trimmed. Reads

were then mapped to the human genome reference

(Hg19, Build37) by BWA [24] (version 62) and SAMtools

[33] (version 0.1.18), and sorted and marked as duplicates

by Picard [34] (version 1.72). 0.1X data was then randomly

down-sampled from the alignment results by Picard for

each sample.

Single-ended reads generated by LifeTech Ion Proton

sequencer

Thirty five bases of WGA primer were trimmed by Trim-

momatic from the 5′ ends of each read of BGC and YH

single cells amplified by MALBAC [18]. Reads were then

mapped to the human genome reference (Hg19, Build37)

by TMAP [35] (version 3.6.40) and SAMtools (version

0.1.18), and sorted and marked as duplicates by Picard

(version 1.72).

The alignment result was checked for quality by Quali-

map [36] (version 0.6).

SNVs calling

For each deeply sequenced sample, low-quality align-

ments (mapping quality less than 1, unmapped, dupli-

cates, and non-unique) were filtered using BamTools

[37]. Filtered alignments were then processed by GATK

[38] (version 2.3–9) with the options ‘Local Realignment

around Indels’ and ‘Base Quality Score Recalibration’.

SNVs were called at any callable sites by UnifiedGenotyper

(a variation caller of GATK), and trained by a Gaussian

mixture model using GATK. All the low-quality SNVs

and false-positive SNVs were identified and then fil-

tered based on the log odds ratio under the Gaussian

mixture model.

Excluding sequencing errors

In the LWGS study, we only used the Illumina sequen-

cing data to perform the comparison. The sequencing

error rates from the Illumina Miseq and Hiseq sequen-

cer have been reported previously [39]. In the compari-

son, we directly mapped the sequencing reads to the

hg19 human reference genome using BWA [24] with

mismatches allowed. As with most variations calling that

used resequencing data, we did not correct the sequen-

cing errors of the raw sequencing reads; instead, we ex-

cluded the low-quality reads, sorted the mapping data

and directly calculated the mapping ratio. To evaluate

the bias in the comparison caused by the correctable se-

quencing errors from Hiseq and Miseq, we extracted the

same amount of the sequencing reads amplified by the

same kit but sequenced on Hiseq 2000 or Miseq, re-

spectively. We found that there was no significant dif-

ference in the mapping ratio or duplication ratio

between the cells sequenced by the Hiseq 2000 or Miseq

(Additional file 28: Table S15). Thus, we inferred that

the conclusions we generated from the LWGS data

were not significantly biased by the correctable sequen-

cing errors.

In the deep WGS study, the correctable sequencing er-

rors may greatly influence the SNVs calling in the com-

parison. To exclude this influence introduced by the

sequencing errors, we performed the following steps in

the SNVs calling performance comparison between

MDA and MALBAC:

1. For each deeply sequenced sample, low-quality

alignments (mapping quality less than 1, unmapped,

duplicates, and non-unique) were filtered using

BamTools [37];

2. Alignments were processed by GATK [38] (version

2.3–9) with the options ‘Local Realignment around

Indels’ and ‘Base Quality Score Recalibration’ ;

3. SNVs were called at any callable sites by

UnifiedGenotyper (a Bayesian model based variation

caller of GATK), and trained by a Gaussian mixture

model using GATK (this step filtered out the

influence of the sequencing errors and the mapping

errors);

4. All the low-quality SNVs and false-positive SNVs

were identified and then filtered based on the log

odds ratio under the Gaussian mixture model;

5. The ADO ratio and false-positive ratio were

calculated, by comparing the genotypes of single cells

with those of the corresponding bulk sequencing data

sequenced on the same sequencer. In this way, after

the SNVs calling and filtering by the Bayesian

model and Gaussian mixture model, we ensured

that the sequencing errors did not bias the

comparison results.
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Single-nucleotide artifacts analysis

We defined different ‘golden controls’ for different cell

type data. For the YH single cells, the ‘golden control’

was defined as the concordant genotypes set overlapped

between YH-mix data and a commercial 2.5 M Illumina

Omni SNP Chip. And for the SW480 single cells, we

first obtained an overlap set of concordant genotypes be-

tween the two SW480 bulk (SW480-SCD and SW480-

HEC) sequencing data to reduce sequencing errors, and

defined the ‘golden control’ as the intersection set of ge-

notypes between the ‘overlap set’ and the commercial

2.5 M Illumina Omni SNP Chip. We clustered the geno-

typed alleles of both the ‘golden control’ and corre-

sponding single cells into three categories: HOMref

(homozygotes where both alleles were identical to the

hg19 reference genome), HOMmut (homozygotes where

both alleles were different with the hg19 reference gen-

ome), and HETref (heterozygotes where only one allele

was identical to the hg19 reference genome). We formu-

lated the counts of genotyped alleles of single cell se-

quencing sites that were consistent with ‘golden control’

at both alleles, at one allele, or that were inconsistent at

both alleles as 2, 1, and 0, respectively.

For each category (HOMref, HOMmut and HETref),

we calculated the consensus genotypes detection efficiency

(CGDE) as the ratio of counts of consensus genotypes de-

tected in single cell to those detected in corresponding

control. Concordant ratio was defined as the ratio of

counts of genotypes which both alleles were identical to

the golden control to the genotypes detected in single cell

for each category. We then calculated the mean CGDE

and concordant ratio of all categories for each single cell.

SNVs detection efficiency, ADO, and false-positive ratio

calculation

SNVs detection efficiency was calculated as the ratio of

the count of detected SNVs in a given single cell (minus

the number of false-positive SNVs) to those in the bulk

DNA. The ADO was defined as the non-amplification

occurred in alternative alleles present in heterozygous

sites. The false positive was defined as the SNVs in sin-

gle cell sequencing data but not present in the bulk se-

quencing data. Both the ADO and false positive ratio

were calculated by comparing the single cell sequencing

data with bulk control sequencing data.

Analysis of the chimera effect

To identify the chimeras at single-cell level, we identified

breakpoints using CREST [27] both in the MDA-2 ampli-

fied samples and YH-mix. Taking the YH-mix as the con-

trol, the true breakpoints in MDA-2 amplified samples

were defined as those overlapped with YH-mix if they

were of the same type and were not further apart than a

threshold of 100 bp: the rest were considered as chimeras.

CNVs simulation on the YH samples in silicon

Shared regions (≥1 Mb) between SW480-SCD and

SW480-HEC with concordant CNVs (the copy number

was assumed to be N) were selected as candidate regions

for further CNVs simulation. The copy number ratio (as-

sumed to be R) of the candidate region was formulated

as the copy number of the region divided by 2 (R = N/2).

For each YH sample (YH single cells and YH-mix con-

trol data), the simulated reads count (Ks) was defined as

the product of the reads count of a bin (Kr) and the

copy number ratio (R) of the corresponding candidate

region. (Ks = Kr × R). The modified pipeline was then

used to call CNVs in the simulated data for each sample.

Data simulation and CNVs calling

Copy numbers were computed for each sample separately

using a modified method based on that developed by the

Cold Spring Harbor Laboratory [28]. Briefly, we per-

formed following steps to detect CNVs:

1. Simulated single-ended reads (50 bp) from hg19

were mapped to hg19 by bowtie [40] (version 1.0.0).

10,000 genomics bins were used in the analysis.

2. Reads from the 0.1X LWGS alignments (BAM

format) were converted to FASTQ format through

the single-ended mode by BEDTools [41], and then

re-mapped to hg19 reference genome by bowtie.

Bases were trimmed from the 5′ end of each read to

ensure that each read was 50 bp long. Raw reads

generated by Lifetech Ion Proton sequencer (BAM

format) were converted to FASTQ format by

BEDTools, and then were trimmed by Trimmomatic

to an effective length (50 bp plus length of WGA

primer) from the 3′ end of the reads. The resulting

alignments were re-mapped to hg19 reference

genome by bowtie, and then bases were again

trimmed from the 5′ end of each read to ensure

each read was 50 bp long.

3. For each sample, segments were detected by

DNAcopy [42], a circular binary segmentation (CBS)

algorithm based CNVs detection tool. The density of

the segment ratio of all bins within autosomes was

plotted, and the mode of the segment ratio was set

corresponding to a copy number of two.

4. Sensitivity and specificity were calculated (following

[30]) as following:

Sensitivity ¼ LT=LC

Specificity ¼ LT=L;

where L represents the total length of CNVs (≥1 Mb) of a

single cell detected by this pipeline, LC represents the

length of CNVs (≥1 Mb) of the corresponding control data

(simulated YH-mix data) detected by this pipeline, and LT
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represents the length of the region that the CNVs (≥1 Mb)

of the single-cell overlap with the CNVs (≥1 Mb) of the cor-

responding control data.

Simulation on the YH genome in silicon

Shared regions (≥1 Mb) between SW480-SCD and SW480-

HEC with concordant CNV (the copy number was as-

sumed to be N) were selected as candidate regions for

further CNV simulation. The copy number ratio (as-

sumed to be R) of the candidate region is the copy

number of the region divided by 2 (R = N/2). For each

of the YH samples, to get the simulated reads count

(Ks), the reads count of a bin (Kr) was multiplied by

the copy number ratio (R) of the corresponding candi-

date region. (Ks = Kr × R). The modified pipeline was

then used to call CNVs in the simulated data for each

sample.

Statistical analyses

We performed the Mann–Whitney-Wilcoxon test to as-

sess the variations in cases of comparisons between two

groups. Pearson correlations were calculated to investigate

the similarity between metrics. To control the family-wise

error rate, we performed the Bonferroni correction when

multiple comparisons were conducted simultaneously.

Availability of supporting data
The raw sequence data in the FASTQ format from previous

reports [18] is available in the NCBI Short Read Archive re-

pository [SRA060929]. The raw data in the fastq format,

and the alignments and genotyping data from this study are

hosted in the GigaScience Repository, GigaDB [43].

Additional files

Additional file 1: Table S1. Summary of LWGS of YH single cells

amplified by different WGA methods on Illumina sequencer.

Additional file 2: Table S2. Summary of LWGS of BGC823 and YH

single cells on Lifetech Ion Proton sequencer. # represented ~1×

extracted data downsampled from the ~50× bulk BGC823 sequencing

data (PE-100, Illumina Hiseq 2000) as unamplified control.

Additional file 3: Table S3. Summary of deep WGS of YH single cells.

YH-mix is used as the unamplified control.

Additional file 4: Table S4. A comparison of recovery sensitivity

between WGA methods using randomly extracted 0.1X data.

Additional file 5: Figure S1. A comparison of GC content distributions

of unmapped reads between different WGA methods. We calculate the

GC content of each unmapped read and box-plotted the distributions

for each WGA method. YH-mix data is plotted as the un-amplified

control.

Additional file 6: Figure S2. A comparison of the N ratio of unmapped

reads between different WGA methods. We calculate the N ratio of each

unmapped read and box-plot the distributions for each WGA method.

YH-mix is used as the unamplified control.

Additional file 7: Figure S3. The normalized depth distributions of all

replicates. We plot the normalized read depth density distribution using the

0.1X extracted data. The normalized read depth is defined as the ratio of the

mean depth of all reads in each window to the mean depth of the whole

genome. The binning window is 100 kb. The dashed curve is plotted using

simulated data (1000 dots) that followed the Poisson distribution (λ= 30) and

normalized by dividing by 30.

Additional file 8: Table S5. Pearson correlation of mean normalized

depth between two replicates amplified by the same WGA kit. The

binning window to assess the mean normalized depth is 100 kb.

Additional file 9: Figure S4. Histograms of the mean depth distributions

over a region of chr15 (20,000,001-102,521,388) for each kit. We

calculate the mean depth of all replicates amplified with the same

WGA kit at each site in the targeted region. YH-mix is used as the

unamplified control.

Additional file 10: Figure S5. Histograms of the depth distributions of

all replicates over the same region of chr15 as Figure S4. YH-mix is used

as the unamplified control.

Additional file 11: Table S6. A comparison of genome coverage at

different read depths between different WGA kits. YH-mix and SW480-

SCD are used as unamplified controls.

Additional file 12: Supplementary Note. The performance comparison

of mitochondrial genome assembly between MDA and MALBAC.

Additional file 13: Table S7. A comparison of consensus genotypes

calling between different WGA kits.

Additional file 14: Table S8. Genes annotation of all the discordant

SNVs in the deep-sequenced single cells amplified by MDA-2.

Additional file 15: Figure S6. Venn diagram of altered genes harboring

discordant SNVs in 3 deep-sequenced cells amplified by MDA-2.

Additional file 16: Figure S7. A schematic of one chimeric ITX calling

within WDHD1 gene in MDA-2_M6. The breakpoints and supporting

reads of the chimeric ITX are shown.

Additional file 17: Figure S8. A schematic of one chimeric CTX calling

between chromosome 1 and 14 in MDA-2_47. The breakpoints and

supporting reads of the chimeric CTX are shown.

Additional file 18: Figure S9. The landscape of CNVs of YH single

cells amplified by DOP, MALBAC, and MDA. The copy numbers across

the genome are calculated for all YH single cells as well as for YH-mix

using extracted ~0.1X data, and are then plotted. Green, red, and blue

represent normal, amplification, and deletion, respectively.

Additional file 19: Table S9. A sensitivity and specificity comparison of

simulated CNVs detection between different WGA methods.

Additional file 20: Figure S10. The landscape of simulated CNVs in YH

single cells amplified by different WGA kits. YH-mix is used as the unamplified

control.

Additional file 21: Table S10. Pearson correlation of copy number

ratios between simulated YH single-cell sequencing data.

Additional file 22: Table S11. The list of CNVs (≥1 Mb) detected in the

bulk BGC823 sequencing data.

Additional file 23: Figure S11a. The landscape of CNVs of YH single

cells amplified by MALBAC or MDA-2. These YH single cells were

sequenced on the LifeTech Ion Proton sequencer, and YH-mix is used as

the unamplified control. We extracted ~0.1X data from both the YH

single cells and the mix to detect CNVs.

Additional file 24: Figure S11b. The landscape of CNVs of BGC823

single cells amplified by MALBAC or MDA-2. These BGC823 single cells

were sequenced on the LifeTech Ion Proton sequencer, and BGC823

bulk sequencing data is used as the unamplified control. We extracted

~0.1X data from both the BGC823 single cells and the bulk to detect

CNVs.

Additional file 25: Table S12. A sensitivity and specificity comparison

of CNVs (≥1 Mb) between MALBAC and MDA-2. (XLSX 9 kb)

Additional file 26: Table S13. Pearson correlation of copy number

ratios between single cells amplified by MDA-2 or MALBAC kit.

Additional file 27: Table S14. A comparison of the genome coverage

between MDA-2 and MALBAC at 0.1X depth. The sequencing was

performed on Lifetech Ion Proton sequencer.
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Additional file 28: Table S15. A comparison of the basic data

sequenced on an Illumina Hiseq 2000 and a Miseq Sequencer. We

extracted the same amount of the sequencing reads amplified by the

same kit except the sequencing platform type to control the variables.
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