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The risk of extreme events due to weather and climate change, such as winds 20 

of unprecedented magnitude, is predicted to increase throughout this 21 

century. Artificial ecosystems, such as coniferous plantation forests, can 22 

suffer irreversible deterioration due to even a slight change in environmental 23 

conditions. However, few studies have examined the effects of converting 24 

natural forests to plantations on their vulnerability to catastrophic winds. By 25 

modelling the 2004 windthrow event of Typhoon Songda in northern Japan 26 

using the random forest machine learning method, we answered two 27 

questions: do Abies plantation forests and natural mixed forests differ in their 28 

vulnerability to strong winds and how do winds, topography, and forest 29 

structure affect their vulnerability. Our results show that Abies plantation 30 

forests are more vulnerable to catastrophic wind than natural mixed forests 31 

under most conditions. However, the windthrow process was common to 32 

both types of forests, and the behaviour of wind inside the forests may 33 

determine the windthrow probability. Future management options for 34 

adapting to climate change were proposed based on these findings, including 35 

modifications of plantation forest structure to reduce windthrow risk and 36 

reconversion of plantations to natural forests. 37 

Key words: artificial plantation forests, wind disturbance, risk management, 38 

stand structure, susceptibility to winds 39 
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 40 

Introduction 41 

The risk of disasters caused by extreme weather and climate events is increasing. The 42 

Intergovernmental Panel on Climate Change (IPCC) projected that the risk of extreme events, such as 43 

intense heat, heavy rain, typhoons, and drought, will increase on an unprecedented scale throughout 44 

this century, although variations are observed in the predicted intensity and certainty depending on 45 

the region (IPCC, 2013).  46 

Wind disturbance is a major natural event that is essential to sustaining the integrity of temperate 47 

forest ecosystems (Nakashizuka, 1989; Schelhaas et al., 2003; Yamamoto, 1989). For example, various 48 

sizes of windthrow patches serve as available locations for the recruitment of new seedlings (Ulanova, 49 

2000) and diversification of the age structure and species composition of forests (Mitchell, 2013). 50 

However, catastrophic disturbances that occur at a scale and severity beyond the ability of the forest 51 

to recover will degrade forest ecosystems and in turn reduce resilience against subsequent disturbance 52 

events (Munang et al., 2013). Furthermore, simplified artificial ecosystems are often more vulnerable 53 

than natural ecosystems and thus may suffer from substantial deterioration due to small changes in 54 

environmental conditions or mild disturbances (Elmqvist et al., 2003; Timpane-Padgham et al., 2017). 55 

A plantation forest is an example of an artificial ecosystem that is commonly converted from a primary 56 

or natural forest (Brockerhoff et al., 2008). Globally, the area of plantations created by seeding and 57 

planting has increased by approximately 5 million ha annually from 2005 to 2010 (FAO, 2010). Thus, 58 

globally, forest ecosystems are likely to become more vulnerable to storm damage. 59 

Several studies suggest that the conversion to plantations (Schelhaas et al., 2003) and silvicultural 60 

interventions (Albrecht et al., 2012) have contributed to the spread of windthrow on a regional scale. 61 

Reported factors that regulate the vulnerability of forests to strong winds are generally wind 62 
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characteristics (Nakajima et al., 2009), topography (Kramer et al., 2001), and forest structure (Jalkanen 63 

and Mattila, 2000; Mitchell et al., 2001). However, few studies have compared the vulnerability of 64 

plantation forests relative to that of natural forests. In addition, the mechanisms by which the above 65 

factors (i.e., wind, topography, and forest structure) affect vulnerability to catastrophic winds in both 66 

types of forests remain unclear. 67 

The windthrow disturbances that occur in plantation forests result in broken and uprooted trees and 68 

cause direct economic loss for forest managers (Nieuwenhuis and Fitzpatrick, 2002). They are also 69 

known to have many socio-economic impacts through the collapse of timber prices due to the massive 70 

influx of windthrown timber to the market (Gardiner et al., 2010). If we understand the impact of 71 

conversion to plantations and the process of windthrow under current climate, we will be able to 72 

contribute to efficient forest management in the future under altered climate conditions.  73 

In this research, we addressed the following two questions by modelling the 2004 windthrow event of 74 

Typhoon Songda in northern Japan in Abies plantation forests and natural mixed forests: 1) do Abies 75 

plantation forests and natural mixed forests have different vulnerabilities to catastrophic wind? and 2) 76 

how do winds, topography, and forest structure affect the vulnerability to storms of Abies plantation 77 

forests and natural mixed forests? 78 

Based on our interpretation of the results, we propose several management options to minimize 79 

catastrophic damage to existing and future plantation forests under altered climate conditions. 80 

Materials and methods 81 

Study area 82 

On September 8, 2004, the 18th typhoon of the year (Typhoon Songda) hit Hokkaido in northern 83 

Japan (annual mean temperature of 8.9°C and annual mean precipitation of 1,107 mm in Sapporo, 84 

the prefectural capital), and it disturbed 36,956 ha of forested area (Forest Research Institute in 85 
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Hokkaido, 2004). We chose 8 study sites affected by the typhoon, including 4 plantation sites and 4 86 

natural forest sites (Figure 1, Table 1). These sites were 450 ha or more of plantation or natural 87 

forest, and the expectation was that each forest type would show a unique windthrow pattern. The 88 

species planted in the plantation sites was Abies sachalinensis (F. Schmidt) Mast., which is the major 89 

species for silviculture in Hokkaido. In the natural forest sites, the dominant species were A. 90 

sachalinensis, Tilia japonica (Miq.) Simonk., and Quercus crispula Blume, which are typical species in 91 

natural mixed forests in Hokkaido. We targeted forest compartments with steep slopes of more than 92 

15° on average to analyse the effect of exposure to wind in mountainous regions. Our intention was 93 

to analyse the windthrow mechanisms in mountainous regions with hilltops and valleys; therefore, 94 

our study sites covered entire slope angles. 95 

Identification of windthrow patches 96 

Windthrow patches were identified by comparing aerial photos before (1998-2004) and after (2004-97 

2009) Typhoon Songda using stereoscopy. We also used urgent survey data collected by Hokkaido 98 

Prefecture in the aftermath of the Songda typhoon to accurately identify the damaged area. We 99 

defined windthrow patches as grid cells of 25 m × 25 m with > 80 % canopy loss. Easy Stereo View 100 

(PHOTEC Co., Ltd.) was used for stereoscopy, and QGIS2.8.4 (QGIS Development Team, 2015) and 101 

ArcMap10.0 (Esri) were used to create shapefiles of windthrow patches.  102 

Preparing the dataset 103 

Six meteorological, topographical, and forest structural variables, i.e., maximum wind speed (m s-1), 104 

topographic exposure index (TOPEX, Miller et al. 1987), slope angle (˚), tree density (n ha-1), broad-105 

leaved tree density (n ha-1), and stand height (m), were selected and calculated (Table 2, Figure 2) to 106 

be tested for a relationship to wind disturbance. These are crucial factors identified by previous studies 107 
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(Nakajima et al., 2009; Kramer et al., 2001; Mitchell et al., 2001) focused on windthrow risk 108 

assessments. 109 

The meteorological simulations for Typhoon Songda were conducted by Ito et al. (2016) with the use 110 

of a regional meteorological model, the Weather Research and Forecasting (WRF) model (Skamarock 111 

et al. 2008), which was dynamically downscaled for the three two-way nested domains that covered 112 

the Japanese islands and surrounding areas in 9-km grid intervals, the Japanese main islands in 3-km 113 

grid intervals, and Hokkaido in 1-km grid intervals. Typhoon Songda is considered as a worst-case 114 

scenario for wind disasters in Hokkaido (Takemi et al., 2016). In the present study, the WRF model was 115 

used to simulate local-scale strong winds due to Typhoon Songda by further downscaling from a 1-km 116 

grid domain to local-scale domains in 200-m grid intervals to focus on the current study areas. We 117 

applied the two-way nesting technique between the parent (1 km) and child (200 m) domains; hence, 118 

simulations were conducted for the four domains from the 9-km grid domain down to the 200-m grid 119 

domain. Then, the maximum wind speeds from 0300 UTC on 7 September to 0000 UTC on 9 September 120 

were obtained from the time series of the surface wind speeds recorded for each grid cell in the 121 

simulation domains. 122 

The TOPEX and slope angle were calculated using a digital elevation model with 10-m resolution 123 

(Geospatial Information Authority of Japan) by QGIS 2.8.4 (QGIS Development Team, 2015) and GRASS 124 

6.4 (GRASS Development Team, 2012). The distance-limited TOPEX is the sum of the elevation angles 125 

(above the horizon) or depression angles (below the horizon) at specified intervals on straight lines of 126 

length that radiate out from a certain point in 8 directions. A positive TOPEX value indicates a sheltered 127 

topography, a value of 0 indicates a flat plain, and a negative value indicates an exposed topography. 128 

In our study, we set the straight line as 2000 m and the interval as 100 m based on Lanquaye-Opoku 129 

and Mitchell (2005) and Mitchell et al. (2001). 130 
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Data that were first recorded in 2003, the density of all trees, the density of broad-leaved trees only, 131 

and stand height given per forest compartment, i.e., management unit, were obtained from a forest 132 

inventory, which has been updated annually since by the Hokkaido Forest Management Bureau. For 133 

the sites without data, these variables were estimated using the field survey data by the Forest Science 134 

Centre for Northern Biosphere in Hokkaido University on representative samples of forest identified 135 

by aerial photographs. Forests identified in the aerial photographs were classified into six categories 136 

using e-Cognition software (Trimble Inc.): dense, middle, and sparse coniferous forest and dense, 137 

middle, and sparse mixed forest. Data from a standard quadrat from any forest category were 138 

universally applied to other areas in the same category. 139 

Polygons of windthrow areas and forest structures (density of all/broad-leaved trees and stand 140 

heights), grid cells of topographic data (TOPEX and slope angle) and maximum wind speeds were 141 

divided into 25 m × 25 m cells (Figure 2). 142 

Our datasets contained a total of 227,316 grid cells (43,409 in plantation sites + 183,907 in natural 143 

mixed forest sites) measuring 25 m × 25 m. In the Abies plantation sites, 1,948 cells were defined as 144 

“windthrow”, and these were equivalent to 4.49 % of the total Abies plantation cells. In the natural 145 

mixed forest sites, 1,640 cells were defined as “windthrow”, and they accounted for 0.89 % of the total 146 

natural mixed forest cells (Table 2). 147 

Statistical analysis 148 

Modelling approaches for assessing windthrow risk 149 

Various models accounting for windthrow risk have been developed to facilitate forest management. 150 

The approaches are roughly divided into two categories: mechanistic modelling and empirical 151 

modelling. Recent progress in the development of mechanistic modelling has primarily occurred in 152 

Europe and North America (e.g., DuPont et al., 2015; Gardiner et al., 2008). The advantages of 153 
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mechanistic modelling include being able to perform universal evaluations without information on real 154 

wind-damaged forests because such modelling is based on physical processes (Kamimura et al., 2015; 155 

Mitchell and Ruel, 2015). Conversely, some disadvantages of mechanistic modelling have also been 156 

noted. For example, it requires information on the material strength of each species obtained by 157 

destructive testing and wind condition information based on high-resolution simulations. Therefore, 158 

difficulties are observed when targeting forests located in complex topographies, where local 159 

simulations of wind conditions are difficult and natural mixed forests present diverse structures and 160 

various tree species (DuPont et al., 2015). 161 

On the other hand, empirical modelling, which has been widely used for the assessment of windthrow 162 

risk, is a suitable approach to examining the relative effects of various factors on windthrow 163 

(Bonnesoeur et al., 2013; Kamimura et al., 2015). One of the major empirical models, logistic regression 164 

(e.g., Albrecht et al., 2012; Hanewinkel et al., 2014; Valinger and Fridman, 1997, 2011), has been 165 

commonly used because it is effective in analysing the factors that influence wind damage, and this 166 

modelling process can be performed without choosing a target scale, from a single tree level to a 167 

regional level. The weakness of the logistic regression model is, however, that its ability to predict wind 168 

damage decreases when there is a complicated nonlinear pattern between the variables. The random 169 

forest (RF) (Breiman, 2001) machine learning method is a powerful tool for variable selection, and it is 170 

particularly suited to handling prediction problems that include nonlinear relationships between 171 

predictor and response variables and complex interactions between variables (Sandri and Zuccolotto, 172 

2006; Strobl et al., 2007). RF combines many classification trees to produce more accurate 173 

classifications. The by-products of the RF calculations include measures of variable importance and 174 

similarity among data points that may be used for clustering, multidimensional scaling, graphical 175 

representation, and missing value imputation (Cutler et al., 2007). This method permits the 176 

development of a flexible model with high-dimensional interactions among explanatory variables, 177 

nonlinear responses and high prediction performance without overfitting. Ecological applications of RF 178 
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have shown its effectiveness on habitat analysis (Garzón et al., 2006; Prasad et al., 2006) and 179 

windthrow risk assessment (Seidl et al., 2011). 180 

We used empirical modelling to pursue our objectives, i.e., identifying the factors that cause wind 181 

damage in natural mixed forests with various tree species and in Abies plantations in complex 182 

topographies where precise wind conditions are hard to simulate. Then, we selected RF to model the 183 

windthrow probability based on our dataset, which includes many variables with possibly complex 184 

nonlinear relationships. 185 

Windthrow modelling by RF and model validation 186 

We generated a subsample to avoid overfitting the model to large forest compartments by applying 187 

the RF method to model windthrow occurrence. First, we removed forest compartments with less than 188 

30 grid cells. Next, we generated a subsample from the data and maintained a virtually identical 189 

windthrow ratio (number of windthrow cells / total number of cells) in each forest compartment. 190 

The subsequent windthrow model used the resultant subsample (n = 46,950 grid cells). The forest type 191 

(plantation or natural) and study sites (as a nominal variable, n = 8) were incorporated into the model 192 

along with six continuous variables (maximum wind speed, TOPEX, slope angle, density of all trees, 193 

density of broad-leaved trees, and tree height). The plot matrix of the explanatory variables area is 194 

shown in Figure S1. As hyperparameters (i.e., parameters of model construction) of RF, ntree (the 195 

number of decision trees to grow) was set to 500 and mtry (the number of variables randomly sampled 196 

as candidates at each split) was set to 3. The variable importance was evaluated as the mean decrease 197 

in accuracy after permutations of each variable. The variables with higher “mean decrease in accuracy” 198 

values are more important for the classification by RF. When implementing RF models and calculating 199 

the importance of explanatory variables, variable selection is biased in favour of explanatory variables, 200 

with more potential cutpoints (Strobl et al., 2009). To avoid this variable selection bias, the cforest 201 
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function in the party package (Hothorn et al., 2006; Strobl et al., 2008; Strobl et al., 2007) of R was 202 

used in the RF model. We also represented partial dependence plots (Friedman 2001) for six 203 

continuous variables that showed the dependence of the probability of occurrence on one predictor 204 

variable after averaging out the effects of the other predictor variables in the model. We depicted 205 

them for plantation and natural mixed forest separately as the calculated result of the 2-way marginal 206 

effect of windthrow prediction by RF. 207 

A 10-fold cross-validation was conducted, and several model performance indices were calculated by 208 

the R cv.models package (Oguro 2016). A threshold value of windthrow occurrence was determined 209 

with the coords function in the R pROC package (Robin et al., 2011). This threshold is based on Youden’s 210 

J statistics (sensitivity + specificity –1: Youden, 1950) and divides windthrow occurrence by non-211 

occurrence. The performance indices were accuracy, sensitivity, specificity, positive predictive value, 212 

negative predictive value, Kappa, mean squared sensitivity error, informedness (as Youden’s J 213 

statistics; Powers, 2011), the Matthews correlation coefficient (MCC; Matthews, 1975), and AUC (area 214 

under the curve) of the receiver operating characteristic (ROC; Swets, 1973). True positive represents 215 

a case where both the actual and predicted values are positive. False positive represents a case where 216 

the actual value is negative, but the prediction is positive. False negative represents a case where the 217 

actual value is positive but the prediction is negative. True negative represents a case where both the 218 

actual and predicted values are negative. These performance indices were then compared to indices 219 

from previous studies. 220 

The analyses were conducted with R version 3.4.1 (R Core Team, 2017). 221 

Results 222 

Modelling and validation of windthrow probability 223 

Most of the model performance indices (accuracy = 0.88, sensitivity = 0.84, specificity = 0.88, positive 224 
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predictive value = 0.11, negative predictive value = 0.997, Kappa = 0.17, informedness = 0.72, MCC = 225 

0.28, and AUC = 0.93) were reasonably high compared with that of previous studies (Table S1). 226 

Prediction of windthrow probability 227 

Figure 3 shows the importance of the predictor variables from RF classifications used for 228 

predicting windthrow. Conspicuously significant variables related to windthrow were the 229 

study site and stand height, followed by the maximum wind speed, tree density, and forest 230 

type. The influence of slope angle, broad-leaved tree density, and TOPEX were smaller than 231 

that of other factors. 232 

Figure 4 (a)-(f) shows the partial dependence plots for continuous predictor variables for RF 233 

predictions of the windthrow occurrence in plantations and natural mixed forests. In most of 234 

the domain, the windthrow probability of plantations was higher than that of natural mixed 235 

forests at the same value of each explanatory variable. In plantations, the windthrow 236 

probability monotonically increased with increasing maximum wind speed and tree density 237 

but monotonically decreased with increasing TOPEX, slope angle, and broad-leaved tree 238 

density. Stand height showed a high probability of windthrow in the range from 8 m to 18 m. 239 

The behaviours of partial plots in the plantations for most variables except wind speed and 240 

broad-leaved tree density were nearly consistent with that of the natural mixed forests.  241 

Discussion 242 

Abies plantations showed consistently higher windthrow ratios than natural mixed forests 243 

under all conditions (Figure 4), which confirms that Abies plantations are more vulnerable to 244 

catastrophic winds than natural mixed forests. However, the effects of most factors on 245 
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windthrow were not different between the Abies plantations and natural mixed forests, 246 

indicating that these factors influence the risk of wind damage similarly in both types of forest 247 

(Figure 4). 248 

 The stand height and density of all trees, which are components of the forest structure, were 249 

major influential factors for wind damage along with maximum wind speed (Figure 3), 250 

suggesting that the windthrow probability is highly dependent on the behaviour of wind inside 251 

the forests. In general, the greatest differences in forest structure between plantations and 252 

natural forests are the age and size distribution of trees and the presence of previous gaps 253 

created in the canopy cover. After reviewing 119 reports on wind damage, Everham and 254 

Brokaw (1996) noted that even-aged stands generally had greater damage than uneven-aged 255 

stands and uneven-aged stands were often older, composed of species mixes, and often of 256 

natural rather than planted origin (Mitchell, 2013). The vulnerability of plantations to 257 

catastrophic winds appeared to be due to their even-aged size structure (Everham and Brokaw, 258 

1996) according to the authors’ insights. Based on empirical data from silvicultural 259 

experiments, Pukkala et al. (2016) analysed the probability of wind damage to the inner 260 

portions of stands that had experienced several storm events. They suggested that stand 261 

structures with a range of tree sizes can decrease the probability of windthrow because they 262 

decrease wind speed in the inner parts of stands. Previous gaps created by thinning also affect 263 

damage susceptibility. Gardiner’s experiments (1997) on the effects of different thinning 264 

patterns on the subsequent stability of trees showed that the risk of destabilization increases 265 

significantly with gap size because the loading on the exposed trees is increased with gap size.  266 
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Accordingly, plantations with even-sized structures and thinning gaps enable strong winds to 267 

enter and pass through the forests, which might easily cause swaying and overturning of trees 268 

(Schütz et al., 2006). Our data on the behaviour of windthrow probability in relation to stand 269 

height and tree density also support this finding. Abies plantations in the range from ca. 8 to 270 

18 m stand height or higher densities (> 1,200/ha), which are at high risk of windthrow (Figure 271 

4 (d) (f)), generally comprise a single canopy and are at stand ages that experience occasional 272 

thinning operations (Abe, 1989). The even-sized structure of Abies plantations with thinning 273 

gaps might allow strong winds to penetrate the forest without losing speed, therefore leading 274 

to high windthrow probability. 275 

The slope angle and TOPEX, which are topographic factors, had limited effects on wind 276 

damage in our study (Figure 3), although previous studies have shown how wind direction and 277 

topography interact to determine fine-scale variability in the location of damage (Foster and 278 

Boose, 1992; Mitchell, 2013). When the valley line and wind direction are parallel, the wind 279 

converges along the terrain and damage occurs along the valley floor (Ruel et al., 1998). When 280 

the wind direction is perpendicular to the valley line, the windthrow occurs on the ridge since 281 

valley floors are sheltered (Everham and Brokaw, 1996). A higher probability of windthrow in 282 

locations with a gentle slope angle and exposed topography (Figure 4 (b) (c)) mean that the 283 

forests on the ridges were highly disturbed in our case. Therefore, if plantations on ridges have 284 

the highest risk of windthrow, it may be possible to reduce risk by selecting mountain hillsides 285 

for planting. 286 

A possible explanation for the study site being the most influential factor on windthrow is that 287 

the wind direction, soil type, and disturbance history are unique to each site. Another possible 288 
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reason is the biased distribution of the natural mixed forest study sites towards the west 289 

(Figure 1), which was inevitable because natural forests that meet the study conditions are 290 

primarily distributed in the western part of Hokkaido and are not uniformly distributed. 291 

Additional efforts to mitigate the effect of the biased distribution of study sites, such as 292 

targeting other typhoon events that took different paths or further developing the analysis 293 

method, will be necessary for more universal modelling in all regions. 294 

Implications for management  295 

The importance of stand structure in windthrow vulnerability demonstrates the importance 296 

of appropriate forest management even in mountainous areas. We might decrease the risk of 297 

windthrow by refraining from generating large gaps, performing thinning and increasing the 298 

structural complexity of plantations. Technical developments making those management 299 

options possible are needed. Given the situation in Japan, where forestry labour is declining 300 

and plantation forests are difficult to manage (Kawasaki, 2016), reconversion of plantations to 301 

a more natural forest structure is an option for forest management. The plantations in 302 

locations with high windthrow risk should be prioritized in the future for natural forest 303 

restoration from the viewpoint of efficient forest management because the risk of extreme 304 

typhoons is expected to increase throughout this century (Yoshida et al, 2017). Our model is 305 

based on the effects of only one typhoon in a relatively small area, thus limiting its applicability 306 

to other situations. The relationships between windthrow occurrences and their explanatory 307 

variables are complex and differ in response to numerous factors, including typhoon tracks, 308 

wind direction against slopes, and forest types. Therefore, additional case studies should be 309 
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performed to better understand the trends in climate-change effects on windthrow risk in 310 

Japan. 311 
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Table and figure captions 478 

Figure 1 Typhoon track (left) and study site locations (right). Hokkaido is the area enclosed by 479 

a dotted line, which includes plantation forest sites (□) and natural forest sites (■). 480 

Figure 2 Preparing the dataset. 481 

Figure 3 Variable importance plots for predictor variables from random forest (RF) 482 

classifications for predicting windthrow. Abbreviations: Forest type, artificial plantation or 483 

natural forest. 484 

Figure 4 Partial dependence plots for selected predictor variables for random forest (RF) 485 

predictions of the windthrow occurrence. (a) Maximum wind speed (m s-1), (b) TOPEX, (c) slope 486 

angle (˚), (d) tree density (n ha-1), (e) broad-leaved tree density (n ha-1), and (f) stand height 487 

(m). Each plot is drawn only in a range or ranges of the subsample used for modelling. 488 

Table 1 Annual mean temperature, precipitation, and soil type in each site (statistics from 489 

1988 to 2010). 490 

Table 2 Properties of the study sites. 491 

Supplementary Table  492 

Table S1 Model performance indices of the present study and previous studies. No.0 is the 493 

reference case that all samples are correctly estimated by a model.  494 

Supplementary Figure  495 



23 

 

 

Figure S1 Plot matrix of the eight explanatory variables. The figure was created with the 496 

ggpairs function of ggplot2 package (Wickham, 2009) in R. Colours (magenta or cyan) 497 

represent the forest types (a natural forest or an artificial plantation). Numbers in the right 498 

triangular matrix represent the Pearsonʼs correlation coefficient. The density plot (for a 499 

numerical variable) or ratio (for a categorical variable) of each variable is shown on the 500 

diagonal. Either a histogram or a scatterplot and linear regression line are shown below the 501 

diagonal for each variable pair. Abbreviations: w_max, maximum wind speed (m s-1); topex, 502 

TOPEX; slope, slope angle (°); density, tree density (n ha-1); bl_dens, broad-leaved tree density 503 

(n ha-1); height, stand height (m); Forest_type, artificial plantation or natural forest; region, 504 

study sites. 505 

  506 
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Table 1 Annual mean temperature, precipitation, and soil type in each site (statistics from 507 

1988 to 2010). 508 

 509 

  510 

  

Forest type
Annual mean
temperature

(°C)

Annual mean
precipitation

(mm)
Soil type

P1 Ohmu 5.7 865

P2 Bifuka 5.5 1,143

P3 Niseko 7.6 1,203

P4 Hakodate 8.4 1,448

N1 Nakagawa 5.5 1,225

N2 Abashiri 4.8 702

N3 Tsubetsu 5.9 790

N4 Tokachi 3.7 1,315

Study site

Plantation
forests

Natural
forests

brown forest
soil

brown forest
soil/andosol

brown forest
soil

andosol
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 511 

Table 2 Properties of the study sites.  512 

 513 

 514 

 515 

 516 

mean min max mean min max mean min max mean min max mean min max mean min max

P1 9,058 2.8 28 14 44 64 -18 179 19 2 48 538 0 2240 46 0 700 11 4 22
P2 13,635 1.0 25 16 44 43 -29 140 17 1 46 531 60 2100 108 0 1000 11 4 21
P3 9,742 10.4 34 22 48 75 -5 174 21 3 48 559 100 2450 69 0 850 10 3 21
P4 7,218 5.5 36 22 53 79 -16 214 23 2 56 887 110 2880 10 0 600 10 4 21
N1 42,059 0.1 31 17 51 65 -47 203 21 0 54 244 0 323 0 0 1 20 0 22
N2 11,171 0.4 36 17 66 78 -69 276 22 1 58 1256 0 1732 675 0 1011 21 0 23
N3 67,953 1.0 23 10 43 63 -47 227 20 0 57 629 0 1800 300 0 1000 16 14 18
N4 39,667 2.1 29 11 67 89 -72 208 23 0 60 1681 0 6600 862 0 3800 13 0 17

Density BL_Density Height

WIND, maximum wind speed (m s-1); TOPEX, topographic exposure index; Slope, slope angle (°); Density, tree density (n  ha-1); BL_density, broad-leaved tree

density (n  ha-1); Height, stand height (m)

Study
site

Total
number of
grid cells

Percentage of
grid cells of

windthrow (%)

WIND TOPEX Slope



Fig. 1 – Typhoon track (left) and study site locations (right). Hokkaido is the 

area enclosed by a dotted line, which includes plantation forest sites (□) 
and natural forest sites (■).
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Category Variables

Windthrow - Damaged  or not damaged

Meteorological - Maximum wind speed (m s-1)

Topographical
- TOPEX
- Slope angle (°)

Forest structure

- Tree density (n ha-1)

- Broad leaved tree density (n ha-1)

- Stand height (m)

Forest type - Plantation or natural forest

Region - P1, P2, P3, P4, N1, N2, N3, N4

Fig. 2– Preparing the dataset



Fig. 3 - Variable importance plots for predictor variables from random forest (RF) classifications 
for predicting windthrow. Abbreviations: Forest type, artificial plantation or natural forest.

Study sites
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Fig. 4 - Partial dependence plots for selected predictor variables for random forest predictions of the 
windthrow occurrence. (a) maximum wind speed (m s-1), (b) TOPEX, (c) slope angle (˚), (d) density of 
trees (n ha-1), (e) density of broad-leaved trees (n ha-1), and (f) stand height (m). Each plot is drawn only 
in a range or ranges of the subsample, which was used for modeling.
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Table S1 : Model performance indices of the present study and previous studies. No.0 is 
the reference case that all samples are correctly estimated by a model.

Correct

classifi-

cation

(accuracy

) =

(a+d)/N

Sensi

tivity =

a/(a+c)

Specifi-

city =

d/(b+d)

Positive

Predictive

Value

(PPV) =

a/(a+b)

Negative

Predictive

Value

(NPV) =

d/(c+d)

Kappa

Mean

squared

sensitivity

error

(MSSE) =

0.5((1-

Sensitivity

)^2+(1-

Specificity

)^2)

Informedn

ess =

Sensitivity

+

Specificity

-1

Matthews

correlatio

n

coefficient

(MCC)

Areas

under the

curve

(AUC) of

ROC

0 The reference 100 50 0 0 50 0.50 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00

1
The present

study
Random forest 10-fold CV 46950 672 5489 128 40661 0.02 0.03 0.88 0.84 0.88 0.11 0.997 0.17 0.02 0.72 0.28 0.93

2
Temporary plots from  the

same county
429 12 298 3 116 0.03 0.30 0.80 0.28 0.04 0.97 0.01 0.28 0.08 0.03

3
Permanent plots from  the

county of Kalmar
138 3 42 4 89 0.05 0.67 0.43 0.68 0.07 0.96 0.03 0.21 0.11 0.05

4
Temporary plots from  the

same county
429 8 110 7 304 0.03 0.73 0.53 0.73 0.07 0.98 0.06 0.14 0.27 0.11

5
Permanent plots from  the

county of Kalmar
138 7 131 0 0 0.05 0.05 1.00 0.00 0.05 NA 0.00 0.50 0.00 NA

6
Temporary plots from  the

same county
429 9 139 6 275 0.03 0.66 0.60 0.66 0.06 0.98 0.05 0.14 0.26 0.10

7
Permanent plots from  the

county of Kalmar
138 5 52 2 79 0.05 0.61 0.71 0.60 0.09 0.98 0.07 0.12 0.32 0.14

8 145 194 123 738 0.22 0.74 0.54 0.79 0.43 0.86 0.30 0.13 0.33 0.31

9 95 207 77 821 0.14 0.76 0.55 0.80 0.31 0.91 0.27 0.12 0.35 0.28

10
Kramer et al.

(2001)

Spatially explicit logistic

regression

Zarembo Island (external

validation)
0.21 0.72 0.44

11 Storm  Lothar 422 27 18 129 248 0.37 0.65 0.17 0.93 0.60 0.66 0.12 0.34 0.11 0.16

12 Storm  Lothar 422 26 15 130 251 0.37 0.66 0.17 0.94 0.63 0.66 0.13 0.35 0.11 0.18

13 Storm  Vivian 409 27 62 41 279 0.17 0.75 0.40 0.82 0.30 0.87 0.19 0.20 0.22 0.19

14 Storm  Vivian 409 34 88 34 253 0.17 0.70 0.50 0.74 0.28 0.88 0.18 0.16 0.24 0.20

15 0.79

16 0.83

17 0.85

18
Stepwise logistic

regression
0.81

19
Peterson

(2004)

Computer simulation

based on coefficients

from logistic regression

Test subplots or trees in

five sites

3180

trees
0.68-0.90

20 Newral network 0.29 0.50 ~ 0.75 ~ 0.85 >0.40 0.19 ~ 0.25

21 Logistic regression 0.75 0.89 0.39 0.19 0.29

22 Newral network 0.19 <0.80 ~ 0.90 ~ 0.30 0.25 ~ 0.20

23 Logistic regression 0.81 0.96 0.18 0.34 0.14

24 Newral network 0.40 0.76 0.81 0.82 0.03 0.63

25 Logistic regression 0.70 0.50 0.86 0.14 0.36

26 Newral network 0.23 0.73 0.67 0.75 0.09 0.42

27 Logistic regression 0.84 0.67 0.93 0.06 0.60

28 0.60 0.72

29 0.74

32
W eights of evidence

(W ofE)
0.78

33
Multivariate logistic

regression
0.79

34
Schindler et

al. (2012)

W eights of evidence

(W ofE)
0.73

35
Generalized linear m ixed

models (GLMM)
0.69-0.73

36 W eibull-based model 0.62-0.71

37
Pasztor et al.

(2015)

Binom ial generalized

linear m ixed model

(GLMM)

0.90 0.26 0.95

Model performance metrics

No. Literature Modeling method
Cross validation (CV)

method
Total N

True

positive

(a)

False

positive

(b)

False

negative

(c)

True

negative

(d)

Prevalenc

e =

(a+c)/N

Cutoff

value

Valinger &

Fridman

(1997)

Stepwise logistic

regression with logit

function

0.025

M itchell et al.

(2001) Forest
Logistic regression 60%  train 40%  test 1200

Dobbertin

(2002)

Classification and

regression trees (CART)

Lindemann &

Baker (2002)

Classification and

regression trees (CART)

Hanewinkel et

al. (2004)

1600

stands

Hanewinkel

(2005)

149

divisions

Scott &

M itchell

(2005) Forest

Stepwise logistic

regression
2-fold CV

1215

trees from

234 plots

4-fold CV

0.20

Schindler et

al. (2009) 338 training points from the

617 wind-damaged areas

Bonnesoeur

et al. (2013)

Leave-one-out cross

validation

384 trees

from 51

plots



Figure S1: Plot matrix of the eight explanatory variables. 
The figure was created with ggpairs function of ggplot2 package (Wickham, 2009) in R. Colors (magenta or cyan) represent forest types (a natural forest or an artificial plantation). Numbers in 
the right triangular matrix represent the Pearsonʼs correlation coefficient. The density plot (for a numerical variable) or ratio (for a categorical variable) of each variable is shown on the 
diagonal. A histogram is, or a scatterplot and the linear regression line are, shown below the diagonal for each variable pair. Abbreviations: w_max, maximum wind speed (m s-1); topex, TOPEX; 

slope, slope angle (°); density, tree density (n ha-1); bl_dens, broad-leaved tree density (n ha-1); height, stand height (m); Forest_type, artificial plantation or natural forest; region, study sites.


	Forestry-2017-190-R3_HUSCUP.pdf
	Fig_Huscup
	Fig. 1 – Typhoon track (left) and study site locations (right). Hokkaido is the area enclosed by a dotted line, which includes plantation forest sites (□) and natural forest sites (■).
	スライド番号 2
	スライド番号 3
	スライド番号 4
	Table S1 : Model performance indices of the present study and previous studies. No.0 is the reference case that all samples are correctly estimated by a model.
	Figure S1: Plot matrix of the eight explanatory variables. �The figure was created with ggpairs function of ggplot2 package (Wickham, 2009) in R. Colors (magenta or cyan) represent forest types (a natural forest or an artificial plantation). Numbers in the right triangular matrix represent the Pearsonʼs correlation coefficient. The density plot (for a numerical variable) or ratio (for a categorical variable) of each variable is shown on the diagonal. A histogram is, or a scatterplot and the linear regression line are, shown below the diagonal for each variable pair. Abbreviations: w_max, maximum wind speed (m s-1); topex, TOPEX; slope, slope angle (°); density, tree density (n ha-1); bl_dens, broad-leaved tree density (n ha-1); height, stand height (m); Forest_type, artificial plantation or natural forest; region, study sites.


