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여러 종류의 표면 진동원에 대한 연조직에서의 진동 변위 비교

Comparison of Vibrational Displacements 

Generated by Different Types of Surface Source in a Soft Tissue

박정만*, 권성재*, 정목근*
✝

Jeong Man Park*, Sung-Jae Kwon* and Mok-Kun Jeong*
✝

초 록 인체 연조직에서 기계적인 진동의 전달 특성은 조직의 탄성 특성에 의존한다. 연조직의 진동 특성

으로부터 암이나 종양을 진단할 수 있기 때문에 진동의 전달 특성에 대한 연구는 중요한 의미를 가진다. 이 

논문은 연조직의 표면에 위치하는 여러 형태의 응력 진동원에 의해 연조직 내에 발생되는 변위 패턴을 분석

하고 비교하였다. 진동원으로는 수직하중, 접선하중, 그리고 면외전단하중이 고려되었다. 점탄성 단일층에서

의 변위에 대한 이론적 표현식을 구하였고, 수치계산은 반공간 및 무한평판조직에서 수행되었다. 그리고 유

한크기조직에서의 변위패턴을 유한요소법으로 시뮬레이션하였다. 응력 형태, 진동원 크기 및 주파수, 그리고 

경계면이 변위에 미치는 영향이 분석되었다.

 

주요용어: 초음파, 진동, 탄성, 횡파, 연조직

Abstract The propagation characteristics of a mechanical wave in human soft tissue depend on its elastic 

properties. Investigation of these propagation characteristics is of paramount importance because it may enable us 

to diagnose cancer or tumor from the vibration response of the tissue. This paper investigates and compares 

displacement patterns generated in soft tissue due to several forms of low-frequency vibration sources placed on a 

surface. Among vibration sources considered are a normal load, tangential load, and antiplane shear load. We 

derive analytical expressions for displacements in viscoelastic single layers, and calculate displacement patterns in 

half space and infinite plate type tissue. Also, we simulate the vibration response of a finite-sized tissue using 

finite element method. The effects of the type of stress, the size and frequency of vibration sources, and medium 

boundaries on displacement patterns are discussed.
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1. Introduction

Applying low-frequency vibration to soft 

tissue generates a relatively large amplitude 

shear wave that propagates in it. Because the 

characteristics of wave propagation depend on 

mechanical properties of tissue, measurement of 

vibration amplitude or wave speed can lead one 

to detect lesions based on tissue elasticity[1-3]. 

Techniques for visualizing elasticity by 

measuring the amount of tissue vibration need a 

vibration source that can generate a relatively 

large amplitude shear wave. Shear waves can be 

generated using several methods, such as 

employing a surface vibration source[4], or 

applying an acoustic radiation force so as to 



470 박정만, 권성재, 정목근

generate them inside tissue[5]. They can also be 

generated inside tissue without external force 

applied, for example by a beating heart or 

pulsating blood vessel[6,7].

In order to generate shear wave, sono- 

elastography[2,8] or transient elastography [9,10] 

has used various forms of surface vibration 

sources. Parker et al.[11] used a normal point 

source to verify FEM simulation results of 

displacement patterns, Catheline et al.[12] 

measured the diffraction field of a point source 

using transient elastography. Yamakoshi et al.[8] 

applied vibration to a tissue phantom using a 

perpendicularly vibrating rectangular plate, and 

Fu et al.[13] used a long, narrow rectangular 

rod to obtain a plane strain condition. 

By applying a shear load to the surface of a 

phantom with a short cylindrical rod, Gao et 

al.[14] obtained displacement images formed by 

horizontal shear wave. Sandrin et al.[9] proposed 

using dual cylindrical rod vibrators arranged side 

by side which were placed on both ends of a 

transducer array in order to generate a large 

amplitude shear wave in an imaging region of 

interest. Shear waves emitted from the dual 

vibration sources are reinforced constructively in 

the center region between them, resulting in 

large axial displacements. 

Wu et al.[15] used dual vibration sources 

consisting of two long metal plates 

(8 mm×90 mm), similar to the above arrange- 

ment, to produce a higher resolution sono- 

elasticity image. Recently, Wu et al.[16,17], 

McLaughlin et al.[18], and Hoyt et al.[19] have 

applied shear stress with a bimorphic piezo- 

electric transducer, and measured the speed of 

the generated shear wave by observing its 

interference pattern. They were able to deter- 

mine the speed of shear wave by visualizing its 

propagation with only amplitude images in 

sonoelastography.

Although much experimental research has 

been conducted to image the elasticity of tissue 

specimen and phantom by generating waves 

with a surface vibration source, there has been 

relatively little theoretical study of wave 

generation in tissue. Gao et al.[14] theoretically 

analyzed the displacement pattern of a shear 

wave generated in tissue due to a low frequency 

vibration applied. They considered an attenuating 

medium that includes hard lesions. Royston et 

al.[20] obtained an analytical solution to the 

problem of surface wave generation in a 

viscoelastic half space due to a normal circular 

vibrator placed on a surface. They analyzed the 

change in surface displacement inside tissue as a 

function of the distance from the vibrator. 

Timanin[21] and Klochkov[22] obtained theo- 

retical expressions for displacements generated in 

a multi-layer tissue due to a normal circular 

source, and examined the change in dis- 

placement by varying the thickness of tissue and 

the size and frequency of the vibration source.

In this paper, we investigated the charac- 

teristics of vibration patterns generated in tissue 

by computing displacements due to various 

forms of stress-generating vibration sources 

placed on a surface. Among vibration sources 

considered were a strip shaped normal load, 

tangential load, and antiplane shear load. 

We derived analytical expressions for 

displacements in a homogeneous viscoelastic 

single layer whose one side is fixed. Numerical 

computations were performed in a half space 

and single layer using the speed of sound in 

soft tissue for a low-frequency vibration source, 

and the characteristics of wave generation 

according to the type of stress applied were 

compared. We also analyzed displacement 

patterns in a finite-sized tissue using FEM 

simulation.

2. Theory

As shown in Fig. 1, we consider a single 

homogeneous viscoelastic layer of thickness  , 
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Fig. 1 Coordinate system for the wave generation 

due to a strip load

which is infinitely extended in the  and   

direction. A strip load of width  is applied to 

the surface   , and the surface    is 

fixed.

Assuming linear viscoelasticity, the expres- 

sion for motion in a viscoelastic medium is the 

same as that in an elastic medium except that 

the elasticity coefficient is complex. Thus, the 

equation of motion in a linear isotropic visco- 

elastic medium can be written as follows[23]:

∇∇∙∇ 

 

(1)

where   is the displacement vector,  and  

are complex Lamé constants, and  is the 

density. Using the Voigt viscoelastic model, we 

have   and   .  and  

are, respectively, longitudinal and shear viscosity 

coefficients, and  is the angular frequency of 

harmonic oscillation.

2.1 Wave Generation from Normal and 

    Tangential Load

If we apply a normal and tangential load to 

the surface of a medium, a plane-strain 

oscillation occurs in the medium. In this case, 

the boundary conditions are

     (2)

     
  

(case of normal load),
(3)

       
 

(case of tangential load),
(4)

where      or   denotes stress components. 

A solution to eqn. (1) can be obtained using 

Fourier transform in an analogous manner to 

solving a two-dimensional Lamb problem in a 

half space[24]. Expressing the displacement as 

the sum of the gradient of scalar potential and 

the curl of vector potential, we obtain two 

separate wave equations for longitudinal and 

shear waves[14,25]. Taking the Fourier transform 

of the resulting equations in the spatial variable 

  and taking the inverse Fourier transform of a 

general solution for the transformed wave 

equation give the following expression for the 

displacement component in the medium:

 

 
∞

∞


    (5)

where   represents the Fourier transformed 

displacement components given as

  coshsinh
sinhcosh (6)

  sinhcosh
coshsinh (7)

Here,   ,

  ,  is a parameter in 

the transform, and    and 

   are, respectively, the speed of the 

longitudinal and shear waves.

   and    are, 

respectively, the acoustic  of the longitudinal 
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and shear waves[26]. The corresponding 

attenuation of the waves in the medium is 

 , where    . The unknowns, ,  , 

 , and  in eqns. (6) and (7) are determined 

by solving a set of linear equations satisfying 

boundary conditions (2)-(4). The displacement in 

a half space can be obtained by letting →∞ 

in the solution to the single layer case. The 

displacement expressions are identical to the 

conventional theoretical expressions for an 

elastic half-space medium except for the 

complex elastic coefficients[24]. The far field in 

the region of large  and ≤    in a half 

space can be approximated by integrating the 

integral expression for the displacement using 

the steepest-descent method[24]. For the case of 

a normal load, we obtain the following results 

for the radial and tangential displacement 

components:

  ∼





 



sin sin

 cossin sin  sin


  ,

(8)

  ∼





 



 sin

 cos sin sinsin 


  ,

(9)

where  ,  ,  
-  

and   is the magnitude of load. Also, for the 

case of a tangential load, we obtain the 

following results:

  ∼





 



 sin

 cos sin sin sin


  ,

(10)

  ∼





 



sin sin 

coscossin sin 


 ,

(11)

We can see that from the term exp   in 

eqns. (8) and (10) the component   emitted 

from the strip load propagates at the speed of a 

longitudinal wave and from the term 

exp  in eqns. (9) and (11) the component 

  propagates at the speed of a shear wave.

2.2 Wave Generation from Antiplane Shear 

Load

The antiplane shear stress applied to the 

surface of a single layer generates only a 

horizontal shear wave whose displacement 

component in the medium is  . Hence, from 

eqn. (1), the equation of motion is written as

∇ 

 

. (12)

The boundary conditions are specified as 

follows:

     (13)

    
 (14)

Taking the Fourier transform, solving the 

wave equations, and imposing the boundary 

conditions, we obtain the following expression 

for displacement:

 


 

∞

∞



 sinh cosh
sinh cosh

(15)

The displacement in a half space due to a 

strip load of width  can be expressed in the 

limit →∞. The displacement expression is the 

same as plugging in complex elastic coefficients 

in the conventional theoretical expression in an 

elastic half space[24]. The far field in an elastic 

half space is given as

∼





 





sin

sinsin

 . (16)

3. Simulation of Vibration in Finite-Sized 

Tissue

We analyzed the two-dimensional vibration 

behavior of a finite-sized tissue bounded by the 

range ≤ ≤ in Fig. 1 using FEM 
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simulation. The vibration source is placed at the 

surface    and its center is at   . The 

plane    is a fixed boundary, and the planes 

 ± are free boundaries.

The damping matrix was constructed from the 

previous viscous damping, and each viscous 

coefficient is expressed in terms of the acoustic  

as   


  and   
 . 

The size of the medium was 4 cm×10 cm, and the 

entire region was divided into 8,000 six-node 

triangular elements with 16,281 nodes.

4. Numerical Results

The speed of sound in soft tissue was set to 

=1.54×10
5

cm/s for longitudinal wave and 

=290 cm/s for shear wave. These values are 

within the speed range available in the literature 

or that in soft tissue estimated from elastic 

coefficients[1,4,27-30].

4.1 Distribution of Displacement in Far Field

In order to examine the characteristics of 

wave generation due to different types of load, 

we first computed the displacement in the far 

field of a half space using eqns. (8)-(11) and 

(16). The results normalized with respect to 

  are presented in Figs. 2-4.

Fig. 2 is a polar plot of the displacement 

magnitude for a normal and tangential load of 

width =0.1 cm and frequency  

=500 Hz, where   and   denote the 

displacement components of the longitudinal and 

shear waves, respectively, and their magnitudes 

differ from each other greatly. The ratio of the 

amplitude of the shear wave to that of the 

longitudinal wave, , for the normal load 

is asymptotically given as 
, which is on 

the order of , and that for the tangential load 

as 
, which is on the order of . This 

indicates that even under the normal load, 

relatively large amplitude shear waves are 

generated in soft tissue. Accordingly, as can be 

seen in Fig. 3, the shear wave dominantly 

contributes to the overall beam pattern. Strong 

shear waves are generated in specific directions 

from the normal load, where the angle of 

maximum displacement in the sidelobe is 32°. 

For the case of the tangential load, a large 

amplitude shear wave is emitted in the front of 

the vibration source. Because   becomes zero 

at  ± due to the term, cos , in the 

numerator of eqn. (11) and the sidelobe levels 

are small, the shear wave from the tangential 

load mainly propagates within   and the 

angle of maximum displacement is 22.5°. In the 

case that the width of the vibration source is 

very small relative to the shear wavelength, the 

far field due to an antiplane shear source is 

nearly independent of the angle, and shear 

waves of similar amplitudes are emitted in all 

directions in the half space.

Fig. 4 is a polar plot of the displacement 

profile in the far field due to a vibration source 

of width 2a=1.0 cm and frequency f=500 Hz. 

Because the width of the strip load is greater 

than the wavelength of the shear wave in the 

medium, the number of sidelobes increases. We 

can see that the angular width over which the 

shear wave is strongly emitted has been 

narrowed compared to Fig. 3. The angles at 

which the displacement becomes zero between 

the sidelobes of the shear wave are determined 

by the expression, sinsin  , in eqns. 

(9), (11), and (16). For regions where   , 

those angles are given as sin , 
where    . For tangential load, we have 

an additional angle, 45°, from cos  . When 

2a=1.0 cm and f=500 Hz, the null point for the 

case of the normal and antiplane shear load can 

be clearly seen at =35.45°. For the case of 

the tangential load, the displacements of the 

shear wave become zero at angles of 35.45° and 

45°. Thus, actually there exist a total of four 
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Fig. 2 Polar plots of displacement magnitude in far 

field for 2a=0.1 cm and f=500 Hz
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Fig. 3 Polar plots of displacement magnitude in far 

field (a) normal load, (b) tangential load, 

and (c) antiplane shear load for 2a=0.1 cm 

and f=500 Hz
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Fig. 4 Polar plots of displacement magnitude in far 

field under (a) normal load, (b) tangential 

load, and (c) antiplane shear load for 

2a=1.0 cm and f=500 Hz. 

sidelobes in the half space, but in Fig. 4(b) we 

can notice only one main lobe, because the 

sidelobes levels are less than 0.035. Under the 

present conditions, the strong beam of shear 

wave with the same far-field divergence  is 

emitted forward from the tangential and 

antiplane shear load.

4.2 Wave Generation in Half Space Tissue

The displacements in half space were 

computed. The surface stress was assumed to be 

 , and a large value of  for the shear 

wave, i.e.,   354, was used to observe 

the characteristics of wave generation in greater 

detail. Figs. 5 and 6 show the images of the 

magnitude of displacement generated by a 

vibration source of width 2a=0.1 cm and 1.0 cm, 

respectively. For the case of antiplane shear 

load, isocontours were drawn in black solid line 

to make it easy to identify the distribution of 

displacement. For the case of normal and 

tangential load, we can see relatively large 

displacements along the    surface due to the 

propagation of Rayleigh surface wave. The 

images obtained at 500 Hz in Figs. 5 and 6 are 

apparently similar to those in the far field as 

shown in Figs. 3 and 4, even though the region 

of interest is relatively close to the vibration 

source. On the other hand, the minimum 

frequency for which the sidelobes of shear wave 

start to appear when using the vibration source 

of width 0.1 cm and 1.0 cm are 2900 Hz and 

290 Hz, respectively. Thus, when the width is 

2a=0.1 cm, the two beam patterns at frequencies 

200 Hz and 500 Hz are similar as can be seen 

in Fig. 5, because there are no additional 

sidelobes. Even in the case that the width of the 

vibration source with frequency 200 Hz increases 

by a factor of 10 to 2a=1.0 cm, the number of 

sidelobes does not increase.

Fig. 7 shows the angular distribution of 

displacement for several values of  due to a 
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Fig. 5 Images of displacement magnitude to a 

vibration source of 2a=0.1 cm in half space 

due to (a) normal load, (b) tangential load, 

and (c) antiplane shear load
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Fig. 6 Images of displacement magnitude to a 

vibration source of 2a=1.0 cm in half space 

due to (a) normal load, (b) tangential load, 

and (c) antiplane shear load
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Fig. 7 Angular variation of displacement for various 

values of  under (a) normal load, (b) 

tangential load, and (c) antiplane shear load 

for 2a==0.1 cm and f=200 Hz. The dotted 

lines represent results obtained using far 

field approximation

vibration source of width 2a=0.1 cm and 

frequency 200 Hz. Under normal and tangential 

load, there exists a relatively large displacement 

at the surface,   , i.e., in the vicinity of 

   due to a Rayleigh surface wave. This 

surface displacement initially rapidly decreased 

with increasing distance from the vibration 

source along the surface, and slowly 

exponentially decreased beyond =8 cm. The 

attenuation was nearly independent of the 

longitudinal acoustic , and was strongly 

dependent on the  value of the shear wave. 

A detailed analysis in a range ≤≤ 

shows that the surface displacement decreases as 

exp, where  denotes the speed 

of the Rayleigh surface wave with the 

relationship ∼. For the case of 

f=200 Hz and =354, the displacement 

magnitude at =30 cm on the surface was 

1.0×10
-2

cm under normal load and 0.55×10
-2

cm 

under tangential load. The magnitude decreased 

quite rapidly with increasing depth from the 

surface and at a depth of about 1.3 cm reached 

 of that at the surface. The depth is nearly 

identical to the wavelength of the Rayleigh 

surface wave, 1.38 cm. 

Because for the normal load,   at 

   due to symmetry, the displacement 

around    shown in Fig. 7(a) is due to the 

contribution of the radial component, . 

Although the displacement ratio  in the 

far field is approximately  with the radial 

displacement component relatively small, in the 

near field within a few centimeters from the 

vibration source the radial displacement 

component contributes significantly, unlike in the 

far field. Since the radial displacement 

component rapidly decreases with increasing 

distance from the vibration source, the shear 

wave is the main contributor in the whole 

region except for the surface area and 

approaches the displacement distribution in the 

far field. Another characteristic of the 

displacement under normal loading is that the 

angular location of the maximum displacement 

in the shear sidelobe, max , depends on the 

distance, which is indicated in detail in Fig. 
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Fig. 9 Variation of displacement magnitude versus 

the width of vibration source for various 

values of  under (a) normal load, (b) 

tangential load, and (c) antiplane shear load. 

The solid lines with circles represent results 

obtained using far field approximation

8(a). The angle max near the vibration source is 

significantly different from that in the far field 

approximation. The angle max  decreases with 

increasing distance and tends to approach that in 

the far field. For low frequencies, the angle 

max  approaches its asymptotic value slowly, 

but a little faster for high frequencies.

Under tangential load, the radial 

displacement   related to the longitudinal wave 

is directed toward  in the far field as shown 

in Fig. 2(b). It can be seen in Fig. 7(b) that the 

contribution of the radial displacement can be 

confirmed by the rapid decrease in displacement 

around    with increasing distance . As 

in the case of normal load, though the 

longitudinal component affects the displacement 

distribution significantly, its influence rapidly 

decreases with increasing distance. At distances 

far from the vibration source, the shear 

displacement component becomes dominant, and 

the displacement ratio  approaches about 

. In the case of tangential load, if the width 

of the vibration source is smaller than the shear 

wavelength, in the far field approximation the 

displacement at    takes a minimum value 

of nearly zero. In the near field, however, the 

angle of minimum displacement, min , is 

different from   , which is indicated in 

detail in Fig. 8(b). As the vibration frequency 

increases, the angle min  decreases more rapidly 

with distance, approaching  in the far field. 

The distance where the angle of minimum 

displacement approaches  represents the 

point where the angular distribution of 

displacement begins to agree well with the far 

field approximation. It is about 26 cm for 

200 Hz.

Under antiplane shear load, Rayleigh surface 

and longitudinal waves are not generated, but 

only shear wave is emitted. We can see in Fig. 

7(c) that under antiplane shear loading the 

displacement distribution near the vibration 

source is nearly the same as that in the far field 

and that only its magnitude decreases with 

increasing distance from the vibration source.

 Fig. 9 shows the dependence of dis- 

placement magnitude on the width of the 

vibration source at a given point in half space. 

Here, the frequency of the vibration source is 

200 Hz. Because the displacement under normal 

load was calculated at =32° which is away 

from the vibration axis, the displacement in the 

far field varies as the term, sinsin , in the 

numerator of eqn. (9) for component  . The 

displacement component  in the far field 

continues to increase as the source width 

increases until it reaches  sin , and 

becomes zero at sin ,    . 
When =32° and f=200 Hz, the displacement in 
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the far field increases until the width of the 

vibration source reaches 2a=1.37 cm, and 

becomes almost zero at 2a=2.74, 5.47 cm, etc. 

Fig. 9(a) shows that the displacement at  

40 cm and that in the far field are similar. 

However, the displacement at a near distance of 

 5 cm is different from that in the far field 

in terms of displacement magnitude and 

locations of local minima. This indicates that 

because several wave modes with comparable 

amplitudes, such as the longitudinal, shear, and 

surface waves, are superposed in the near 

distance region as shown in Figs. 7(a) and 8(a), 

the displacement distribution cannot be 

accurately represented using the far field 

approximation where the shear wave contributes 

predominantly.

The displacements along the axis (=0°) in 

areas where the width of the vibration source is 

narrow under tangential and antiplane shear 

loading, shown in Figs. 9(b) and (c), 

respectively, have a tendency similar to the far 

field approximation, and increases almost 

linearly. After reaching the maximum, the 

displacement starts to oscillate as the width 2a 

increases. The range of 2a in which the 

displacement monotonically increases becomes 

larger with increasing distance. The mono- 

tonically increasing range can be approximately 

explained by the near field length , which 

distinguishes the on-axis displacement of the 

vibration source as belonging to the near or far 

field. The displacement magnitude fluctuates 

with distance along the axis of the vibration 

source at distances less than , while it 

decreases monotonically at distances larger than 

[31]. Since the propagation of shear wave in 

tissue is dominant for the low frequency range 

that we consider at present, the near field 

distance  for shear wave is used for range 

determination. Since  is approximately equal 

to  , the width of the vibration source for 

which an observation point  on the axis of the 

vibration source is larger than   is in the 

range between 0 and , where  is 

approximately  .   is given as 4.17, 

7.62, and 15.23 cm for =3, 10, and 40 cm, 

respectively. If the width of the vibration source 

is less than, the given position  becomes 

farther than  , and the displacement increases 

with 2a, as is the case with the far field 

approximation. In contrast, if the source width is 

larger than , the displacement oscillates with 

increasing 2a similarly to the behavior of the 

near field because  is smaller than . The 

behavior of the on-axis displacement, which  

depends on the source width, can be more 

clearly observed in Fig. 9(c). This is because 

the fluctuation characteristics of the on-axis 

displacement appear clearly in the region where 

 due to the generation of only shear wave 

under antiplane shear loading. Under tangential 

loading, however, the oscillation of the 

displacement is not quite apparent at =3 cm. 

As we have seen above, this reflects the fact 

that under tangential loading, the oscillation of 

the one-axis displacement in the near distance 

range is not quite apparent because 

displacements related to various wave modes are 

superposed.

4.3 Vibration Pattern in Single Layer and 

Finite-Sized Tissue

The displacements in a single-layer tissue of 

infinite plate type were computed using eqns. 

(5) and (15). The thickness of the layer was 

=4 cm. It was assumed that   and 

  354 as before. Fig. 10 shows the 

displacement pattern formed by a vibration 

source of width 1.0 cm. The wave generated by 

the vibration source together with multiple 

waves reflected from the two boundaries forms 

an interference pattern.

From the images obtained at 500 Hz for 

normal and antiplane shear load, we can clearly 



478 박정만, 권성재, 정목근

0 2 4
-10

-8

-6

-4

-2

0

2

4

6

8

10

(b)

x[cm]

500Hz200Hz500Hz200Hz500Hz200Hz

(c)(a)

x[cm] 

x[cm]

y[
cm

]

0 2 4
 

0 2 4
-10

-8

-6

-4

-2

0

2

4

6

8

10

 

0 2 4
 

0 2 4
-10

-8

-6

-4

-2

0

2

4

6

8

10

 

0 2 4
 

Fig. 10 Images of displacement magnitudes for 

various types of loads, all of width 2a= 

1.0 cm, in an infinite plate under (a) normal 

load, (b) tangential load, and (c) antiplane 

shear load

see that the sidelobe parts are reflected from the 

boundaries and propagate along the  axis 

direction. We can see the interference pattern 

more prominent under the tangential and 

antiplane shear load, in which the reflected 

waves are strongly superposed, rather than under 

the normal load, in which the shear wave 

propagates in a shape resembling the letter V.

A guided wave is generated in the 

single-layer medium due to the vibration source, 

and  in eqns. (5) and (15) is the wave number 

of the guided wave propagating in the  

direction. The dispersion relation is obtained 

from the condition that makes the denominator 

of the displacement expression equal to zero. 

The cutoff frequencies of guided wave modes 

determined from    in the dispersion 

relationship correspond to thickness resonant 

frequencies, and the thickness resonance 

condition of shear waves is cos   
considering that the medium is elastic →∞ . 

Therefore, the thickness resonant frequencies are 

given as    (   ).  Because 

the frequency of 200 Hz is very close to the 

resonant frequency, f=199.38 Hz, the amplitude 

of the interference pattern significantly increases, 

generating a prominent interference pattern in 

the images obtained at 200 Hz in Fig. 10(b) and 

(c). The wavelength of the 200 Hz shear wave 

is 1.45 cm. Because there can be 5.52 half 

wavelengths in =4 cm, there are about 5.5 

bright strips in the  axis direction.

The frequency 500 Hz is slightly different 

from the resonant frequency =489.38 Hz, and 

the amplitude of the interference patterns is 

relatively small. The beam emitted from the 

vibration source is buried in the interference 

pattern whose amplitude is large due to 

resonance as shown in the images of Fig. 10(b) 

and (c) obtained at 200 Hz. However, in the 

images obtained at 500 Hz, where the amplitude 

of the interference pattern is small, some reflection 

of emitted sidelobes can be observed. Because 

the wavelength of the 500 Hz shear wave is 

0.58 cm and =4 cm corresponds to 13.79 half 

wavelengths, in the images of Fig. 10 obtained 

at 500 Hz, we can observe 13.5 bright strips.

Shown in Figs. 11 and 12 are the 

characteristics of the change in displacement 

magnitude in the single layer as a function of 

the frequency of the vibration source. The 

displacements were computed at point 

=(2 cm, 2.5 cm), or    =(3.202 cm, 51.340°), 

and the width of the vibration source was set to 

1.0 cm. The dependence of the displacement on 

the frequency in the half space as well as in the 

far field is also shown in Figs. 11 and 12. The 

locations of the thickness resonant frequencies, 

 to , are indicated in the displacement 

curve for the normal load in Fig. 11. The 

displacement in the far field periodically repeats 

increases and decreases due to the presence of 

the term, sinsin , in the numerator of the 

expression for component  , and becomes 

almost zero at frequencies,  sin
 ×371.38 Hz (   ).

As we have seen in Fig. 7(c), under 

antiplane shear loading, the displacement in the 

half space agrees quite well with that in the far 

field. The displacement in the infinite plate 

takes the form of that in the half space plus the 
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Fig. 12 Variation of displacement magnitudes versus 

frequency at x=2 cm and y=2.5 cm under (a) 

normal load and (b) antiplane shear load for 

2a=1.0 cm

resonance effect. This is because the multiple 

reflected waves from boundaries are 

superimposed on the wave emitted from the 

vibration source. The displacement images in 

Fig. 10 clearly demonstrate this fact. The 

resonance behavior is more pronounced for the 

tangential and antiplane shear load where most 

of the shear wave propagates in front of the 

vibration source. 

Figs. 13 and 14 show the vibration pattern 

formed by a vibration source of width 2a 

=1.0 cm in a finite-sized tissue of size ×= 

4 cm×10 cm. In order to be able to observe 

closely the interference pattern formed by the 

presence of four boundaries, we computed the 

displacement magnitude by assuming the   

value is large so that the shear wave is not 

severely attenuated (  354), with the 

resulting displacements shown in Fig. 13. Fig. 

14 represents the images of displacement 

magnitudes obtained using a small value of 

shear acoustic (=20) to show the effects of 

the attenuation on shear waves in real tissue. 

Although not much is known about the value of 

 in tissue, the  values used here are within 

the approximate range (3 to 100) of  values 

estimated from the energy loss in soft tissue and 

tissue-mimicking phantom available in the 

literature[11,14,32-35]. We can see the vibration 

pattern in Fig. 13 is more complicated than that 

in Fig. 10 (the case of infinite plate) due to the 

presence of the boundaries,  ±.

While it is not a trivial task to analyze the 

in-plane vibration in a finite-sized medium, the 

resonant frequency can be found easily for 

antiplane shear load in which no mode 

conversion occurs in reflection because only the 

shear wave is generated. The condition for 

excitation of a guided horizontal shear wave in 

a single layer is given as cos′    ′  , 
i.e., 

   (   ). The 

resonance condition in the   direction, in which 

the surfaces  ± are free boundaries, is 

given as    (    )[24]. The mode 

is symmetric with respect to  if   is even and 

antisymmetric with respect to  if   is odd. 

Therefore, the resonant frequency for the   

mode is expressed as   
+

 . Because the present case corresponds 

to a forced vibration in which an antiplane 

shear load, which is symmetric about =0, is 

applied, only symmetric modes are excited. In 

Fig. 13(c), the mode (9,8) is excited because 

200 Hz is very close to =200.16 Hz. 

However, because 500 Hz lies between 

=497.05 Hz and =502.94 Hz, conspicuous 

modal patterns are not formed.

When a clearly noticeable salient interference 

pattern between shear waves is formed in the  
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axis direction for the tangential load as in Fig. 

13(b), the number of bright strips in the  

direction can be determined by estimating the 

wavelength of the guided wave from the 

relationship, ′  , between the 

wave number ′  in the   axis direction and the 

wave number  of the guided wave. The 

relationship between the wavelength   in the   

direction and the wavelength  in the  

direction is given by 
  


 . For 

the case of using 200 Hz, the number of bright 

strips is about 5.5 in the  direction, leading to 

~1.4545 cm and ~18.3556 cm, and the 

number of bright strips in the   direction is 1, 

considering the fact that the height, =10 cm, is 

about as long as the half wavelength . For 

the case of 500 Hz, the number of bright strips 

is about 13.5 in the direction, leading to 

~0.5926 cm and ~2.8285 cm, and the number 

of bright strips in the  direction is 7, 

considering the fact that the height, =10 cm, is 

seven times as long as the half wavelength .

We can confirm in Fig. 14 that the 

reflection effect at the surfaces,  ±, has 

been greatly reduced due to the relatively large 

attenuation of a shear wave. For the case of 

normal load with a vibration frequency of 

200 Hz, the shear wave is emitted directly 

toward the surfaces,  ±. Thus, the effect 

of reflection is rather significant here, but 

becomes almost unnoticeable when the frequency 

is increased to 500 Hz, due to an increase in 

attenuation. For the case of tangential and 

antiplane shear load where the shear wave 

propagates predominantly away from the front 

of the vibration source, the interference pattern 

is mostly due to reflections occurring at the 

surface   . Despite the interference, since its 

effect is greatly diminished, the beam patterns 

emitted from the vibration source are relatively 

well manifested compared to those in the half 

space(Fig. 6). 
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Fig. 13 Images of displacement magnitudes under 

various types of loads, all of width 

2a=1.0 cm, in a finite-sized plate under (a) 

normal load, (b) tangential load, and (c) 

antiplane tangential load. ==354

0 2 4
-5.0

-2.5

0.0

2.5

5.0
500Hz500Hz 200Hz200Hz

(b)
x[cm]

500Hz200Hz

(c)(a)

x[cm] x[cm]
y[

cm
]

0 2 4
 

0 2 4
-5.0

-2.5

0.0

2.5

5.0

 

0 2 4
 

0 2 4
-5.0

-2.5

0.0

2.5

5.0  SFCND200

 

0 2 4
 

Fig. 14 Images of displacement magnitudes under 

various types of loads, all of width 

2a=1.0 cm, in a finite-sized plate under (a) 

normal load, (b) tangential load, and (c) 

antiplane tangential load.   

5. Conclusions

We have investigated beam and vibration 

patterns generated when soft tissue is subjected 

to low-frequency normal, tangential, and antiplane 

shear loading. To this end, displacements are 

computed in half space, single layer, and 

finite-sized tissue, and some results for vibration 

generation in soft tissue are presented. 

The characteristics of displacement generated 

in half space from a surface vibration source are 

explored, and the distribution of displacement in 

the near field is compared to that in the far 

field and analyzed. Under normal and tangential 

loading, the angular distribution of displacement 

within a few centimeters from the vibration 

source is found to differ from that in the far 

field because the several types of waves, all of 

which have comparable amplitudes, are added 

together. A large amplitude surface wave is 

generated, and its displacement is found to 
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attenuate along the surface depending on the 

shear acoustic . The shear wave mainly 

propagates inside tissue because of the large 

longitudinal-to-shear wave speed ratio. In the 

case of plane strain, the distribution of 

displacement due to antiplane shear loading that 

generates only a pure shear wave agrees well 

with that obtained from the far field 

approximation over the entire region including 

the vicinity of the vibration source. 

By computing the displacement in tissues of 

infinite plate type as well as finite dimensions, 

the process that waves emitted from a surface 

vibration source construct vibration patterns is 

explained in detail. Tissue boundaries are found 

to exert an effect on the vibration pattern in 

tissue by superimposing interference patterns 

caused by multiple reflections to the beam 

pattern emitted from the vibration source. If 

vibration is excited in tissue at near the 

resonance frequency, the amplitude of 

interference pattern increases significantly, 

burying the emitted beam pattern inside of it. 

The interference pattern in plate and rectangular 

tissue is more pronounced under tangential and 

antiplane shear loading than under normal 

loading. Although the shear wave plays a 

dominant role in the displacement of soft tissue 

for all types of vibration sources considered, 

even at the same vibration excitation frequency 

the vibration pattern in finite-sized tissue differs 

depending on the type of vibration source. It is 

expected that investigation into vibration 

characteristic in tissue will provide fundamental 

information that helps to interpret vibration 

generation and acquired image in elasticity 

imaging such as sonoelastography.
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