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ABSTRACT

Global simulations of precipitation from climate models lack sufficient resolution and contain large biases that make them
unsuitable for regional studies, such as forcing hydrologic simulations. In this study, the effectiveness of several methods to
downscale large-scale precipitation is examined. To facilitate comparisons with observations and to remove uncertainties
in other fields, large-scale predictor fields to be downscaled are taken from the National Centers for Environmental
Prediction–National Center for Atmospheric Research reanalyses. Three downscaling methods are used: (1): a local
scaling of the simulated large-scale precipitation; (2) a modified scaling of simulated precipitation that takes into account
the large-scale wind field; and (3) an analogue method with 1000 hPa heights as predictor.

A hydrologic model of the Yakima River in central Washington state, USA, is then forced by the three downscaled
precipitation datasets. Simulations with the raw large-scale precipitation and gridded observations are also made.
Comparisons among these simulated flows reveal the effectiveness of the downscaling methods. The local scaling of
the simulated large-scale precipitation is shown to be quite successful and simple to implement. Furthermore, the tuning
of the downscaling methods is valid across phases of the Pacific decadal oscillation, suggesting that the methods are
applicable to climate-change studies. Copyright  2003 Royal Meteorological Society.
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1. INTRODUCTION

Hydrologic models are an important tool in studying the effect of climate variability and change on water
resources by simulating the streamflow associated with climate scenarios. A number of recent studies have
attempted to link hydrologic models with climate scenarios (e.g. Leung et al., 1999; Hay et al., 2000;
Bergström et al., 2001). Daily temperature and precipitation are the principal atmospheric forcing parameters
required for hydrologic studies, and a spatial resolution of 0.125° latitude and longitude is generally sufficient
to simulate monthly flow in mountainous river basins more than 10 000 km2 in size. Climate models, however,
are run at a much coarser resolution (typically 2° or more) and do not resolve important mesoscale processes
and surface features that control the regional precipitation. Thus, downscaling methods have been developed
to span the gap from climate models to regional scales. In this paper, empirical methods to downscale
precipitation will be compared in order to assess the quality of the resulting mesoscale precipitation for
driving a hydrologic model.
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Downscaling methods are reviewed by Wilby and Wigley (1997) and Giorgi et al. (2001). The downscaling
methods presented here are statistical methods, and are based on empirical relationships between large-scale
and mesoscale climate variables. Statistical downscaling may be contrasted to downscaling via a physical
mesoscale model nested within the global model. Most statistical methods for precipitation downscaling
are based on a large-scale predictor other than precipitation. A circulation parameter is the most common
predictor, and often atmospheric moisture is considered as well (see Wilby and Wigley (2000) for an overview
of various predictors for downscaling precipitation). The methods presented here, however, are based upon
precipitation as the large-scale predictor, as motivated by Widmann and Bretherton (2000). A simple analogue
method based on circulation is also presented for comparison. Streamflow may also be directly downscaled
from large-scale fields (e.g. Landman et al., 2001; Cannon and Whitfield, 2002).

The National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–
NCAR) reanalyses (Kalnay et al., 1996) shall be used as the large-scale predictor fields for this study, in an
analogous manner to which a general circulation model (GCM) would be used in a climate change study.
In the reanalyses, precipitation is determined entirely by the large-scale model, not assimilated data. Thus,
the reanalysis precipitation is indicative of what a GCM might simulate if the large-scale fields, such as
temperature and heights, are realistically simulated. By using the reanalyses as the large-scale predictors, the
downscaling method may be verified against historical data with minimal interference from uncertainties in the
simulated large-scale circulation. Several statistical methods for downscaling Pacific Northwest precipitation
based on the NCEP reanalyses are proposed by Widmann et al. (2002) to produce monthly mean precipitation
downscaled to a 50 km mesoscale grid. Two of these methods are applied in a similar manner here to produce
daily fields, as required by the hydrologic model. The relative skill of a mesoscale model and statistical
methods for a small mountainous basin were evaluated by Wilby et al. (2000) using a similar approach based
upon the NCEP reanalyses. For simulations of the Animas River basin, Colorado, in that study, the statistical
method was quite successful compared with the mesoscale model.

In the Pacific Northwest region of the USA, the surface orography creates dramatically different precipitation
zones over a horizontal distance smaller than a climate-model grid cell. Figure 1 shows the topography of the
region; the dashed grid lines represent GCM resolution and the pixel size for the elevation map reflects the
resolution of the hydrology model. The north–south-oriented Coastal and Cascade Ranges create a powerful
rainshadow. Considerable precipitation falls along the coast and Puget Sound region in the west, whereas arid
conditions prevail in the central Columbia Basin and high desert regions of Washington and Oregon to the east.
Typical GCMs do not resolve this topography, neither explicitly nor in subgrid-scale parameterizations, and
thus cannot simulate the characteristic regional precipitation. In order to create precipitation fields sufficiently
representative of actual conditions to force a hydrologic model, additional information must be added to the
large-scale simulation through a downscaling method that accounts for the mesoscale variations.

When the application of the downscaled precipitation is for hydrologic modelling, the skill of the method
may not be accurately illustrated simply by comparing spatial patterns of precipitation. For example, the
improved precipitation simulation of a more costly method may not be realized in the hydrologic simulation
if the details are smoothed out over time and space by storage in the snowpack or soil moisture. In many
instances, the flow is simply a matter of total winter snow accumulation with temperature controlling the timing
of melt, and thus changes in flow. Alternatively, good temporal correlations and high spatial resolution over
the region do not ensure that precipitation is properly distributed with respect to the topography or that there
are no small local biases, which can have a critical effect on how the precipitation enters the hydrologic cycle.

In this paper, empirical precipitation downscaling methods are evaluated against their skill in driving a
hydrological model of the Yakima River in central Washington, USA. The Yakima River originates on the
east, leeward, crest of the Cascade Range in southern Washington. The basin is outlined in Figure 1, and is
about the size of a single typical GCM grid cell. The river flows southeast to join the Columbia River. The
basin spans an altitude range of about 2400 m and drains about 16 000 km2. The river is highly developed
for hydropower and irrigation, and the natural flow is substantially controlled for these uses. The regional
economy of the basin is based on agriculture and associated industry.

The Yakima provides a good test of the downscaling methods for several reasons. Significant precipitation
events are associated with large-scale storm systems, so large-scale simulations have a good chance of
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Figure 1. Elevation map of the study region, encompassing Washington and Oregon, USA. The heavy black line indicates the Yakima
River basin. Thin dashed lines indicate the large-scale grid. The hydrology model is run at the resolution indicated by the elevation pixels

representing the physical processes driving precipitation variability on the daily, monthly, and interannual
time scales. However, the basin is only about the size of a typical GCM grid cell and, furthermore, lies in
the lee of the Cascade Range, which is typically not resolved by global models. Thus, we can expect GCM
simulations or the NCEP–NCAR reanalyses will capture the dynamics that control precipitation but cannot
simulate the regional patterns that depend on the interaction with local forcings, such as topography.

The seasonal flow pattern of the Yakima exhibits two peaks: one in autumn, when the seasonal precipitation
maximum begins, but while it is still warm enough that some precipitation falls as rain, and a second peak
in spring when the snowpack melts. These features are essentially mesoscale by nature, as they are linked to
the details of the topography. During the late autumn, when much of the precipitation occurs, only the higher
elevation portions of the basin are below freezing. Depending on the timing of precipitation events relative
to temperature and on the elevation where it falls, precipitation may fall as rain, producing a simultaneous
peak in river flow, or fall as snow, and thus not contribute to runoff until the following spring. The relative
magnitudes of these peaks and their timing vary considerably from year to year as a result both of temperature
and precipitation variability. Thus, considerable additional information beyond what is in the reanalysis must
be added by the downscaling method to simulate the annual flow cycle.

The simulations that follow will illustrate how much is lacking in the raw NCEP precipitation, which is
unsuitable for hydrologic studies. Considerable additional information may be added by simple downscaling
methods, yielding quite acceptable results. There are several other issues related to driving hydrologic models
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with large-scale atmospheric simulations, which are not addressed by this study. Notably, radiative effects,
such as from variations in cloud cover, have a significant hydrologic influence. The approach considered here
does not address all relevant issues of using large-scale models in hydrologic modelling, but rather focuses
on the single issue of precipitation downscaling.

2. DATA AND METHODS

2.1. Downscaling

For the purposes of this study, large-scale precipitation is taken from the NCEP–NCAR reanalyses (hereafter
referred to simply as NCEP fields), which represents a ‘perfect’ GCM in the sense that the daily large-scale
circulation patterns and temperature are constrained to follow closely daily observations by the assimilation of
data (Kalnay et al., 1996). The reanalysis precipitation, however, is entirely model-generated, and simulates the
precipitation that might occur with the actual large-scale conditions over much smoother boundary conditions
than reality. In particular, the NCEP precipitation field is not forced by the true topography of the Cascade and
Coastal Ranges, but captures only a gradual east–west gradient representing the western flank of the Rocky
Mountains. Thus, there are severe biases in the NCEP precipitation, changing sign from too dry upwind to
too wet downwind of the Cascades. Nevertheless, as shown by Widmann and Bretherton (2000), the NCEP
precipitation is highly correlated in time to station observations after accounting for the local bias. The NCEP
reanalysis grid is indicated by the dashed grid lines in Figure 1; note that the Yakima Basin overlaps two
grid cells.

The observed mesoscale precipitation, used to fit the empirical methods, is from a 50 km gridded dataset of
daily precipitation over Washington and Oregon for 1949–94 (Widmann and Bretherton, 2000). This dataset
was produced from 522 daily station records adjusted for sub-grid-scale topography to yield the long-term
means from the parameter-elevation regressions on independent slopes model (PRISM; Daly et al., 1994).

Two downscaling methods developed by Widmann et al. (2002) will be presented here. These are a local
scaling and a dynamical scaling of the large-scale precipitation field. Each method represents downscaled
precipitation as the product of the large-scale precipitation and a scaling factor that is resolved on the mesoscale
grid. Results are also presented for a simple analogue method using 1000 hPa heights as a predictor.

For the downscaling results presented here, the period 1958–76 is downscaled using scale factors fit to the
data for 1977–94; likewise, 1977–94 is downscaled with scale factors fit to 1958–76. This method alleviates
the risk of overfitting the data. Furthermore, since the Pacific decadal oscillation (PDO) was in opposite
phases during these two periods, this division of the data indirectly illustrates the robustness of the method
to shifts in the natural climate. Implications for this result will be discussed in Section 4.

In the case of downscaling a climate-change simulation with a GCM, a control run of the GCM would
be needed to derive the scaling factors for the local and dynamical scaling methods. Ideally, this would be
a ‘historic’ run with external forcings (CO2, aerosol, solar input) matching the variations during the period
of the observations. This approach assumes the mesoscale precipitation patterns are related to the large-scale
precipitation in a similar way in current and future climates. Furthermore, it assumes that the climate-change
signal is captured in the simulated large-scale precipitation and height fields.

2.1.1. Local scaling

In the local scaling method, the scaling factors are fixed for each 3 month season and are simply the
ratios s = 〈p〉/〈P 〉, where p and P are observed and NCEP precipitation respectively, and the angled
brackets indicate the climatological seasonal mean over the fitting period at each grid point. Thus, the
locally scaled precipitation is constrained to have the same long-term seasonal mean as the observations
at each 50 km grid point. The method relies on the fact that the NCEP precipitation is well correlated in
time to the observations at any point even though it has quite large biases that vary from point to point
(see Widmann and Bretherton (2000)). Figure 2 shows the monthly mean NCEP large-scale (upper left) and
observed mesoscale precipitation (upper right) fields for 1 January 1992. The lower left panel shows the
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Figure 2. Upper left: the precipitation field from the NCEP–NCAR reanalysis for December 1990. Upper right: gridded observations at
50 km for 1 January 1992. Lower right: scaling factors used by the local scaling method for the DJF season. Lower right: downscaled

precipitation for the same period as upper panels

scaling factors for the December–January–February (DJF) season. The lower right panel is the locally scaled
precipitation for January 1992, and is simply the product of the upper and lower left panels. The local scaling
factor increases the simulated NCEP precipitation in the various mountainous regions and decreases it in the
rainshadows.
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2.1.2. Dynamical scaling

The dynamical scaling method is a modification of the local scaling where the effect of atmospheric
circulation is taken into account, and the scaling factor depends also on the monthly mean 1000 hPa heights.
On the east side of the Cascades, the small amount of precipitation that does occur is highly dependent upon
the atmospheric circulation, which modulates how much moisture is carried past the mountains. To illustrate
the influence of circulation on the distribution of precipitation, one should consider the variability associated
with the leading mode of 1000 hPa heights, as revealed by empirical orthogonal function (EOF) analysis. This
mode is a modulation of the mean southwesterly onshore flow between a more southerly (Figure 3, left) and a
more westerly (Figure 3, right) phase. The composite precipitation pattern formed by averaging over all days
of the first 1000 hPa phase shows that more precipitation falls into the rainshadow during this phase (Figure 4,
left). In comparison, the second phase is associated with drier conditions east of the Cascades and higher
rainfall along the crest (Figure 4, right). Thus, the large-scale winds modulate the strength of the rainshadow.

150m

100m

100m 15
0m

Figure 3. Two phases of the leading mode of variability of the 1000 hPa heights over the Pacific Northwest. Left: average 1000 hPa
height for days with positive phase of leading EOF. Right: average over days with negative phase of leading EOF

mm/day

Figure 4. Observed precipitation composites for the two circulation patterns in Figure 3. The strength of the rainshadow is modulated
by the variability in the height pattern, with less contrast across the Cascade Range on the left associated with more southerly flow and

a high contrast on the right associated with more westerly flow
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Similar dependence of the mesoscale precipitation distribution has been observed for south west England
(Phillips and McGregor, 2001). Should climate change be associated with a shift in the statistics of the
circulation patterns, this effect may have a significant effect on the climatology of rainfall that would not be
captured by downscaling methods based solely on precipitation.

To account for the effect of circulation on the mesoscale precipitation field, the scaling factor is derived by
constraining the covariance between downscaled precipitation and the leading three modes of the 1000 hPa
heights to be the same as the covariance between observed mesoscale precipitation and leading 1000 hPa
height modes, in addition to preserving the long-term mean. Thus, the downscaling is still performed by
applying a high-resolution scaling factor, but the scaling factor now varies by month according to the simulated
1000 hPa heights. In this case, since we are testing the results for a ‘perfect’ GCM, the NCEP reanalysis
heights are used for both the observations and the GCM, but, in general, the GCM heights would be different.
The first three EOF modes of the 1000 hPa heights explain 52, 32, and 8.5% of the variance in the DJF
season; so, truncating at three modes captures 92.5% of the total variance. The results are similar for the
remaining seasons. For a complete description of this method, see Widmann et al. (2002).

Figure 5 shows the correlation of the two downscaling methods with the observed precipitation at each grid
point. Since the period 1958–76 is downscaled with parameters tuned to observation for the period 1977–94
and vice versa, the downscaled and observed time series are independent. Dynamical scaling (Figure 5, right)
produces a significant improvement in the result over the dry region in the lee of the Cascades, indicating a
strong control of the precipitation distribution due to circulation patterns. The Yakima Basin (outline region)
falls along the edge of the area where the dynamical scaling improves the downscaling. There is little difference
(less than 0.05) in the upper portion of the basin, where most of the rain and snow that supply the river falls.

2.1.3. Analogue method

For comparison, also presented are results of a simple analogue method, with 1000 hPa heights as predictor.
The 1000 hPa heights are chosen as the predictor to illustrate the performance of a purely circulation-based
downscaling method of comparable simplicity to the local scaling. The analogue method is an attempt to
find a day in the historical record that is an analogue for each day in the large-scale simulation that is to be
downscaled. The sequence historical analogues is not necessarily chronological.

Correlation

Figure 5. Temporal correlation of monthly mean observed and downscaled precipitation at each grid point over the period 1958–93.
Dark areas indicate relatively poor correlations. Left: local scaling. Right: dynamical scaling
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With 1000 hPa heights as the predictor, the best historical analogue is selected as that day when the
observed heights (as indicated by the NCEP–NCAR reanalyses) most closely match the simulated heights.
The best match is found by minimizing the sum of the mean-square difference between the amplitudes of the
leading five EOFs of 1000 hPa height. Regional observations for the analogue day (in our case, the gridded
mesoscale precipitation) may then be assigned to the simulated day. In general, one would start with a GCM
simulation of 1000 hPa heights and search the NCEP–NCAR reanalysis for the best match. In this study,
we are using the NCEP–NCAR reanalyses as a surrogate for a GCM. Thus, to downscale a given day, we
search for the best analogue in years other than the one that contains this day. As with the scaling methods,
this approach suggests how a perfect GCM, that accurately captures the well-resolved fields, would perform.

The downscaled precipitation from this method is correlated at 0.5–0.7 over the Yakima Basin, with higher
correlations along the Cascade crest.

2.2. Hydrology simulations

In order to explore the implications of precipitation downscaling, streamflow simulations for the Yakima
River were made for the period 1958–93 using the variable infiltration capacity (VIC) hydrology model
(Liang et al., 1994) implemented at 0.125° resolution (Hamlet and Lettenmaier, 1999a). The 0.125° VIC
model for the Columbia is very similar to the model implemented at 0.25° described by Matheussen et al.
(2000). Simulated gridcell runoff and baseflow are then processed with a river routing model (Lohmann et al.,
1996, 1998) to produce streamflow in the Yakima Basin. Data are presented for the magnitude of the flow
where the Yakima River joins the Columbia River. The simulation is for unregulated flow, i.e. the natural flow
in the absence of any water management or groundwater interactions. Results of yearly total and monthly
flows are presented for the period 1963–93, allowing the first 5 years for model spin up. Each simulation is
driven with a different precipitation dataset, and temperature is the same observed maximum and minimum
for each simulation.

For the simulation with observed precipitation, the VIC model is driven by the 50 km precipitation dataset
used to fit the downscaling methods, with a resolution of 0.48°(lat) × 0.62° (lon). The VIC model includes
0.125° precipitation data (Matheussen et al., 2000), which is derived from the station observations in the same
manner as the 50 km data. As noted by Widmann and Bretherton (2000), the 50 km grid provides, on average,
two stations per grid cell and, therefore, grid-scale features are well resolved but sub-grid-scale is not. Indeed,
hydrologic simulations with the 50 km data and the 0.125° data are indistinguishable; monthly flows differ by
less than a few hundredths of a percent. Thus, for the Yakima Basin, the 50 km spatial resolution is sufficient
to reflect the available information in the station data.

In Widmann et al. (2002), monthly mean patterns were downscaled. For this study, daily values are required
to force the hydrology model, and the scaling factors are applied directly to the daily NCEP precipitation fields.
Since the local and dynamical scaling methods cannot alter the number of wet days per month from what is
predicted in the large-scale precipitation field, this approach only works where there is reasonable confidence
in the daily variability of the predictor field. Widmann and Bretherton (2000) showed that, after removing the
seasonal cycle, the daily NCEP precipitation time series is correlated at 0.54 over the lower Yakima Basin and
at 0.73 over the upper Yakima Basin. Thus, the reanalysis captures realistic daily precipitation variability for
this region. A free-running GCM, however, may not be able to simulate reasonable daily variability despite
capturing reasonable monthly variability. In this case, it would be appropriate to downscale monthly means
and apply another method to disaggregate temporally to the daily time step.

For comparison, two additional precipitation datasets are used. (1) The raw NCEP precipitation. As for the
downscaling methods, the NCEP precipitation is taken as being constant over each large-scale grid cell; not
interpolated. Differences between this simulation and simulations using the downscaled precipitation illustrate
the information added by the downscaling to the raw NCEP precipitation. (2) Daily climatological mean
precipitation, which is formed by averaging the 50 km observed precipitation over 1958–94 for each calendar
day. The climatological precipitation is applied cyclically each year of the simulation; hence, interannual
variability is due only to the temperature forcing. Differences between other simulations and this ‘climate’
simulation help separate the effects of precipitation and temperature variability.
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Table I. Precipitation datasets for each hydrology simulation

Simulation Precipitation dataset

Observed Observed precipitation processed to 50 km grid
Local scale NCEP precipitation downscaled to 50 km grid using local scaling method
Dynamical scale NCEP precipitation downscaled to 50 km grid using dynamical scaling method
Analogue NCEP precipitation downscaled to 50 km grid using analogue method
NCEP Raw NCEP precipitation
Climatology Daily climatological mean (1958–94) of observed 50 km precipitation applied cyclically

In order to facilitate comparison of the various precipitation datasets without confusion of differing
temperature time-series, we drive all simulations with the same temperature data, the default 0.125° VIC
driving data. In general, correspondence between daily temperature and precipitation is essential to modelling
the hydrology. Hence, taking temperature and precipitation from different sources for the NCEP and
downscaling simulations may appear as a potential source of error. However, in the context for which
the NCEP reanalysis is used here, the observed temperature, rather than assimilated temperature, is most
appropriate. Since daily temperature observations are assimilated into the reanalysis, a successful downscaling
of the large-scale NCEP surface temperature should return the observations.

The various simulations presented below differ only in the choice of precipitation data; observed temperature
is used for each. Table I summarizes the different simulations.

3. RESULTS

In mountainous regions, where there is considerable storage in the snowpack, streamflow is determined both
by temperature and precipitation. Temperature variability controls the fraction of precipitation that contributes
directly to runoff or is stored in the snowpack, the timing of the melt of the snowpack leading to spring
flows, and evapotranspiration. Precipitation affects the total available water and also directly controls runoff
and the resulting streamflow when the precipitation falls as rain. Flow in the Yakima River has two principal
seasonal maxima, one due to melting of the high-elevation snowpack during early summer and a second due
to rain in late autumn.

Figure 6 shows the total water-year flows in the Yakima River at the point where it joins the Columbia River
for the simulation period (a water year is the period from 1 October of the previous year to 30 September
of the current year) from each simulation. The simulations with locally and dynamically scaled precipitation
yield a good representation of the interannual variability, capturing sequences of wet and dry years. These
two simulations, however, show a bias of excessive flow during the late 1960s and a bias of insufficient
flow after 1980 relative to the simulation with observed precipitation. Although the analogue method does
capture the major interannual features, it is considerably less capable than the other downscaling methods
when compared with the observed simulation. The interpolated NCEP precipitation, in addition to yielding
too little flow, also does not capture much of the observed interannual variability. That simulation misses, for
example, the increased flows during 1966–68. Thus, downscaling is essential even in order to capture flow
variability at interannual time scales.

Table II shows the linear correlation and regression coefficient (slope) of total yearly flow for each
simulation relative to the simulation with observed precipitation for the period 1963–93. Correlation
coefficients are all significant at the 99% level. The local and dynamical scaling methods perform equally
well in capturing interannual variability. The analogue method, however, does not add significantly to the
raw NCEP precipitation, although it does outperform climatology. Furthermore, the low values for the slopes
indicate that the analogue and raw NCEP precipitation do not produce the range of variability that the
simulation with observed precipitation yields.
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Figure 6. Total yearly flow simulated for the Yakima River using various precipitation data and observed temperature

Table II. Correlations with observed precipitation simulation for total annual flow

Model Correlation Slope

Local scaling 0.84 1.00
Dynamical scaling 0.84 0.98
Analog 0.66 0.59
NCEP 0.79 0.58
Climatology 0.44 0.05

By examining the flow on a monthly scale, the details of the interannual variability are revealed. Figure 7
shows the monthly streamflow simulated with the model driven by observed precipitation, locally scaled
precipitation, climatological precipitation, and NCEP precipitation. The date is the beginning of the water
year, which falls on 1 October of the previous calendar year. The simulation for the dynamical scaling
is not shown, but it is indistinguishable from the local scaling on the graph. Variability in the simulation
with climatological precipitation is due to interannual variations only in temperature; thus changes relative
to the dotted line are due to differences in the precipitation datasets. Although the local scaling simulation
occasionally overestimates streamflow relative to the observed simulation (e.g. water years 1968 and 1973),
the main interannual features are well represented. For example, the local scaling can differentiate between
years of a double-peaked flow (e.g. 1976, 1978, 1991) and years with a single, melt-driven peak (e.g. 1974,
1975, 1985). Also, low-flow (e.g. 1966, 1977) and high-flow (e.g. 1972, 1974) years are captured. These
features do not appear in the simulation with climatological precipitation, indicating that the precipitation
field, not temperature, generates them. The NCEP precipitation, in addition to a consistent dry bias, does not
capture some of the significant seasonal features. For example, the double peak in flow for the water years
1976 and 1978 is entirely missing in the raw NCEP simulation.

Table III shows the correlation and regression coefficient for the various methods to the observed monthly
precipitation for the full period, 1963–93. It is important to note that climatological precipitation combined
with observed temperature yields a streamflow simulation 0.87 correlated to the simulation with observed
precipitation, indicating the strong control of temperature on monthly variability and flow timing. As with
the yearly total flow, the two scaling methods perform equally well for the Yakima Basin and yield near-
ideal correlation. The analogue method does no better than climatological precipitation, both in terms of
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Figure 7. As for Figure 6, but for monthly flow

Table III. Correlations with observed precipitation simulation for monthly flow

Model Correlation Slope

Local scaling 0.94 0.96
Dynamical scaling 0.94 0.97
Analog 0.89 0.79
NCEP 0.64 0.29
Climatology 0.87 0.72

correlation and slope. The raw NCEP precipitation does significantly worse, with marginal correlation and
reduced variability.

Compositing all years in the simulation illustrates the differences in the simulated annual cycle. In Figure 8,
the curves indicate the monthly flow averaged over all water years (1964–94) for the simulations using
observed precipitation, locally scaled precipitation, and NCEP precipitation. The raw NCEP precipitation

Copyright  2003 Royal Meteorological Society Int. J. Climatol. 23: 887–901 (2003)



898 E. P. SALATHÉ
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Figure 8. Annual cycle of flow in the Yakima formed by averaging all years in the simulation; �: observed simulation, cool PDO; �:
observed simulation, warm PDO; �: local sealing, cool PDO; �: local scaling, warm PDO; +: NCEP simulation, cool PDO; ×: NCEP
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entirely misses the secondary flow peak in December. Furthermore, the peak flows occur in mid spring rather
than in June. When the local scaling method is applied to the NCEP precipitation, however, these details of
the annual cycle are faithfully simulated. Since the timing of precipitation events is the same in the NCEP
and locally scaled precipitation, and since the temperature is the same, the only way the local scaling can
produce these features is by amplifying the precipitation at high elevations, where it is colder. More high-
elevation precipitation creates a larger high-elevation snowpack that yields the summer flow peak. The total
flow volume is also increased in the local scaling as the low precipitation bias in the NCEP precipitation is
removed.

Since temperature exerts a strong control on streamflow timing by forcing the melting of the snowpack, even
a relatively poor precipitation representation may yield reasonable results. If the results for climatological
precipitation are subtracted from the other results, to produce an anomaly relative to the climatological
precipitation simulation, then the skill contributed by the precipitation dataset can be isolated somewhat from
the temperature forcing. Table IV shows results for correlation and regression of each anomaly against the
anomaly for the observed precipitation simulation. The local and dynamical scaling both retain a significant
correlation to the observed simulation, showing that considerable information about the mesoscale precipitation
is captured. The analogue method is marginally correlated, whereas the raw NCEP analyses are essentially
uncorrelated. Thus, most of the skill in the analogue and NCEP simulations methods comes from the
temperature field.

Table IV. Correlations with observed precipitation simulation for monthly flow, after
subtracting the climatology simulation

Model Correlation Slope

Local scaling 0.78 0.86
Dynamical scaling 0.79 0.89
Analogue 0.57 0.56
NCEP 0.25 0.38
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4. CLIMATE VARIABILITY AND DOWNSCALING

The usefulness of a downscaling method depends on its ability to capture the effects of climate variability
and change. This ability requires that (1) the predictor field captures the climate signal and (2) the connection
between large-scale and mesoscale remains the same in a new climate state. The second requirement is more
open to doubt for empirical methods, which are explicitly tuned to present climate conditions, than for physical
models, although even physical models rely somewhat on tuning to present-day simulations.

In the Pacific Northwest, the marked climate variability produced by the PDO (Mantua et al., 1997) creates
an opportunity to test the downscaling method’s ability to capture climate shifts. The PDO exhibits two
phases: the positive, or ‘cool’, phase is associated with cool–wet conditions over the Pacific Northwest,
and the negative, or ‘warm’, phase is associated with warm–dry conditions. In the past century, the PDO
underwent two full cycles. The PDO was in its cool phase from 1890 to 1924 and again from 1947 to 1976,
and in its warm phase from 1925 to 1946 and from 1977 through to the mid-1990s (Mantua et al., 1997;
Minobe, 1997). The PDO has a significant impact on snowpack and streamflows in the Pacific Northwest
(Cayan, 1996; Mantua et al., 1997; Bitz and Battisti, 1999; Hamlet and Lettenmeier, 1999b).

As discussed above, in fitting the local and dynamical scaling methods, data from 1958 to 1976 were used
to fit the period 1977 to 1994 and vice versa. Thus, the downscaling methods are tuned to data from the
opposite phase from the phase where they are applied. The results presented in Section 3 illustrate that the
tuning of the methods does transfer across the PDO phases, suggesting that the methods can be applied to
future climates. Table V shows the same statistics as for Table II, but with the data divided between the cool
and warm PDO phases. The correlations for the downscaling methods remain as high or higher, indicating
that the methods are robust to the PDO climate regime change.

In Figure 8, the annual cycle for the observed simulation during the cool PDO phase is shown by the filled
upward triangles, and the warm phase by filled downward triangles. Upward and downward open triangles
indicate cool and warm phases respectively for the local scaling simulation, while + and × are cool and warm
phases for the NCEP simulation. The observed simulation shows the PDO signal of increased summer flow
during the cool phase and reduced summer flow during the warm phase. The simulation with locally scaled
precipitation shows a similar signal to the observed simulation, although the response is slightly exaggerated.
Although the NCEP simulation cannot produce the annual flow cycle, it does produce a PDO signal in the
precipitation simulation. Thus, simulated large-scale precipitation captures the climate signal associated with
the PDO and transfers that signal to the downscaling method.

5. CONCLUSIONS

These simulations illustrate how local scaling, a very simple and efficient statistical downscaling method,
is able to capture the essential precipitation features required for accurate simulation of flow in the Yakima
River. The Yakima is in the dry rainshadow of the Cascades, and is subject to precipitation variability that
is connected to the large-scale winds, as discussed in Section 2.1. Nevertheless, the quality of information

Table V. Correlations with observed precipitation simulation for total annual flow for the periods of the cool and warm
phases of the PDO

Model Cool (1963–76) Warm (1977–94)

Correlation Slope Correlation Slope

Local scaling 0.82 0.99 0.94 0.81
Dynamical scaling 0.79 0.94 0.96 0.85
Analogue 0.56 0.46 0.74 0.57
NCEP 0.83 0.61 0.78 0.42
Climatology 0.58 0.05 0.31 0.04
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needed to perform hydrologic simulations for present-day climate does not evidently require the additional
detail provided by the dynamical scaling, which performs no better for driving the streamflow in this basin.
Although the dynamical scaling considerably improves precipitation in the lower Yakima Basin, the upper
part of the basin dominates the streamflow so that the deficiencies in the local scaling do not compromise
the hydrologic simulation. However, the dynamical scaling may be significant in downscaling future climate
scenarios even if it has little effect on downscaling historic data. Circulations statistics are relatively invariant
between the fitting and downscaling periods in the study, so the local scaling may capture most of the signal.
However, if there is significant alteration of the circulation in a future climate, the local scaling would not
capture the effects. Furthermore, in a free-running GCM, the relationship between circulation and mesoscale
precipitation may be worse than in the reanalysis, which does receive some indirect information about the
lower boundary. In that case, the dynamical rescaling may also be more significant than indicated here.

The two scaling methods are as efficient and simple to implement as the analogue method, yet the analogue
method adds very little value to the raw large-scale precipitation for this region. One might expect an
analogue method, based on low-level winds, such as the one used here, would do well in this region where
precipitation is controlled by large-scale storms and orography. Nevertheless, circulation alone evidently does
not exert sufficient control to determine the precipitation variability, even within the present climate. A similar
conclusion is suggested by the precipitation–wind direction relationship in southwest England (Phillips and
McGregor, 2001). Using simulated precipitation and simulated circulation as predictors in the downscaling
method includes both thermodynamic and fluid dynamic controls on precipitation.

It is clear that statistical downscaling can accomplish more than remove a uniform bias in a large-scale
model simulation. The redistribution of water, implied by the scaling, can profoundly affect the hydrograph.
Without downscaling, such a significant feature as the double-peaked hydrograph cannot be simulated with
the unprocessed NCEP precipitation. The large-scale precipitation, however, does provide the interannual and
interseasonal information needed to capture these features once it is scaled at high spatial resolution.

In terms of the application of downscaling to climate change simulations, the scaling methods are not limited
by past climate extremes. It is merely assumed that the bias remains the same in simulations of different
climate states. The success of the methods across the PDO phase shift and the ability of the methods to capture
the PDO impacts on streamflow support this assumption. Furthermore, these methods are easily calibrated
to short runs of present-day climate. Although the dynamical scaling method does not produce significantly
different results from the local scaling for the present-day conditions considered here, it is possible that
simulations of climate change may yield a shift in circulation that is not fully captured by the large-scale
precipitation. The dynamical scaling allows more flexibility in the method to account for such climate shifts.
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