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Abstract

Introduction: Wind speed probability at a site has to be modeled for evaluating the energy generation potential of

a wind farm. Analytical computation of wind turbine capacity factor at the planning stage of a wind farm is very

crucial. Thus, the comparison of Weibull parameters estimation methods and computation of wind turbine capacity

factor are the focus of this paper.

Case description: Soda wind farm used in this case study is located in the Jaisalmer district of western Rajasthan in

India. Modeling of wind speed probability and power curve of wind turbines installed at Soda site were done for

analytically estimating the capacity factor of wind turbine. Estimated capacity factors were then compared with the

measured values of wind farm for validation of results.

Discussion and evaluation: Four numerical methods namely graphical, empirical, modified maximum likelihood,

and energy pattern factor were used for month-wise Weibull parameters estimation at hub height of 65 m. Power

curve of the wind turbine installed at site was modeled using eighth-degree polynomial. Coefficients of polynomial

were calculated from the combined use of linear least square method and QR decomposition using Gram-Schmidt

orthogonalization method.

Conclusions: Results show that the percentage error in annual capacity factor estimation using Weibull

parameters estimated from graphical, empirical, modified maximum likelihood, and energy pattern factor

methods were +9.98%, −1.59%, −1.22%, and −1.29%, respectively. Annual capacity factor that was estimated

using the Weibull parameters calculated from modified maximum likelihood method matched best with the

measured values. Graphical method gave the most erroneous results.
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Background
Wind power of a site changes with the change in seasons

and thus affects the capacity factor of wind turbines. Wind

speed distribution at hub height has to be month-wise

modeled for estimating the influence of atmospheric pa-

rameters on wind power. Wind speed probability model-

ing and estimation of wind turbine capacity factor for a

site are investigated by many researchers. Jangamshetti &

Rau (1999, 2001) used normalized power curves as a tool

for identification of optimum wind turbine generator pa-

rameters. Rehman and Ahmad (2004) analyzed wind data

for five coastal locations. Rocha et al. (2012) explained the

analysis and comparison of seven numerical methods for

finding the parameters for Weibull probability distribu-

tion. Jowder (2009) presented the statistical study of wind

speed and power at various heights. EL-Shimy (2010)

studied the problem of site matching of wind turbine

generator through improved formulation of capacity factor.

Huang and Wan (2011, 2012) determined a modular ap-

proach to enhance capacity factor computation of wind tur-

bine generators. Albadi and El-Saadany (2009, 2010, 2012)
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proposed a novel method for estimating the capacity factor

of variable speed wind turbines. Chang et al. (2003)

investigated and compared monthly wind characteristics

and monthly wind turbine characteristics for four meteoro-

logical stations with high winds. Chang and Tu (2007)

analyzed monthly energy output and monthly capacity

factor of a wind farm. Ditkovich et al. (2012) proposed a

method for estimating capacity factor for stall and pitch-

regulated wind turbines. Hu and Cheng (2007) presented

a method for determining sites and wind turbine gener-

ator pairing.

This paper presents the month-wise graphical compari-

son between measured wind speed frequency and Weibull

wind speed probabilities estimated using four numerical

methods. It also uses a polynomial of eighth degree for

modeling wind turbine power curve. A method for esti-

mating the nth degree polynomial coefficients of wind

turbine power curve with combined use of linear least

square and QR decomposition using Gram-Schmidt or-

thogonalization through MATLAB is also presented. Coeffi-

cients of eighth-degree polynomial are used in the capacity

factor estimation from generic model given by Albadi

(2010). Estimated capacity factors are compared with

the measured capacity factor of a wind turbine working at

Soda site, for validation of results.

Case description
Details of the wind farm studied

Wind farm located at Soda site in the Thar desert region

of western Rajasthan, India is selected for this study. It is

in Jaisalmer district where May and June are hottest and

January is the coldest month. Rainfall is very low and mon-

soon winds that bring rains in India bypass this region.

Wind farm has twenty 1.25-MW capacity Suzlon-S66

turbines as shown in Figures 1 and 2. The total capacity

of wind farm is 25 MW and turbines are having hub

height of 65 m, cut-in speed vc of 3 m/s, rated speed vr of

14 m/s, and cut-off speed vf of 22 m/s (http://www.

suzlon.com/pdf/s66%20product%20brochure.pdf. Accessed

09 September 2014). Wind and meteorological data

measurement mast of 65-m height at Soda wind farm is

shown in Figure 3. Its specific position in the wind farm

is marked in Figure 2.

Wind data modeling and analysis

Mean wind speed and standard deviation of grouped data

are defined by Jangamshetti and Rau (1999), Manwell et al.

(2009), and Bird (2003) as:

�v ¼

Xn

i¼1
fm við Þ � við Þ

Xn

i¼1
fm við Þ

ð1Þ

σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xn

i¼1
fm við Þ⋅ vi−�vð Þ2

Xn

i¼1
fm við Þ

v

u

u

t ð2Þ

where �v is the mean wind speed in meter per second,

σ is the standard deviation of wind speed in meter per

second, vi is the wind speed in meter per second at ith

bin midpoint, fm(vi) is the measured frequency of wind

speed for ith bin, and n is the number of wind speed

bins.

Figure 1 Suzlon S-66 wind turbine of 1.25 MW at the wind farm.

Figure 2 Locations of wind turbines and measurement mast in

the 25-MW wind farm at Soda.
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Weibull probability density function and its cumulative

distribution function, used for describing the wind speed

frequency distribution of a site, are defined by Masters

(2004) as:

f vð Þ ¼
k

c

v

c

� �k−1

exp −
v

c

� �k
� �

ð3Þ

F vð Þ ¼ 1− exp −
v

c

� �k
� �

ð4Þ

where f(v) is the Weibull wind speed probability density

function at hub height, F(v) is the Weibull cumulative

distribution function, v is the wind speed in meter per

second, k is the shape parameter at hub height, and c is

the scale parameter at hub height.

Power available in the wind (Pw(v)) is expressed as

Pw(v) = 0.5ρAv3, where ρ is the air density in kilogram

per cubic meter, A is the rotor swept area in square

meter, and v is the wind speed in meter per second.

Wind power density (WPD) of a site that is based on

Weibull distribution is defined by Jowder (2009), Huang

and Wan (2012), and Chang et al. (2003) as:

WPD ¼

Z ∞

0

Pw vð Þf vð Þdv ¼ 0:5ρc3Γ 1þ 3=kð Þ ð5Þ

where Γ is a gamma function.

Root mean square error (RMSE) is based on the variation

between measured and estimated values. RMSE of wind

speed probability is defined by Rocha et al. (2012) and Bird

(2003) as:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

Xn

i¼1
fm við Þ−fc við Þð Þ2

� �

s

ð6Þ

where fm(vi) is the measured wind speed frequency for

ith bin, fc(vi) is the estimated Weibull wind speed prob-

ability, vi is the wind speed at ith bin midpoint, and n is

the number of observations/bins. The percentage error

between measured and estimated value is calculated using

expression:

Error % ¼
measured value−estimated value

measured value
� 100:

ð7Þ

Estimation of Weibull scale and shape parameters

Graphical method (GM) (Johnson 1978) uses Weibull cu-

mulative distribution function and least square approxi-

mation for calculating the scale and shape parameters.

Using Equation 4 and on taking twice the logarithm of

each side, it becomes a form of straight line equation writ-

ten as y = ax + b where y = ln[−ln(1 − F(v))], a = k, x =

ln(v), and b = − k ln(c). For n pairs of (x, y) where all sum-

mations are from 1 to n, the values of a and b are

expressed as:

a ¼

X

xy −

X

x
X

y

n

X

x2 −

X

x
� �2

n

ð8Þ

b ¼ �y − a�x ¼
1

n

X

y −
a

n

X

x: ð9Þ

Shape and scale parameters are then expressed as k = a

and c = exp(−b/k).

Empirical method (EM) uses shape and scale parameter

defined by Jangamshetti and Rau (1999) and Rocha et al.

(2012) as:

k ¼ σ=�vð Þ−1:086 ð10Þ

Figure 3 Measurement mast of 65-m height at Soda wind farm.
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c ¼
�v

Γ 1þ 1
k

	 
 : ð11Þ

Modified maximum likelihood (MML) method uses

frequency distribution of wind speed. Shape parameter

is calculated by using numerical iterations and then scale

parameter is obtained by solving equation explicitly. Value

of shape parameter is around 2 for majority of sites and is

a good initial estimate for iterative process. Shape and

scale parameters are defined by Rocha et al. (2012) as:

k ¼

Xn

i¼1
vki ln við Þf við Þ

Xn

i¼1
vki f við Þ

−

Xn

i¼1
ln við Þf við Þ

f v≥0ð Þ

" #−1

ð12Þ

c ¼
1

f v≥0ð Þ

Xn

i¼1
vi

k f við Þ

� �

1

k

ð13Þ

where vi is the wind speed at ith bin midpoint, n is the

number of bins, f(vi) is the frequency of wind speed

occurrence in bin i, and f(v ≥ 0) is the probability of wind

speed ≥ 0.

Energy pattern factor (EPF) is expressed as mean of

the sum of cubes of all individual wind speed considered

in a sample, divided by the cube of mean wind speed of

sample (Centre for Wind Energy Technology 2011):

EPF ¼
1

�vð Þ3
�

Xn

i¼1
v3i =n

� �

ð14Þ

where vi is the wind speed in meter per second for ith

observation, n is the number of wind speed samples, and
�v is the monthly mean wind speed. The monthly wind

power density (WPD) is given by:

WPD ¼ 0:5ρ
Xn

i¼1
v3i =n

� �

ð15Þ

where ρ is the monthly mean air density at hub height

in kilogram per cubic meter. By substituting Equation 15

in Equation 14, EPF is expressed as:

EPF ¼
1

�vð Þ3
�

WPD

0:5� ρ

� �

: ð16Þ

Shape parameter is calculated from EPF parameter using

an expression defined by Rocha et al. (2012) as:

k ¼ 1þ
3:69

EPFð Þ2
: ð17Þ

Scale parameter is then calculated by using the expres-

sion given in Equation 11.

Polynomial model of power curve for pitch-regulated

wind turbines

Relation between wind turbine electric power output

(Pe(v)) and wind speed (v) for pitch regulated wind turbines

are defined by Albadi (2010) as:

Pe vð Þ ¼ Pr �
0; v < vc or v > vf

	 


Pcinr vð Þ; vc ≤ v ≤ vrð Þ
1; vr ≤ v ≤ vf

	 


8

<

:

ð18Þ

where Pr is the rated electrical power, and Pcinr(v) is the

turbine output power as a fraction of rated power be-

tween (including) cut-in wind speed vc and rated wind

speed vr. vf is cut-out wind speed.

There are many generic power curve models reported

in the literature for representing the non-linear region

between cut-in and rated wind speed of Figure 4. These

models are not accurate as they do not fit the manufac-

turer’s power curve data and only provide an approximate

model of power curve that has errors. The approach used

in this paper is to use a polynomial of eighth degree to

model manufacturer wind turbine power curve data

between cut-in and rated wind speed region.

A function is called polynomial of nth degree when it

is expressed in the form as

P vð Þ ¼ a0 þ a1vþ a2v
2 þ a3v

3 þ…þ anv
n ð19Þ

where a0, a1, a2, …, an are the constant coefficients of

polynomial function. The procedure of calculating coeffi-

cients of nth-degree polynomial by combined use of linear

least square and matrix factorization methods through

MATLAB are explained below.

Linear least square method

Consider given m sets of data (xi, yi) where i = 1,.., m and

the polynomial model that is fitted to data is of nth degree

expressed as:

P xð Þ ¼ a0 þ a1xþ a2x
2 þ a3x

3 þ…þ anx
n ð20Þ

where a0, a1, a2, …, an are the coefficients that are to be

found out. The m sets of data and polynomial P(x) are

expressed in matrix form as y = Xα where:

y ¼

y1
y2
⋮

ym

2

6

6

4

3

7

7

5

; ð21Þ

X m; nþ1ð Þ ¼
1 x1 x21
⋮ ⋮ ⋮

1 xm x2m

⋯

⋱

…

xn1
⋮

xnm

2

4

3

5; ð22Þ
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α ¼

a0
a1
⋮

an

2

6

6

4

3

7

7

5

: ð23Þ

The coefficients a0, a1, a2, …, an, that best fit Equation

20 are found out by solving minimization problem,

where the objective function S is given by Press et al.

(2009) as:

S αð Þ ¼
Xm

i¼1
yi−

Xnþ1

j¼1
X ijαj

h i2

¼ y − Xαk k2: ð24Þ

Normal equations of least square problem can be

expressed in matrix notation as

XTX
	 


α ¼ XTy ð25Þ

where XT is the transpose of matrix X. The algebraic

solution of Equation 24 is expressed (Demmel 1997) as

α ¼ XTX
	 
−1

XTy : ð26Þ

Solution from normal equations can have round-off

errors so QR decomposition of matrix X is done.

QR decomposition

QR decomposition is a matrix factorization method

(Embree 2010). It states that for any m × n matrix X with

m ≥ n, there exists a unitary m ×m matrix Q and an

upper triangular m × n matrix R such that

X ¼ QR : ð27Þ

Figure 4 Power curve of Suzlon S66 1.25-MW pitch-regulated

wind turbine (Wind Power Program).

Figure 5 Monthly mean temperature and monthly mean

pressure measured at Soda.

Figure 6 Monthly mean air densities at Soda wind farm.

Figure 7 Monthly mean wind speed measured at 65-m and

50-m heights.
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On substituting Equation 27 in Equation 26, the

expression as explained by Demmel (1997) becomes:

α ¼ RTQTQR
	 
−1

RTQTy ¼ RTR
	 
−1

RTQTy ð28Þ

α ¼ R−1R−TRTQTy ð29Þ

α ¼ R−1QTy : ð30Þ

On solving Equation 30, the required coefficients of

polynomial Equation 20 are obtained. For computing

QR decomposition of matrix X, the MATLAB command

used is (Embree 2010):

Q;R½ � ¼ qr Xð Þ: ð31Þ

This application has a m × n matrix X with m much

larger than n. So, the QR decomposition produces a

m ×m matrix Q that will require more storage than X

(Embree 2010). Also, columns n + 1,…,m of Q are surplus

as they multiply against zero entries of R.

QR decomposition using Gram-Schmidt orthogonalization

It is one solution to the above mentioned concern. This

procedure results in a skinny QR decomposition, X =QR,

where Q is m × n matrix, R is a n × n matrix, and Q*Q = I.

Here, Q* is the conjugate transpose matrix and I is n × n

identity matrix (Embree 2010). This algorithm can be

easily computed in MATLAB using command:

Q;R½ � ¼ qr X; 0ð Þ: ð32Þ

If m > n, only the first n columns of Q and the first n

rows of R are computed (http://in.mathworks.com/help/

matlab/ref/qr.html. Accessed 09 September 2014). If m ≤ n,

then, this is same as [Q,R] = qr(X).

Analytical estimation of capacity factor

Capacity factor (CF) (Masters 2004) is defined as the ratio

of average output power to rated output power over a

certain period of time. Monthly capacity factor (CFm) is

expressed as:

CFm ¼
monthly energy yield from wind turbine kWhð Þ

rated power kWð Þ � total hours in particular month

ð33Þ

and the annual capacity factor (CFa) is expressed as:

CFa ¼
annual energy yield from wind turbine kWhð Þ

rated power kWð Þ � total hours in a year
:

ð34Þ

Capacity factor of a particular wind turbine at a site can

be analytically estimated by using Weibull scale and shape

Figure 8 Monthly mean wind power density measured at 65-m

and 50-m heights.

Table 1 Monthly Weibull parameters estimated from four numerical methods at hub height of 65 m

Months Graphical method Empirical method Modified maximum likelihood method Energy pattern factor method

k c (m/s) k c (m/s) k c (m/s) k c (m/s)

Apr 2011 1.7438 5.6863 2.1545 6.4137 2.0761 6.3507 2.1681 6.4137

May 2011 2.3472 9.0708 3.3229 9.3500 3.2595 9.2646 3.0793 9.3845

Jun 2011 2.0217 9.7378 2.9515 10.1866 2.9708 10.1471 2.8994 10.1942

Jul 2011 2.0981 7.7550 2.7184 8.2294 2.6535 8.1868 2.6637 8.2351

Aug 2011 1.8876 5.8166 2.6121 6.6079 2.5513 6.5499 2.6569 6.6044

Sep 2011 2.1592 6.3457 3.0948 6.8103 3.0623 6.7587 2.9802 6.8218

Oct 2011 1.5196 4.5302 1.8902 5.2394 1.7922 5.1967 1.9311 5.2428

Nov 2011 1.5284 3.4343 1.9543 4.0376 1.8758 4.0250 2.0225 4.0404

Dec 2011 1.5917 4.4552 2.1348 5.0925 2.0331 5.0567 2.2038 5.0924

Jan 2012 1.6794 4.5200 2.1957 5.1489 2.1198 5.1213 2.2430 5.1484

Feb 2012 1.8906 5.1810 2.3963 5.7532 2.3343 5.7274 2.4081 5.7527

Mar 2012 1.7159 5.6665 2.0785 6.2319 2.0251 6.2152 2.0626 6.2314
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parameters of site, wind turbine speed parameters, and

coefficients of polynomial model for power curve in the

expression defined by Albadi (2010) as:

CF ¼ −e− vf =cð Þ
k

þ
Xn

i¼1

�

ai � i� ci=k
	 


� Γ i=kð Þ

� γ vr=cð Þk ; i=k
� �

−γ vc=cð Þk ; i=k
� �� �

�

ð35Þ

where Γ að Þ ¼ Gamma function ¼

Z

∞

0

ta−1e−tdt; and γ u; að Þ ¼

Incomplete gamma function ¼ 1=Γ að Þ½ � �

Z u

0

ta−1e−tdt:

Discussion and evaluation
Wind and meteorological data of Soda site for the dur-

ation from April 2011 to March 2012 were provided by

the owner company of wind farm. Monthly mean atmos-

pheric pressure and monthly mean temperature at Soda

Figure 9 Comparison of estimated and measured wind speed probability at Soda for 65-m height (a–l).

Table 2 Comparison of RMSE of wind speed probability

Months Monthly
RMSE
(graphical)

Monthly
RMSE
(empirical)

Monthly
RMSE (MML)

Monthly
RMSE (EPF)

Apr 2011 0.0461 0.0443 0.0437 0.0445

May 2011 0.0352 0.0399 0.0397 0.0377

Jun 2011 0.0329 0.0354 0.0357 0.0350

Jul 2011 0.0366 0.0387 0.0382 0.0381

Aug 2011 0.0529 0.0502 0.0501 0.0507

Sep 2011 0.0509 0.0530 0.0531 0.0517

Oct 2011 0.0557 0.0521 0.0511 0.0527

Nov 2011 0.0787 0.0737 0.0722 0.0751

Dec 2011 0.0635 0.0602 0.0593 0.0611

Jan 2012 0.0617 0.0583 0.0576 0.0590

Feb 2012 0.0530 0.0516 0.0510 0.0518

Mar 2012 0.0416 0.0402 0.0398 0.0401

Average RMSE 0.05073 0.04980 0.04929 0.04979
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are shown in Figure 5 and their 1-year average values are

968.49 mb (1 bar = 105 Pa) and 28.88°C, respectively.

Monthly mean air density based on measured temperature

and pressure data is shown in Figure 6 and its 1-year aver-

age value is 1.118 kg/m3.

Monthly mean wind speed at 65-m and 50-m heights

are shown in Figure 7 and their 1-year average values are

5.86 m/s and 5.53 m/s, respectively. Monthly mean wind

power density at 65-m and 50-m heights are shown in

Figure 8 and their 1-year average values are 206.87 W/m2

and 181.71 W/m2, respectively.

Estimation of monthly Weibull function parameters for

Soda site

Table 1 shows the monthly Weibull parameters esti-

mated from graphical, empirical, modified maximum

likelihood, and energy pattern factor methods for Soda

at height of 65 m.

Graphical comparison of measured and estimated wind

speed probability

Figure 9a–l shows the month-wise wind speed probability

at site. They are calculated from shape (k) and scale (c)

parameters given in Table 1. Density histograms of month-

wise measured wind speed frequency at hub height are also

shown in each figure for comparison. A density histogram

is a histogram that has been normalized, so it will integrate

to one (Martinez and Martinez 2002).

It can be observed from Figure 9a–l that probability

curves using graphical method are not fitting the measured

wind speed frequency density histograms. Weibull prob-

abilities calculated from empirical, modified maximum

likelihood, and energy pattern factor methods are nearly

similar and overlapping each other. They are also repre-

senting better fit with the density histograms of measured

wind speed frequency.

Statistical analysis of four numerical methods

Table 2 gives the comparison of root mean square errors

(RMSEs) of wind speed probabilities and is calculated using

monthly Weibull parameters estimated from four methods

at hub height. It is observed that modified maximum likeli-

hood method has the lowest and graphical method has

highest value for 1-year average monthly RMSE at Soda

site. Thus, modified maximum likelihood method gives

better results in calculating Weibull function parameters

amongst the graphical, empirical, modified maximum like-

lihood, and energy pattern factor methods at Soda site.

Empirical and EPF methods have almost the same monthly

RMSE.

Eighth-degree polynomial fit to wind turbine power curve

data

Power curve data of Suzlon S66-1.25-MW pitch-

regulated wind turbine (http://www.wind-power-program.

com/download.htm. Accessed 09 September 2014; I-Rivera

et al. 2009) between cut-in and rated wind speeds are

shown in Table 3. Polynomial of eighth degree

P xð Þ ¼ a0 þ a1xþ a2x
2 þ a3x

3 þ a4x
4 þ a5x

5

þ a6x
6 þ a7x

7 þ a8x
8

ð36Þ

is used to fit the data given in Table 3. Linear least square

method and QR decomposition using Gram-Schmidt

orthogonalization are used for calculating coefficients

of polynomial using MATLAB. Coefficients of eighth-

degree polynomial after calculations are in Table 4.

Figure 10 shows the eighth-degree polynomial curve

and manufacturer’s power curve data of Suzlon S66 wind

turbine between cut-in and rated wind speeds. It can be

observed that actual data and eighth-degree polynomial

model both fit each other.

Measured data of wind turbine-9 at Soda

Various measured parameters of wind turbine-9 from

April 2012 to March 2013 are given in Table 5. Wind

turbine-9 data are used for comparison because measure-

ment mast and turbine-9 are located near to each other as

shown in Figure 2. So, it is a reasonably good assumption

that turbine-9 and measurement mast will have the same

wind availability.

Table 3 Suzlon S66-1.25-MW wind turbine power curve data (Wind Power Program; I-Rivera et al. 2009)

Wind speed (m/s) 3 4 5 6 7 8 9 10 11 12 13 14

Power (kW) 5 35 93 151 285 454 639 832 1,008 1,152 1,241 1,250

Power (Normalized) y 0.004 0.028 0.0744 0.1208 0.228 0.3632 0.5112 0.6656 0.8064 0.9216 0.9928 1

Table 4 Coefficients of eighth-degree polynomial fit

Coefficients Values

a0 7.2789524

a1 −9.0732954

a2 4.6960724

a3 −1.3208640

a4 0.22157098

a5 −0.0227409

a6 0.0014020

a7 −0.0000477

a8 0.000000689
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Energy yield losses

Analytically, estimated values of monthly capacity factor

are to be corrected for machine non-availability, grid non-

availability, air density losses, and wake effect losses. The

estimated monthly capacity factor values are multiplied by

measured monthly machine availability and monthly

grid availability given in Table 5 for adjusting the losses

associated with machine non-availability and grid non-

availability. The wake effect losses are assumed as 5%

because the wind farm has turbines working in front of

the other as shown in Figure 2 and so the estimated

monthly capacity factor is multiplied by a factor of 0.95.

Suzlon S66 wind turbine has rated wind speed of 14 m/s.

It is evident from Figure 7 that monthly mean wind speed

at hub height is always less that 9.09 m/s during all the

months. The Figure 9a–l shows that wind speed never

reached 14 m/s during August to February months at Soda

site. Moreover, the probability of wind speed occurrence at

values equal to or more than 14 m/s during March to July

period is very low. So, it can be concluded that wind

turbines installed at the wind farm are operating below

their rated wind speed for most of the time. Majority of

the energy production is from ascending section of power

curve, which is between cut-in and rated wind speed re-

gion. This conclusion is used in calculating the air density

correction factor. Estimated monthly capacity factor is

Table 5 Measured data of wind turbine-9 working at

Soda wind farm

Months Energy produced
(kWh)

Capacity
factor

Machine
availability

Grid
availability

Apr 2012 144,798 0.1609 0.9905 0.9826

May 2012 214,178 0.2303 0.9517 0.9516

Jun 2012 391,530 0.4350 0.8541 0.9813

Jul 2012 315,257 0.3390 0.8025 0.9606

Aug 2012 203,584 0.2189 0.977 0.9915

Sep 2012 94,305 0.1048 0.9965 0.9999

Oct 2012 44,503 0.0479 0.9701 0.993

Nov 2012 33,257 0.0370 0.9847 0.9932

Dec 2012 97,878 0.1052 0.9942 0.9952

Jan 2013 48,108 0.0517 1.0 0.9785

Feb 2013 94,453 0.1124 0.9891 0.992

Mar 2013 107,679 0.1158 0.9813 0.9784

Annual 1,789,530 0.1634 0.9576 0.9831

Figure 10 Eighth-degree polynomial fit to Suzlon S66 power

curve between cut-in and rated wind speed.

Table 6 Monthly mean air density and correction factor

for density at Soda

Months Monthly mean air
density (kg/m3)

Ratio of monthly mean air density
and standard air density

Apr 1.106 0.903

May 1.093 0.892

Jun 1.086 0.887

Jul 1.092 0.891

Aug 1.099 0.897

Sep 1.11 0.906

Oct 1.113 0.909

Nov 1.125 0.918

Dec 1.152 0.940

Jan 1.164 0.950

Feb 1.156 0.944

Mar 1.122 0.916

Average 1.118 0.913

Table 7 Monthly correction factors of estimated capacity

factors

Months Monthly correction factor

Apr 0.8348

May 0.7676

Jun 0.7059

Jul 0.6528

Aug 0.8256

Sep 0.8577

Oct 0.8315

Nov 0.8533

Dec 0.8839

Jan 0.8833

Feb 0.8796

Mar 0.8354

Average 0.8176
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corrected by multiplying it with the ratio of monthly mean

air density at site to standard air density of 1.225 kg/m3.

The values of ratio are given in Table 6 (Hau 2006). This

correction process also takes care of the differences in

air density between summer (May, June) and winter

(December, January) seasons.

Comparison of measured and corrected estimated

capacity factors

Monthly correction factors by considering machine non-

availability, grid non-availability, air density losses, and wake

effect losses are given in Table 7. Table 8 shows the esti-

mated monthly capacity factor values. They are calculated

using Equation 35 and data given in Tables 1 and 4. Table 9

shows the corrected monthly capacity factors. Corrected

monthly capacity factors are obtained by multiplying the

estimated monthly capacitor factors given in Table 8 with

the monthly correction factors given in Table 7. It is to be

noted that measured wind speed frequency distribution

data are from April 2011 to March 2012 whereas measured

wind turbine-9 energy production data are from April 2012

to March 2013. Comparison between the measured and

corrected values of capacity factor are done assuming that

the wind profile of a site does not change significantly from

1 year to another year.

Figure 11 shows the graphical comparison of measured

and corrected monthly capacity factor values given in

Tables 5 and 9, respectively.

Corrected monthly capacity factors shown in Table 9

does not give a comprehensible result, as monthly wind

profile may vary from 1 year to another year. So, corrected

annual capacity factor of wind turbine are calculated and

then the percentage errors between the measured and cor-

rected values of annual capacity factor are obtained as

shown in Table 10. It is observed that percentage error in

annual capacity factor computation by using Weibull pa-

rameters estimated from MML method is −1.22%. It is the

lowest in comparison to graphical, empirical, and energy

pattern factor methods. Graphical method gave the most

erroneous results.

Table 9 Corrected capacity factors estimated using four

numerical methods

Months Corrected
CFm (GM)

Corrected
CFm (EM)

Corrected
CFm (MML)

Corrected
CFm (EPF)

Apr 0.1334 0.1602 0.1590 0.1597

May 0.3143 0.3428 0.3357 0.3428

Jun 0.3153 0.3635 0.3615 0.3627

Jul 0.1984 0.2195 0.2173 0.2202

Aug 0.1321 0.1577 0.1552 0.1564

Sep 0.1597 0.1689 0.1655 0.1718

Oct 0.0832 0.0989 0.1016 0.0970

Nov 0.0354 0.0406 0.0427 0.0387

Dec 0.0792 0.0854 0.0876 0.0828

Jan 0.0768 0.0862 0.0875 0.0845

Feb 0.1011 0.1151 0.1154 0.1146

Mar 0.1340 0.1512 0.1524 0.1519

Table 8 Monthly capacity factors estimated using four

numerical methods

Months Estimated
CFm (GM)

Estimated
CFm (EM)

Estimated
CFm (MML)

Estimated
CFm (EPF)

Apr 0.1598 0.1919 0.1905 0.1913

May 0.4094 0.4465 0.4373 0.4465

Jun 0.4467 0.5149 0.5122 0.5139

Jul 0.3039 0.3363 0.3329 0.3373

Aug 0.1600 0.1910 0.1880 0.1894

Sep 0.1862 0.1969 0.1930 0.2003

Oct 0.1001 0.1189 0.1222 0.1167

Nov 0.0415 0.0476 0.0501 0.0453

Dec 0.0896 0.0966 0.0991 0.0937

Jan 0.0870 0.0976 0.0991 0.0957

Feb 0.1149 0.1308 0.1312 0.1303

Mar 0.1604 0.1810 0.1824 0.1818

Figure 11 Comparison of measured and corrected estimated

monthly capacity factors of wind turbine.

Table 10 Comparison between corrected annual capacity

factors along with percentage error

Methods of
estimating
Weibull
parameters

Corrected annual
capacity factor

Percentage error (comparing
with wind turbine-9 measured
annual CF of 0.1634) (%)

GM 0.1471 +9.98

EM 0.1660 −1.59

MML 0.1654 −1.22

EPF 0.1655 −1.29
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Conclusions
This paper analyzed wind characteristics, Weibull wind

speed distribution using four numerical methods, eighth-

degree polynomial modeling of wind turbine power curve,

and capacity factor estimation of wind turbines at Soda

site in the desert region of western Rajasthan in India.

The percentage error in annual capacity factor estimation

using Weibull parameters estimated from graphical, em-

pirical, modified maximum likelihood, and energy pattern

factor methods were +9.98%, −1.59%, −1.22%, and −1.29%,

respectively. Annual capacity factors calculated using

Weibull parameters estimated from modified maximum

likelihood method matched the measured values best and

the graphical method gave the most erroneous results.

Wind power density is highest in June and lowest in

November with measured values of 568.45 W/m2 and

49.03 W/m2, respectively. It shows a large variation due

to change in monthly weather conditions.

Abbreviations

WPD: wind power density; RMSE: root mean square error; GM: graphical

method; EM: empirical method; MML: modified maximum likelihood;

EPF: energy pattern factor; CF: capacity factor.

Competing interests

The authors declare that they have no competing interests.

Authors’ contribution

BKS carried out the data acquisition, analysis, and interpretation and drafted

the manuscript. KVSR contributed in the conception and designing of case

study, data analysis, and critical review of the manuscript. Both authors read

and approved the final manuscript.

Authors’ information

BKS is M.Tech. (Renewable Energy Technology) research student of the Centre

for Energy and Environment at Rajasthan Technical University, Kota, India. He

obtained Bachelors degree in Electrical Engineering from Engineering College,

Kota. KVSR is professor in Mechanical Engineering and presently head of the

Centre for Energy and Environment at Rajasthan Technical University, Kota. He

is also M.Tech. dissertation supervisor of BKS. KVSR obtained Bachelors degree

in Mechanical Engineering from NIT Jamshedpur, Masters degree in Mechanical

Engineering from IIT Kanpur, and Ph.D. degree from IIT Delhi.

Acknowledgements

The authors would like to thank Rajasthan Renewable Energy Corporation

Limited at Jaipur and Suzlon Energy Limited at Jaisalmer for granting

permissions to visit their wind farm and providing requisite data for analysis.

Received: 11 September 2014 Accepted: 7 October 2014

References

Albadi, M. H. (2010). On techno-economic evaluation of wind-based DG. In PhD

thesis. Waterloo, Ontario: Dept. Electrical and Computer Engineering, University

of Waterloo.

Albadi, M. H., & El-Saadany, E. F. (2009). Wind turbine capacity factor modeling:

a novel approach. IEEE Transactions on Power Systems, 24(3), 1637–1638.

Albadi, M. H., & El-Saadany, E. F. (2012). Comparative study on impacts of power

curve model on capacity factor estimation of pitch-regulated turbines. The Journal

of Engineering Research, 9(2), 36–45.

Bird, J. (2003). Engineering mathematics. Oxford: Newnes.

Centre for Wind Energy Technology. (2011). Course Material: Seventh international

training course on wind turbine technology and applications from Aug. 3–26,

2011. Chennai: C-WET.

Chang, T.-J., & Tu, Y.-L. (2007). Evaluation of monthly capacity factor of WECS

using chronological and probabilistic wind speed data: a case study of

Taiwan. Renewable Energy, 32(12), 1999–2010.

Chang, T.-J., Wu, Y.-T., Hsu, H.-Y., Chu, C.-R., & Liao, C.-M. (2003). Assessment of

wind characteristics and wind turbine characteristics in Taiwan. Renewable

Energy, 28(6), 851–871.

Demmel, J. W. (1997). Applied numerical linear algebra. Philadelphia: SIAM.

Ditkovich, Y., Kuperman, A., Yahalom, A., & Byalsky, M. (2012). A generalized

approach to estimating capacity factor of fixed speed wind turbines.

IEEE Transactions on Sustainable Energy, 3(3), 607–608.

EL-Shimy, M. (2010). Optimal site matching of wind turbine generator: case study

of the Gulf of Suez region in Egypt. Renewable Energy, 35(8), 1870–1878.

Embree, M. (2010). Lecture notes: CAAM 453 Numerical Analysis-1 Rice University. http://

www.caam.rice.edu/~caam553/caam453.pdf. Accessed 09 September 2014.

Hau, E. (2006). Wind Turbines: fundamentals, technologies, application, economics.

Berlin: Springer-Verlag.

Hu, S. Y., & Cheng, J. H. (2007). Performance evaluation of pairing between sites

and wind turbines. Renewable Energy, 32(11), 1934–1947.

Huang, S.-J., & Wan, H.-H. (2011). A modular approach to enhance capacity factor

computation of wind turbine generators. IEEE Transactions on Energy

Conversion, 26(3), 987–989.

Huang, S.-J., & Wan, H.-H. (2012). Determination of suitability between wind

turbine generators and sites including power density and capacity factor

considerations. IEEE Transactions on Sustainable Energy, 3(3), 390–397.

I-Rivera, A. A., C-Rios, J. A., & N-Carrillo, E. O. (2009). Achievable renewable energy

targets for Puerto Rico’s renewable energy portfolio standard: Final report.

http://www.uprm.edu/aret/. Accessed 09 September 2014.

Jangamshetti, S. H., & Rau, V. G. (1999). Site matching of wind turbine generators:

a case study. IEEE Transactions on Energy Conversion, 14(4), 1537–1543.

Jangamshetti, S. H., & Rau, V. G. (2001). Normalized power curves as a tool for

identification of optimum wind turbine generator parameters. IEEE Transactions

on Energy Conversion, 16(3), 283–288.

Johnson, G. L. (1978). Economic design of wind electric systems. IEEE Transactions

on Power Apparatus and Systems, 97(2), 554–562.

Jowder, F. A. L. (2009). Wind power analysis and site matching of wind turbine

generators in Kingdom of Bahrain. Applied Energy, 86(4), 538–545.

Manwell, J. F., McGowan, J. G., & Rogers, A. L. (2009). Wind energy explained:

theory, design and application. West Sussex: Wiley.

Martinez, W. L., & Martinez, A. R. (2002). Computational statistics handbook with

MATLAB. Boca Raton: Chapman & Hall/CRC.

Masters, G. M. (2004). Renewable and efficient electric power systems. Hoboken: Wiley.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2009). Numerical recipes in

C: the art of scientific computing. New Delhi: Cambridge University Press.

Rehman, S., & Ahmad, A. (2004). Assessment of wind energy potential for coastal

locations of the Kingdom of Saudi Arabia. Energy, 29(8), 1105–1115.

Rocha, P. A. C., de Sousa, R. C., de Andrade, C. F., & da Silva, M. E. V. (2012).

Comparison of seven numerical methods for determining Weibull

parameters for wind energy generation in the northeast region of Brazil.

Applied Energy, 89(1), 395–400.

Suzlon Energy Ltd. S66–1.25 MW Technical Overview. http://www.suzlon.com/pdf/

s66%20product%20brochure.pdf. Accessed 09 September 2014.

The MathWorks Inc. Orthogonal-triangular decomposition-MATLAB qr. http://in.

mathworks.com/help/matlab/ref/qr.html. Accessed 09 September 2014.

Wind Power Program. Wind turbine power curve database. http://www.wind-

power-program.com/download.htm. Accessed 09 September 2014.

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com

Saxena and Rao Renewables: Wind, Water, and Solar  (2015) 2:3 Page 11 of 11

http://www.caam.rice.edu/~caam553/caam453.pdf
http://www.caam.rice.edu/~caam553/caam453.pdf
http://www.uprm.edu/aret/
http://www.suzlon.com/pdf/s66%20product%20brochure.pdf
http://www.suzlon.com/pdf/s66%20product%20brochure.pdf
http://in.mathworks.com/help/matlab/ref/qr.html
http://in.mathworks.com/help/matlab/ref/qr.html
http://www.wind-power-program.com/download.htm
http://www.wind-power-program.com/download.htm

	Abstract
	Introduction
	Case description
	Discussion and evaluation
	Conclusions

	Background
	Case description
	Details of the wind farm studied
	Wind data modeling and analysis
	Estimation of Weibull scale and shape parameters
	Polynomial model of power curve for pitch-regulated wind turbines
	Linear least square method
	QR decomposition
	QR decomposition using Gram-Schmidt orthogonalization
	Analytical estimation of capacity factor

	Discussion and evaluation
	Estimation of monthly Weibull function parameters for Soda site
	Graphical comparison of measured and estimated wind speed probability
	Statistical analysis of four numerical methods
	Eighth-degree polynomial fit to wind turbine power curve data
	Measured data of wind turbine-9 at Soda
	Energy yield losses
	Comparison of measured and corrected estimated capacity factors

	Conclusions
	Abbreviations
	Competing interests
	Authors’ contribution
	Authors’ information
	Acknowledgements
	References

