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A b s tra c t. This paper establishes the equivalence of the conforming Courant finite element
method, the nonconforming Crouzeix-Raviart finite element method, and several first-order discon­
tinuous Galerkin finite element methods in the sense that the respective energy error norms are
equivalent up to generic constants and higher-order data oscillations in a Poisson model problem.
The Raviart-Thomas mixed finite element method is better than the previous methods, whereas
the conjecture of the converse relation is proved to be false. This paper completes the analysis of
comparison initiated by Braess [Calcolo. 46 (2009). pp. 149-155]. Two numerical benchmarks illus­
tra te  the comparison theorems and the possible strict superiority of the Raviart-Thomas mixed finite
element method. Applications include least-squares finite element methods, finite volume methods,
and equality of approximation classes for concepts of optimality for adaptive finite element methods.

K ey w ords, nonconforming finite element method. Crouzeix-Raviart, Raviart-Thomas, dis­
continuous Galerkin, finite volume, least-squares method, approximation class
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1. In t r o d u c t io n .  Given a bounded polygonal dom ain Q in the plane and da ta
f  e  L 2 (Q), the  Poisson model problem seeks the weak solution u  €  of

(1.1) —A u =  f  in Q and u =  0 on 9Q.

This paper compares the error of popular finite elem ent m ethods (FEM s) for the nu­
merical solution of (1.1) as depicted in Figure 1.1, the  conforming C ourant FEM
(CFEM ) [20], the  nonconforming C ro u ze ix -R a v ia r t FEM  (CR-NCFEM ) [21], the
mixed R a v ia r t-T h o m a s  FEM  (RT-M FEM ) [30], and several discontinuous Galerkin
FEM s (DGFEM ) with respective solutions u c . u c r < (p r t , u r t ), and u d g  based on a
shape-regular triangulation of Q.

As the m ain result (in Theorem s 2.1, 2.2, and 2.3) we will show th a t

(1.2) ||V u — p r T ||l 2(q ) < IlVfcc(u -  u c r ) IIL2(f i ) «  ||V (u - u c ) ||l 2(q ) «  Hu - u D g ||d g

holds up to  d a ta  oscillation o sc (/, T ) and up to mesh-size independent generic mul­
tiplicative constants (hidden in the notation <  and ~ ) .  The norm || • ||d g  is the
standard  D G  norm  defined in (2.5). It is rem arkable th a t those comparison results
do n o t  rely on the  regularity of the solution u.
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F i g . 1.1. CF E M  (left), C R -N C F E M  (m iddle), R T -M F E M  (right).

A counterexam ple (Theorem  2.5), which is based on a sequence of domains and
corresponding meshes, shows th a t the  conjecture

l|V w (u  -  u c r ) IIl 2(Q) <  ||V u  -  p r t ||l 2( q )

is false in general. On a  fixed mesh, however, the  R aviart-T hom as FEM  is equivalent
to  the  o ther m ethods up to  d a ta  oscillations (Theorem  2.4); the  equivalence on a fixed
polygonal dom ain independent of the  mesh-size rem ains open.

A comparison of CFEM , CR-N CFEM , and RT-M FEM  has been initiated in [7],
where the  hypercircle m ethod proves ||V u - p r t || <  | |^ i c ( u  -  « c r )|| <  ||V (u  -  u c ) ||.
The novel result

(I-3 ) I|Vn c (u  -  u c r ) ||l 2(q j  <  Up -  n 0 p ||L 2(Q) 4- o sc ( / ,T )

from [24, sect. 3.1] with the  L~ projection of the  flux p :=  Vu onto its piecewise
constant integral means flop leads to  a different proof of ||V mc (u  — u c r )IIl 2 (Q) <
||V (u  — u c ) ||l 2(Q) with o ther tools. This paper gives direct proofs and a thorough
comparison including DGFEM .

An im m ediate application to  least-squares finite element m ethods improves a
com parison result of [27] and disproves a further conjecture. The comparison results
also clarify th a t various approxim ation classes for the  optim ality of adaptive FEM
coincide.

T he outline of th is paper is as follows. Section 2 introduces the precise notation
and s ta tes  the main results in Theorem s 2.1-2.5 and comments on it. Section 3 gives
their proofs based on argum ents from the a  posteriori error analysis. Section 5 illus­
tra tes  the  equivalences in a typical situation and in the  context of the  counterexam ple
of Theorem  2.5. The argum ents are expected to  be possibly generalized to  further
applications and numerical schemes as well as to  higher dimensions and more general
boundary conditions.

Throughout th is paper, standard  notation on Lebesgue and Sobolev spaces is
employed and A  < B  abbreviates an inequality A  < C  B  w ith some mesh-size inde­
pendent generic constant 0 <  C  < oo; A  ~  B  abbreviates A  <  B  <  A . All hidden
generic factors depend on a lower bound of the minimal angle in T .

2. R e s u l ts .  This section defines the  three finite element m ethods of Figure 1.1,
introduces some class of DG FEM , and states the main results of th is paper. T he
proofs follow in the  subsequent section.

2 .1 . F in i te  e le m e n t m e th o d s .  Let T  denote a shape-regular triangulation  of
a polygonal bounded Lipschitz dom ain Q into (closed) triangles, i.e., Ô =
and any two elements are either disjoint or share exactly one edge or share exactly
one vertex. Let h j-  €  Pq (T )  denote the  T-piecewise constant mesh-size function w ith
^ t It  =  diam(T') for all T  G T .  Let 5  denote the  set of edges of 7~; 5(Q ) denotes
the set of interior edges, £($Q ) refers to  the  set of boundary edges. Similar notation
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applies to  the vertices; A" denotes the  set of vertices, A/"(Q) denotes the  set of interior
vertices, and A/"(öQ) refers to boundary vertices. Throughout the  paper, let

Pfc(7”;R r n ) =  {vk  : Q —» R™ | for all T  G T , V k\r  is a polynomial of to ta l degree <  k}

denote the  set of piecewise polynomials and f i t  : L 2 (Q ;R m ) —> Pfc(T;R r n ) denote
the  L 2 projection onto T-piecewise polynomial functions or vectors of order k , e.g.,

( n 0 / ) |T  =  / d x  for all T  E T  and all f  G L 2 (Q ;R m ). For any interior edge

E  G £(Q) there are two adjacent triangles T ~  and T +  w ith E  =  d T ~  A d T + . For
any E  G £(Q ), let v e  be the normal vector of E  th a t points from T ~  to T + , for
boundary edges E  G £(ÔQ) let v e  be the  outw ard unit normal vector of Q. De­
fine the  jum p of v  G P k (T )  across E  G £(Q ) by [v]^ :=  v |r -  — v Ijm- and define
M e  :=  v \e  for E  G 5(dQ ). The average of v  G Pfc(T) across E  G £(Q ) is defined by
{v ) e  •= M t -  +  ^ | t + )/2  and for boundary edges E  E  £(5Q ) by (v ) e  •= v |e .

Given such a shape-regular triangulation T . recall the FEM  under consideration.
C F E M . The Courant finite element space reads

(2.1.a) Vc(7~) •= { y c  € P i(T )  I vc is continuous and vanishes on ÖQ}.

The corresponding (unique) Galerkin approxim ation u c  €  V c ( T )  satisfies

(2.1.b) /  V u c  V v c d x =  /  f v c d x  for all vc € V c(T).

J a J n

C R -N C F E M . The Crouzeix-R aviart finite elem ent space reads

(2.2.a) CRy(T) :=  {v c r  G P i (T ) | v c r  is continuous at m idpoints of interior

edges and vanishes at m idpoints of boundary edges}.

A general function in CRq (T) does not belong to  P ^ Q ) .  However, the  7~-piecewise
gradient M<c Vc r , w ith (X^c v c r )It  =  V (v c r |t ) for all T  G T , exists and X̂ j c Vc r  €
P o (T ;R 2 ). T he (unique) C rouzeix-R aviart approxim ation u c r  €  C R q (T ) satisfies

(2.2.b) I  V sjc^ c r  • VNc^cRdx =  [  f v c R d x  for all v c r  € C R ^(T).

R T -M F E M . The mixed lowest-order R aviart-T hom as finite element space reads
(2.3.a)

RTo(T) :=  {q r t  €  P (d iv , Q) | for a llT  G T 3 a r  €  R 2 € R for all x  G T,

<7r t |t (s ) =  a r  +  b r x } .

T he (unique) mixed finite element approxim ation (p r t , w r t ) € RTq (T ) x  P>(T) sat­
isfies

/  PRT ■ <7r t  d;r 4- /  u r t  div q r t  dx  =  0 for all gR T  e  RT0 (T );
(2.3.b) J n  J q

n 0 /  +  divpRT =  0.

D G F E M . O ur comparison includes some class of DGFEM  which contains popular
choices such as the  symmetric interior penalty m ethod (SIPG) [22, 1, 25], the  non-
symm etric interior penalty method (N IPG ) [31], and the  local DG (LDG) [19, 16].
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The abstract setting for the  DG FEM  under consideration is as follows. Consider the
space Vd g (T ) :=  Pi (7") of T-piecewise affines w ith associated jump-seminorm

(2.4) I ‘ l1 :=  E I E I - ' I I M e IIIwcbaZYXWVUTSRQPONMLKJIHGFEDCBA

e c £

and norm

(2.5) II .  ||T C  :=  ( | |W c  •  l l b ( i l ) + 1 •  | j ) 1 / 2 .

The bounded and coercive (w ith respect to  || •  ||d g ) DG bilinear form u d g :Fd g (73 x

Vd g (7") R  extends a |v c (T )xv
c

(T) t o  Vd g (T ) x  Vd g (T ) and satisfies

(2.6) |a(v, vc) -  « d g (^d g ,^ c )| <  C i||v  -  u d g IId g IIVu c IIl ^ q )

for all v c  G Vc(7”), v  €  P q (Q), and v d g  €  Vd g (T ) with some universal positive
constant C i independent of h r -  The (unique) DG approxim ation u d g  €  Vd g (7~)
satisfies

(2.7) o d g ( r d g ,^ d g ) =  /  /v D c d x  for all u d g  € Vd g (7~).
J n

Assume further th a t there  exists some bounded linear operator Ic  : Vd g (7”) —> Vc(7~)
and some positive constant C-z th a t does not depend on /17- such th a t

(2-8) ||v d g  -  Ic  v d g IId g  <  C2|v d g |j

holds for all u d g  € Vd g (7~).
It is shown in [24, sect. 3.2] th a t the  DGFEM  mentioned above (SIPG , NIPG,

LDG) fit into th is abstract framework. Moreover, the  operator Ic  may be chosen
based on averaging [10. 11. 12, 26]: see (3.1) below for a precise definition.

2 .2 . M a in  r e s u l ts .  This subsection presents the  comparison results proved in
section 3. The Lebesgue and Sobolev spaces £ 2 (Q) and H X(ÇÏ) are defined as usual
and we define || • || :=  || • ||L 2 ( n )  and osc(/,7~) :=  \\hT ( f  -  n 0 / ) | | .

T h e o r e m  2.1 (equivalence of CFEM  and CR-N CFEM ). I t  holds tha t

Il V u -  V u e  II <  Il V u -  V'JCUc r II Il V u -  V u c  II +  osc(/,7").

R e m a rk  1 (two possible conjectures). In the  context of Theorem  2.1 and the
hypercircle identities, two possible conjectures are th a t  the conforming or the  non­
conforming error is controlled by the distance of these two discrete solutions up to
oscillations, i.e.,

Il V u -  V u e  II <  Il V u c  -  VN c « c r || +  osc(/, 7")

and

Il V u -  Vn c m c r II <  Il V u e  — V'Jc w c r II +  osc(/, T ) .

The two statem ents are false, in general, because for f  =  1, and the  criss-cross
triangulation T  of the unit square Q =  (0 ,1)2 into four congruent triangles as depicted
in Figure 2.1, it holds th a t u e  =  u c r  /  u.
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F i g . 2.1. C riss-cro ss  tr ia n g u la tio n  o f the  u n it  square (le ft)  and  a red-refined triangle  (righ t).

T h e o r e m  2 . 2 (equivalence of CFEM  and DG FEM ). I t  holds tha t

Il V u -  Vucll <  ||u  -  u d g IId g  <  Il V u -  Vucll +  o s c ( / ,T ) .

Note th a t the  first inequality in Theorem  2.1 and the first inequality in Theo­
rem 2.2 hold w ithou t d a ta  oscillation term s.

R em a rk  2 (equivalence of D G FE M s). By transitivity, Theorem  2.2 establishes the
equivalence (up to  d a ta  oscillations) of all DGFEM  under consideration, in particular
SIPG, NIPG, and LDG.

T h e o r e m  2 . 3 (comparison of RT-M FEM  and CR-N CFEM ). It holds tha t

Il Vu -  V^c u c r II Il V II +  Il V u -  p r t II <  H Vu -  V m c u c r II +  o sc(/, T ).

T h e o r e m  2 . 4 (com parison of CFEM  and RT-MFEM on a fixed mesh). G iven

a n y  regular tr iangu la tion  T  o f  the polygonal L ip sch itz  dom ain  Q in  R 2 , there exists

so m e  constan t C ( T )  such  that

IIV(u -  u c )|| <  C (T ) ( ||V u  - p R T || +  o s c ( / , T ) ) .

The constan t C ( T )  m a y  depend on the triangu la tion  T ,  but does n o t depend on the
righ t-hand  side f  G L 2 (Q) and the so lu tion  u € 77q (Q) or its  regularity.

T h e o r e m  2 . 5 (superiority of RT-M FEM ). The conjecture

Il V u -  V^c ^ c r II Il V u - p r t II + o s c ( / .T )

is  fa lse , in  general, in  the sense that, g iven  f  =  2 and M  > 0 ,  there ex ist som e convex

L ip sch itz  dom a in  Q =  Q a / and  a quasi u n ifo rm  triangu la tion  T  =  7a/ such  that

M  ( ||V u  -  p r t II +  o s c ( / ,T ) )  <  Il Vu -  Vm c w c r II-

R em a rk  3. The counterexam ple in the  proof of Theorem  2.5 explains th a t for
a  sequence of triangulations ( T i f ) ^  the  corresponding sequence of constants C (7/)
in Theorem  2.4 may be unbounded. The indirect proof of Theorem  2.4 employs
compactness and, hence, does not provide further information on th a t growth. It is
conjectured th a t  C (T ) depends only on the  polygonal dom ain Q and interior angles
of T  (see section 5.1 for a numerical experim ent) but not on the  mesh-size.

3. P ro o fs .

3 .1 . P r o o f  o f  T h e o re m  2 .1 . The first proposition is already included in [13,
Theorem  5.1] w ith a different proof.

P r o p o s i t io n  3.1. A n y  u C r  e  C R ^(T) satisfies

min HV mc v c r  -  Vucll «  min ||VN c u C r  -  Vu)|.
vcGVc(T) vEH^Q)
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Proof. Let :=  U{/< G T \  T  IT K  /  0} denote the  patch of first order layers
around T  and let £(cur) :=  { E  G £  | E  A T  0} denote its edges. For :  G JV define
T (2) : = { T g T | z g T }.

Given v o r  G C R i(T ) define Ic ^c r  € V c(T ) by

(3.1) (Icv cR )(« ) =  |V ( z ) r 1 E  (v c r It )U )

T e T (z )

for any interior node z  G JV(Q). For T  G T  and t ’cR G CRq (T ), define

P i (v c r ) :=  ||Vn c (î>c r  -  Ic  v c r ) ||l 2 (T)

and

P2(v c r ) :=  / 5 2  I^III[(^n c v c r ) • t e ]e ||2 2 ( E )  ,

y E € f(w -r)

where t e  denotes a unit vector tangential to  E . If / ^ ( u c r ) =  0, then i?c r  is continuous
on w t  and i ’c r  |e  =  0 for a boundary edge E  c  ö Q a ü t , hence Ic  v c r  =  v c r  on T  and
P i (^c r ) =  0. Since pi and p2 are seminorms on CRq (T ), there exists a constant, such
th a t pi <  p2 on C R (j(T ). A scaling argum ent shows th a t the constant is independent
of the mesh-size. The sum  over all T  G T  and the  bounded overlap of the  patches
(u j t  \ T  e T )  show th a t

||Vn c (i>c r  -  Ic  d c r ) ||2 <  5 2  5 2  1^1 I I I ( ^ c v c r ) t £ ]e ||1 2 ( £ )

T e r  E e f  («•/•)

~  5 2  I IK ^ c v c r ) • t e ]e ||£2( E )  .
EE£

A standard  argument with edge-bubble functions (cf. [32]; see [13, Proof of Theo­
rem 5.1] for details) shows

. / 5 2  lE l HK^n c Vc r ) • t e ]e | | | 2 <  min HW’c v c r - Vv|| .

Hence, one inequality is proven. The reverse inequality follows from W c ( î )  G
VH(J(Q). □

The remaining part of this subsection is devoted to  our proof of Theorem 2.1.
T he inclusion Vc(T) C C R ^ T )  and Galerkin orthogonality show

||^IC«CR -  Vucll =  min ||VN c u c r  -  Vvc || .
t>c€Vc(T)

Together with Proposition 3.1 and the  triangle inequality it follows th a t

||V u -  Vucll <  ||V u  -  V î c u c r II +  ||Vn c « c r  — Vucll ||V u -  V w « c r ||,

which is the first inequality in Theorem  2.1.
A proof of the second inequality can be found in [7], while here a  different, direct

proof is given.
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Let e :=  In c  «  — u c r , where the  nonconforming interpolation In c  w E C R ^(T) is
defined uniquely by

t  In c  u d s  = T  u d s  for all E  E £ .
J e  J e

Since ^ i c (In c ^) — Hq (V u ), it holds th a t

(3 2) H ~ ~  ^ N c W c R HL 2(n ) -  I I -  I n c  u IIl 2(O) +  IIVNce||L2(n )

< ||V(u -  w c ) ||l 2(q ) 4- IIX îcellL2(n)-

Since Vn c ^ is constant on E  E E , [e] is affine on E  E £  and vanishes in the midpoint
of E , it follows for ec :=  le  e E Vc(7”) (with Ic  from (3.1)) th a t

IIV\'ce|l2
L 2(q ) =  /  Vmc c  • X^ic(e -  ec) d x

Ja

= E  / [(e — ec)VNce • v e ]e

e e e J e

< 5 2  lH^ce-M E]E |lL 2 (E ) ||(e - e c ) E ||L 2 (F )

E G £(Q )

<  J  E  l^ll[VNce - ^ ] £ ||2L 2(£;) J E ^ | - 1 | |( e - e c ) E ||2
L 2 ( E ) .

y Ee£(fi) y e e e

Let Qe  :=  U{T E T  | E  IT T  0} denote the  patch of first order around E  and let
7~(Qe ) denote its triangles. Define for v c r  E C R 1 (T(QjE))

P3(^c r ) :=  |E |_ 2 ||(vC R  _  Ic  v C r ) e | | l 2 ( f ) and P4(v c r ) :=  | |^ m c v c r ||l 2(q k ) .

If P4(v c r ) =  0, then v c r  is constant on each T  E T (Q e )- Since l ’c r  is continuous on
the m idpoints of interior edges of T (Q e ), v c r  is constant on Qe - Hence, v c r  =  Ic  v c r

on E  and P3(v c r ) =  0. Since p3 and p4 are seminorms on C R 1 (T (Q e ))> there exists
a constant such th a t pz < p.\ on C R 1 ( T ( Q e Y)- A scaling argum ent shows th a t  the
constant is independent of the mesh-size. T he sum over all interior edges of T  and
the  bounded overlap of the patches (Q e  I E  E £ )  show th a t

£  |E |- ‘ ||(e -  ec )£ ||2t 2 ( £ )  < H ^cell2 .
e e e

This leads to

(3-3) ll^ c e ll2 < £  |£ | l l ( ^ c e . ^ ] E ||2t 2 ( E ) .

For any vertex x  E J\f, let ipx  denote the  associated hat function (i.e., ipx  is continuous,
T-piecewise affine, and <px (y) =  Sx y  for all y  E Af). Given any E  =  conv{a, b} E £

with E  =  T +  A T -  for T +  =  conv{a, 6, c}, T -  =  conv{a,6 ,d} E T ,  let 6e  :=  —
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10<£a y?b9?c  — be some bubble function supported  on uuE  •= T + U T _ . C om pute

(3-4)

Z l‘/2  ll((Wce) • ^ l E ll2.2(£) = -  X^ic « c r ) • v e ]e  ds
E

I [(Vn c  In c  « -  w) • p e ]£  d s  -  /  V’e  [(^n c m c r ) • v e ]e  d s
E J E

- u ) V6e <1x -  / A u b E ^ x -  /  VxcucR - Vn c V̂e  d z
J q  J n

— u) • V6e  d z  +
nQ

Since, by definition, T  (b E  -  V>E)dz =  0 and ||Ö£; -  tM Iz^tQ ) ~  1, the Poincaré
J t ±

inequality leads to

(3.5) ( /  — n 0 / )  (6b -V>e ) d i < |«E |*/ 2 ||/-n o /|| t l ( w ) .
Q

Moreover, ||V6e ||l 2 (Q) ~  1 and Vn c Ln c  u  =  n 0 (V u) yield

(3.6) V>j c (In c  m -  u) • V6e  d z IIVmc (m -  In c  u )IIl 2 (wk ) <  ||V (u  -  u c ) lk 2 (wK )-

T he com bination of (3.2)-(3.6) plus the finite overlap of (c ue | E  €  £ ) proves the
second inequality in Theorem  2.1. □

3 .2 . P r o o f  o f  T h e o re m  2 .2 . The triangle inequality yields

(3.7) ||V(w -  u c )|| =  ||m -  u c IId g  <  IIu  — u d g IId g  +  ||« d g  -  m c ||d g .

T he inclusion Vc(7") C Vd g (T ), Galerkin orthogonality

« d g (md g  — u c , «DG — wc) =  min u d g (w d g  — m c , « d g  -  mc ),
v c E V c ( T )

coercivity and boundedness of û d g  (with respect to  || •  ||d g ), and the  property (2.8)
of the  averaging operator Ic  yield

Ç
/O

u.Qo )
\ llu DG -  Wc IId G ~  «Dg (wDG -  Me, «DG “  Me)

=  ®Dg (md G -  Me, MDG — Ic  Md g ) ||m d G -  Mc ||d g |m d g |j .

Since the  jum p seminorm vanishes on V ,  we have

(3-9) ||md g  -  m c Kd g  inf ||m d g  — v ||d g «
v E V

The combination of (3.7)-(3.9) proves the  first inequality in Theorem  2.2.
The proof of the second inequality follows directly from the  novel result

(3.10) II a -  u d g IId g  min ||u — v d g ||d g  +  osc(/,7")
v d g € V d g (7")

from [24, sect. 3.2]. □
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3 .3 . P r o o f  o f  T h e o re m  2 .3 . Let û c r  € CRo(T) denote the C rouzeix-Raviart
solution with respect to  the  right-hand side H o/. M arini [28] shows th a t

PRT =  X \c « c r  -  | ( n 0 / ) ( .  -  m id(T )),

where m id (T ) |r  =  m id(T) and m id(T) denotes the  barycenter of T  G T  and (• —
m id(T)) G P i(T )  equals (x — mid(T')) a t x  G T  e T .  Hence,

||V u — X ĵ c Wc r II <  Il V u -  Pr t II 4- IIp r t  -  V^CWc r II +  II V mc ^ c r  -  VstC«CR||

< I |V u - p r t || +  | |M -

This proves the  first inequality in Theorem  2.3. The proof of the  second one exploits
M arini’s identity again:

Il V u -  Pr t H <  ||V u -  Vn c ^C r II +  IIVsiCÜCR -  P r t II ||V u -  V m c w c r II +  Il V II-

The efficiency of || V II up to  oscillations [32], namely,

(3.11) \ \h f  H <  H V u -  ^ c u c r II +  osc(/, T ) ,

concludes the proof.
This statem ent is also included in [7], □

3 .4 . P r o o f  o f  T h e o re m  2 .4 . It appears instructive to s ta r t  a general indirect
proof to  point ou t where the com pactness comes into the play which is then followed
by a perturbation  argum ent.

S tep  1. Let PM P(-), CFEM (-), and RTM FEM (-) denote the  solution operators
associated with (1.1), (2.1.b), and (2.3.b). If the  theorem  is false, there is a sequence
of right-hand sides f n  G L 2 (Q) with corresponding solutions u n  :=  P M P (/n ) and
approxim ations u c (n )  :=  C F E M (/n ) and Pr t (h ) :=  R T M FE M (/n ) such tha t

(3.12) n ( ||V u n  - p R T (n)|| + o s c ( / n ,T ) )  <  ||V (u n  -  u c (n ))||.

S tep  2. Since the  aforementioned operators PM P(-), CFEM (-), RTMFEM (-) are
homogeneous of degree one, the  scaling / Tl/ | | / n || in (3.12) leads to  a new sequence of
right-hand sides f n  of L 2 norm one which satisfies (3.12). In other words, we may
and will assume w ithout loss of generality th a t f n  in (3.12) satisfies

(3.13) | | / n || =  1 for all n  G N.

S tep  3. Since the right-hand sides f n  are bounded in (3.13), there exists a subse­
quence Tij with f n j  —*• foo in L 2 (Q). Rellich’s compactness embedding theorem  leads
to  strong convergence / Tl/ —> in H - 1 (Q). Since PM P(-) : H - 1 (Q) -» H q (Q) is a
Riesz isomorphism, it follows th a t  u n j  —> Uqo in / / (](Q). The stability  of the discrete
approxim ation operators also imply boundedness in the discrete spaces (recall th a t  T
is fixed). For a selection of a further subsequence (not relabeled), strong convergence
follows. In o ther words, we may and will assume w ithout loss of generality th a t the
subsequence rij leads to

(3  1 4 ) f n j  foo in u n . -> Uoc in H q (Q),

Pr t (h j ) -> p r t (o o ) in RT0 (T ), u c (n j) -> u c  in V c(T).
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S tep  4. Since the right-hand side in (3.12) is bounded as j  -> oo and th e  le f t-h a n d

side involves i i j  —> oo,

j
l
—
i
>
m
oo

(||V u n  -P R T (n j) || +  o sc (/n j ,T ) )  =  0.

This and the convergence (3.14) imply th a t

P r t (o o ) =  \ / u o o  and o sc (/0 0 ,T )  =  0.

In other words, the  solution =  P M P ( /3O) for G Pq (T ) satisfies Vuoo € RTo(7~)-
S tep  5. Elliptic regularity  for the  Poisson model problem with hom ogeneous

Dirichlet boundary conditions along the  entire boundary s ta tes  th a t €
/7 1 + s (Q) for s >  1/2. Hence, V u x  € RTo(T) is continuous. Some elem entary ca lcu ­
lations on two R a v ia r tT h o m a s  functions which are globally continuous on an e d g e
patch uj e of an interior edge E  show th a t they  need to  coincide in the  sense th a t
V uoq  is affine on u j e - Since the interior edge patches are overlapping, this show s
th a t Uqo is a quadratic  polynomial on Q w ith homogeneous boundary data . Som e
typical example on a circle is provided in the  counterexam ple below. On a polygonal
domain, the  fact th a t there  is some corner specifies the  quadratic  polynomial Uqq to
be some particu lar edge-bubble function. This, in turn , shows th a t u x  =  0 is th e
only remaining solution. This implies =  0.

S tep  6. The point is th a t =  0 is not a t all a contradiction to  (3.13)-(3.14)
for general right-hand sides in L 2 (Q). Thus we restrict the  above argum ents to  th e
class of right-hand sides f  and f n  in Pq (T ). The finite dimension then  yields s trong
convergence in Fb(T) endowed with any norm , e.g., endowed with the  L2 (Q) norm .
This leads to the  contradiction f n i  -> and | | / n j || =  1 implies ||/oo|| =  1- In o th e r
words, steps 1-6 lead to  an indirect proof of the  following proposition of step 7.

S tep  7. Proposition: Given any regular triangulation T  of the  polygonal L ip­
schitz dom ain Q in R 2 into triangles, there  exists some constant C(7~) such th a t for
any right-hand side f  G P o (T )  and ù =  P M P (/)  the associated conforming P\ FEM
solution ù c  =  C F E M (/)  and the  RT-M FEM  solution pR r =  R T M F E M (/) satisfy

(3-15) H V (ù  -  ù c )|| <  C (T ) ||V ù  -  m H .

T he proof is w ith steps 1-6 and the  observation th a t piecewise constant functions
have no oscillations.

S tep  8. The indicated pertu rbation  concerns an arb itrary  right-hand side f  G
£ 2 (Q) and its piecewise integral mean f  :=  I lo /  € Po(T)- The original solution
u  =  P M P (/)  compares to  ù  =  P M P (/)  via

(3-16) l |V ( u - ù ) | |  < o s c ( / ,T ) /7 t .

The proof is a standard  exercise with the  weak form or e := u  — û  and

l|V e||2 =  f  ( / - n 0 / ) e d i =  [  ( / - n o / ) ( e - n o e ) d r

J q  Jo

followed with a weighted Cauchy inequality with the  mesh-size h j-  G PoÇT) and
th e  piecewise Poincaré inequality with Payne-W einberger constant for the convex
triangles. The same proof also verifies the  discrete analogue

(3.17) ||V (u c  -  û c ) || <  o s c (/,7 ')/7T.
t

Notice th a t p R T  =  R T M F E M (/) =  R T M F E M (/) =  p R T .
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S tep  9. T he combination of (3.15)-(3.17) show with appropriate triangle inequal­
ities th a t

IIV(U -  u c )|| <  Il V (û  -  ûc )|| +  OSC(/, 73

< C ( T }  ( | |V û  -  p r t II +  o s c ( / ,T ) )  <  C ( T )  ( ||V u  - p R T |l +  o s c ( / ,T ) ) .

This concludes the  proof with a constant C (T ) which depends on C (T ) and, hence,
on the  interior angles in T .  □

3 .5 . P r o o f  o f  T h e o re m  2 .5 . T he counterexam ple concerns the quadratic poly­
nomial U ß,

u B (x)  :=  (1 -  |x |2 ) /2  in the unit disk B  =  B ( 0 ,1).

Note th a t  u b  €  C °°(R 2 ) solves — A u =  2 in B  and u  — 0 on d B .  Moreover, V u =
- x  €  RT0 (7").

Given a small 0 < h 1 as the uniform edge-length of a regular polygon Q with
vertices on d B ,  let T  denote a shape-regular quasi-uniform  triangulation of Q with
maximal mesh-size ~  h. Let u €  H q (Q) solve — A u =  2 in Q.

The point of departure is the  claim ||V (u  — u r )|| <  /i3 ' 2 . To prove this, observe
th a t, since u B  — u is harmonic with boundary values U ß|a Q ,

||V (u  -  u ß )|| =  min { ||V v|| | v  6 : v |r q  =  u B |9 Q }.

Therefore it rem ains to design some function w  E H l (Q) with w |r q  =  u r |9 q  and
II Vw|| <  /13 / 2 . To do so, set, for any E  G S  w ith E  =  conv{a, b} =  d$l Cl T  for some
T  E T  and nodal basis functions <pa  and of the C ourant FEM ,

w e  :=  ^ / i 2 ç?o ç>b €  with su p p w £  =  T  and w = (  w r ) € H 1 (Q).

\Ee£:ECdQ /

Since w e (x )  =  u B (x )  for all x  €  E ,  and ||V w e || ~  h 2 , it follows th a t

l|V(u -  u B >|| <  / £  IIVw e F  ~  h 3 ' 2 .

]/ EGS-.ECdtt

For Q ( f , T )  := {</r t  € RT0 (T ) | divt/RT =  —TIo/ }, the  RT-M FEM  approxim ation
Pr t  of V u on Q is characterized by

Il V u -  p r t II =  min{ ||V u -  çR T || | gR T  €  Q (2 ,T )} .

This is well understood in the context of minimization under side restrictions and its
connection to  saddle-point problems [6]. Since V u r  €  Q ( 2 ,T ) ,  it follows th a t

(3.18) ||V u  -  p r t II <  IIV(u -  u B )ll <  h3 / 2 -

Since f  =  2, it holds th a t osc / , T  =  0 and ||/ i/ || ~  h. Hence. (3.11) and (3.18) imply

-  p r t II +  o s c ( / ,T ) )  <  H V u  -  ^ c « c r II-

Given M  >  0, the  choice h =  (C / M ) 2  proves the assertion of Theorem  2.5. □
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F i g . 4.1. T h e  con tro l vo lu m e  w*.

4 .3 .2 . D G F E M  o n  n o n c o n fo rm in g  m e sh e s . Often, the  large num ber of d e ­
grees of freedom in DG FEM  com pared to  CFEM  is justified by the  possibility o f
using nonconforming meshes. These meshes may contain some finite num ber of h an g ­
ing nodes per edge. Define VpG (T ) :=  P k ( T )  for some nonconforming triangular m esh
T .  It is shown in [26] th a t also for such meshes there  exists an averaging o p e ra to r
IC  • ^ i >g (7’) ~ > th 21* satisfies (2.8) w ith suitably redefined jum p seminorm. T h e
image Ic (Vd g (T )) =  ^ d g ( ^ )  n  V defines some conforming space V £ ( T ) .  One m ight
not want to  use V £ ( T )  for actual com putations but the  corresponding Galerkin so­
lution serves for a comparison. T he proof of Theorem  2.2 in section 3.2 rem ains
valid in th is  setting  and establishes th e  comparison

Il V u  -  V 4 | |  <  ||u  -  u d c IId g  <  ||V u  -  V uèll +  osc t ( / . T )

for nonconforming meshes. Hence, even on nonconforming meshes, the  accuracy o f
DGFEM  is limited by th e  accuracy th a t is provided by its largest conforming subspace.
Analogous results hold for nontriangular meshes.

4 .4 . R e s u l ts  fo r f in ite  v o lu m e  F E M . A common way [23] to  design the con­
trol volumes cu* for each node z  € Af(Q) for the finite volume finite elem ent m ethod
(FVFEM  or vertex-based finite volumes) [18] is to  connect the barycenter of the  t r i ­
angles of T  w ith the m idpoints of their edges as depicted in Figure 4.1. T hen FV FEM
seeks u p y  G Vc(7~) with

(/„ V upv • d z  = V u f v  d s  = for all z  €  A/”(Q),

where <p2 € V c(T) is the  nodal basis function with ip2 ( z )  =  1 and ip2 (y )  =  0 for all
y  G Af \  { z } .  Hence, CFEM  and FV FEM  differ only by the  right-hand sides [18].

Define e(z) :=  ( u c ( z )  — u p y ( z ) )  G R, z  € AT, through

u c  -  u f v  =  e (2 ) ^
z €AT

and the characteristic function x*|w . =  1 and X*ln\w: =  0 and let e?  €  R for any
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T  e T .  T he fact th a t »2 — X*) dæ =  0 for all T  G T  leads to

||V(«c -  uF V )ll2 =  /  ( / - n 0 / ) u c  -  «FV -  5 2  e (2 )x* )
z€Af '

<  osc(/,7") ( ||V (uc  -  u f v )|| +  5 2  diam (T) 1

\ r e 7 -
52 e ( 2 ) ^ - e r

z €AT(T) L 2 (T )

Since the eigenvalues of the mass m atrix  M  := ( f T  <pz  (pzk  d z ) are larger than

|T |/1 2 , any T  G T  with vertices 21,22,23 satisfies

52 ** “ eT
z& Af(T )

=  |T |/3  £  ( e ( 2 ) - e T )2

L 2 (T ) z GJVIT)

/ e ( 2 i )

e (2 2 )

\ e ( 2 3)

T

M

e ( 2 i)  -  eT

e (2 2 ) -  eT

e (z 3 ) -  eT

2

52 ( e ( ^ ) - e T ) ^ 2 =  4 ||w c  -  UFV -  e T ||L 2 ( T ) .
zeA T (T) L 2 (T )

The choice e r  := T  u c  — U FV d z  and a piecewise Poincaré inequality then  yield

||V (u c  -  w f v )|| <  osc(/, T ).

Hence, ||V (u  -  u c )|| +  o s c ( / ,T )  ~  ||V (u  -  u f v )|| +  o s c ( / ,T ) .

5. N u m e ric a l  i l lu s tr a t io n .  The first experim ent illustrates the  counterexample
of Theorem  2.5 which appears to  be nongeneric. The second example with a corner-
singularity shows equality of convergence rates as a typical behavior.

5 .1 . I l lu s t r a t io n  o f  T h e o re m  2 .5 . In the  first experim ent, the domains QJ?

j  =  2 , . . . ,  9, are regular polygons with 2J  edges whose vertices lie on the unit sphere
cZ£?(0,1) as in the  proof of Theorem  2.5. For each dom ain a series of red-refined
triangulations :=  red ^ ( 'Ç ) of an initial triangulation Tj determ ines the discrete

solutions and of (2.2.b) and (2.3.b). For the  red-refinement of the tri­
angulation each triangle is refined as in Figure 2.1. The initial triangulations are
given as follows. is the criss-cross triangulation and given the triangulation a
red-refinement red('Ç') of Tj is modified in th a t the new boundary nodes are projected
to  the  circle 0 B (0 ,1). This defines ^4-1; the triangulations 71, %■> Tg are depicted in
Figure 5.1.

Table 5.1 contains the quotients of the flux errors w ith exact solution based

on the  Poisson model problem on Qj and its flux approxim ations a n <̂  Pr t  '
based on the  triangulation

(5.1) J >  IIVuO) -

The convergence history plot of Figure 5.2 shows the  flux errors plotted against the
number of degrees of freedom. T he crosses and the  triangles m ark the  errors for the
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F i g . 5.1. Ta. Is, and Té from  subsection 5.1.

T a b l e  5.1

Quotient from  (5.1) fo r  R T -M FE M  and CR-NCFEM.

f  =  0 1 2 3 4 5 6 7
J =  2 .94097 .90727 .90405 .90346 .90335 .90333 .90333 .90333

3 .51218 .72172 .77759 .80313 .81703 .82517 .83011

4 .34413 .56908 .66257 .71381 .74579 .76746

5 .23909 .43216 .53576 .60128 .64662

6 .16793 .31867 .41264 .47906

7 .11856 .23084 .30735

8 .08424 .16622

9 .06103

C rouzeix-R aviart and the R aviart-T hom as solution. In order to  com pute the  e rro r,
for each dom ain some P2 reference solution is computed on T he dashed
lines connect the  errors for the  triangulations T2-7 jj,. . . ,  7ö of the  proof of Theorem  2.5
and show the expected convergence rates.

The R aviart-T hom as errors show a larger convergence ra te  on the  initial tr ia n ­
gulations than  the  C rouzeix-R aviart errors, while for a  fixed dom ain the  R a v ia rt-
Thom as errors converge with the same convergence rate as the  C rouzeix-R aviart
errors after a very long preasym ptotic plateaux. The same behavior can be observed
in Table 5.1: For a fixed £ the  quotients q (£ ,j)  are decreasing while for a  fixed j  th e
quotients first increase and then  stay on the  same level.

Since the  errors of CR-N CFEM  and CFEM  are equivalent, the reciprocal of th e
quotients q (£ ,j)  may serve as a lower bound for the  constant in Theorem  2.4
(up to some m ultiplicative constant which does not depend on the  dom ain or th e
mesh-size). This lower bound increases with j  in this experim ent. However,
Table 5.1 strongly suggests th a t  ç(£, j ) - 1  remains bounded as £ increases. These ex­
perim ental results confirm the  conjecture from Rem ark 3 which says th a t the  constant
C (T ) from Theorem  2.4 depends only on the  dom ain Q and interior angles of T  but
not on the mesh-size.

5 .2. N u m e ric a l  c o m p a r is o n  o n  L -s h a p e d  d o m a in . The second exam ple
is devoted to  a prototypical equivalent behavior of Courant FEM , CR-N CFEM .
DGFEM , and RT-M FEM . The corner singular functions on a typical corner of a
polygonal dom ain Q C R 2 , for instance, do not allow for the improved convergence of
RT-M FEM .
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F ig . 5.2. E rrors o f  C R -N C F E M  fx  )  a n d  R T -M F E M  (V ) in  subsection  5.1.

To illustrate this, let the origin 0 be a nonconvex vertex of âQ with maximal
interior angle uj such th a t, up to  some sm ooth truncation  function, the  leading singular
function has the  form

Using^T, Ç5) =  T~a  sin(açj) for 0 <  r  < 1 and 0 <  < uj

with 1/2 <  a  := t t / üü < 1. Given any triangle T  with vertex 0, the approxim ation
error of the  flux V u s i n g  =  1 (sin cos ay?) by R aviart-T hom as functions is
bounded from below by

min ||V u s t n 9 (x) -  (a, b) -  cx ||L 2( r )  «

and, hence, is of the  sam e order as the interpolation error of the  piecewise affine nodal
or edgewise interpolation in V c(T ) or C Rq (T ). For meshes where this defines the
convergence rates like in the numerical examples below, th is shows th a t  RT-M FEM
has the  same order of convergence and is not superior to the  remaining finite element
schemes.

The L-shaped dom ain Q =  [—1, l]2 \ ( [ 0 ,1] x [—1,0]) illustrates th is w ith the  right­
hand side f  =  2. The discontinuous Galerkin schemes under consideration are the
sym m etric interior penalty  m ethod and the  nonsymm etric interior penalty  m ethod
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F ig . 5.3. T h e in it ia l tr ia n g u la tio n  fo r  the red-refined  tr ia n g u la tio n s  ( le ft)  a n d  a graded  m e s h
(rig h t)  o f  the L -shaped  d o m a in  fr o m  su b section  5.2.

ndof

F ig . 5.4. E rrors o f  C F E M , C R -N C F E M , S IP G , N1P G , and  R T -M F E M  fo r  u n ifo r m  red-refined
m esh es  on  th e  L-shaped  do m a in .
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ndof

F i g . 5.5. E rrors o f  C F E M , C R -N C F E M , S IP G , N 1P G , and  R T -M F E M  fo r  graded m esh es on
the L -shaped dom ain .

with the bilinear forms

ÖDg (w d G, VDg ) : =  /  ^JCMPG • Vn ç I'DG d x  — ô 5 7  / [u d g Je  (^IC V d g ) e  • y E ds
J q  £ e £ JE

-  5 7  /  [v d g ]£  (Vn c m d g ) e  • v p d s  +  5 7  7FÏ /  [u d g Je  [^D cl^ds

E e £ ^ E  EEE '

for Ô =  1 for SIPG and Ö =  — 1 for NIPG and penalty param eter z/ =  10.
T he solutions of (2.1.b), (2.2.b), (2.7), and (2.3.b) are computed on a sequence

of red-refined triangulations TL 7T,. . . ,  ^  and a sequence of graded meshes 'J'G  for
j  =  3, 4, 8, 16, 32, 64, 128, 256 with grading param eter /3 =  3/2, where j  denotes the
vertices on one side of one macro triangle. The initial triangulation % for the red-
refined triangulations and the graded mesh are depicted in Figure 5.3. The errors
for solutions on a  red-refined triangulation are computed by a Po reference solution on
7g and the  errors for a solution on a graded mesh 1~G  are computed by a Po reference

solution on red ( 2 \ y G ). Figures 5.4 and 5.5 reveal the expected convergence rates 1/3
(resp.. 1/2) for uniform (resp.. graded) meshes for all th ree methods. T he equivalence
of the  three m ethods is clearly visible.

N o te  added in  proof. After th is work was completed, th e  authors learned th a t the
statem ents of Lemma 5.1 and Proposition 5.2 in [5] result in equivalence of conforming
FEM  with SIPG for very large penalization with an independent proof. Hence the
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result of Theorem  2.2 of th is paper generalizes th a t partial result to  a larger class of
DG schemes.
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