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Abstract. This paper establishes the equivalence of the conforming Courant finite element
method, the nonconforming Crouzeix-Raviart finite element method, and several first-order discon-
tinuous Galerkin finite element methods in the sense that the respective energy error norms are
equivalent up to generic constants and higher-order data oscillations in a Poisson model problem.
The Raviart-Thomas mixed finite element method is better than the previous methods, whereas
the conjecture of the converse relation is proved to be false. This paper completes the analysis of
comparison initiated by Braess [Calcolo. 46 (2009), pp. 149-155]. Two numerical benchmarks illus-
trate the comparison theorems and the possible strict superiority of the Raviart-Thomas mixed finite
element method. Applications include least-squares finite element methods, finite volume methods.
and equality of approximation classes for concepts of optimality for adaptive finite element methods.
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1. Introduction. Given a bounded polygonal domain €2 in the plane and data
f € L%(9), the Poisson model problem seeks the weak solution u € H(Q) of

(1.1) —Au=finQ and u=0onJdQ.

This paper compares the error of popular finite element methods (FEMs) for the nu-
merical solution of (1.1) as depicted in Figure 1.1, the conforming Courant FEM
(CFEM) [20], the nonconforming Crouzeiz—Raviart FEM (CR-NCFEM) (21], the
mixed Raviart-Thomaes FEM (RT-MFEM) [30], and several discontinuous Galerkin
FEMs (DGFEM) with respective solutions uc, ucr, (prr. urT), and upg based on a
shape-regular triangulation of €.

As the main result (in Theorems 2.1, 2.2, and 2.3) we will show that

(1.2) Ve —prrlirz) S Welu —ucr)liLz @) = [[V(u —uc)llL2@) = llu — ubclloe

holds up to data oscillation osc(f,7) and up to mesh-size independent generic mul-
tiplicative constants (hidden in the notation < and =). The norm | e ||pg is the
standard DG norm defined in (2.5). It is remarkable that those comparison results
do not rely on the regularity of the solution u.

*Received by the editors August 24, 2011; accepted for publication (in revised form) June 27,
2012; published electronically November 1, 2012. This work is supported by the DFG Research
Center Matheon Berlin and by the World Class University (WCU) program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology
R31-2008-000-10049-0.

http://www.siam.org/journals/sinum,/50-6/84570.html

Institut fiir Mathematik, Humboldt-Universitit zu Berlin, Unter den Linden 6, D-10099 Berlin,
Germany; Department of CSE. Yonsei University, Seoul, Korea (cc@math.hu-berlin.de).

Hnstitut fiir Mathematik, Humboldt-Universitit zu Berlin, Unter den Linden 6, D-10099 Bertin,
Germany (peterseim@math.hu-berlin.de, schedens@math.hu-berlin.de).

2803



2804 C. CARSTENSEN, D. PETERSEIM, AND M. SCHEDENSACK

A A A

FIG. 1.1. CFEM (left), CR-NCFEM (middle), RT-MFEM (right).

A counterexample (Theorem 2.5), which is based on a sequence of domains and
corresponding meshes, shows that the conjecture

IMnc(u — ucr)llL2 ) S IVu — prrllL2@)

is false in general. On a fixed mesh, however, the Raviart-Thomas FEM is equivalent
to the other methods up to data oscillations (Theorem 2.4); the equivalence on a fixed
polvgonal domain independent of the mesh-size remains open.

A comparison of CFEM, CR-NCFEM, and RT-MFEM has been initiated in [7],
where the hypercircle method proves |Vu — prr|| < [|[Wel(e — ucr)l| £ |V (u—uc)|-
The novel result

(1.3) Ve (u — ucr)lia@) < llp — MopllL2(q) + osc(f, T)
from [24, sect. 3.1] with the L? projection of the flux p := Vu onto its piecewise
constant integral means Ilpp leads to a different proof of |[Wc(u — ucr)|L2() <

[V(u — uc)llL2(n) with other tools. This paper gives direct proofs and a thorough
comparison including DGFEM.

An immediate application to least-squares finite element methods improves a
comparison result of [27] and disproves a further conjecture. The comparison results
also clarify that various approximation classes for the optimality of adaptive FEM
coincide.

The outline of this paper is as follows. Section 2 introduces the precise notation
and states the main results in Theorems 2.1-2.5 and comments on it. Section 3 gives
their proofs based on arguments from the a posteriori error analysis. Section 5 illus-
trates the equivalences in a typical situation and in the context of the counterexample
of Theorem 2.5. The arguments are expected to be possibly generalized to further
applications and numerical schemes as well as to higher dimensions and more general
boundary conditions.

Throughout this paper, standard notation on Lebesgue and Sobolev spaces is
employed and A < B abbreviates an inequality A < C B with some mesh-size inde-
pendent generic constant 0 < C < oo; A = B abbreviates A < B < A. All hidden
generic factors depend on a lower bound of the minimal angle in 7.

2. Results. This section defines the three finite element methods of Figure 1.1,
introduces some class of DGFEM, and states the main results of this paper. The
proofs follow in the subsequent section.

2.1. Finite element methods. Let 7 denote a shape-regular triangulation of
a polygonal bounded Lipschitz domain § into (closed) triangles, ie., @ = UrerT
and any two elements are either disjoint or share exactly one edge or share exactly
one vertex. Let hy € Py(7T) denote the T-piecewise constant mesh-size function with
hr|r = diam(T) for all T € T. Let £ denote the set of edges of T; £(2) denotes
the set of interior edges, £(9) refers to the set of boundary edges. Similar notation
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applies to the vertices; N denotes the set of vertices, N'(€2) denotes the set of interior
vertices, and N(99) refers to boundary vertices. Throughout the paper, let

P (T:R™) = {vx : Q@ > R™ | for all T € T,uvi|r is a polynomial of total degree < k}
denote the set of piecewise polynomials and Il : L%(Q; R™) — Pi(T;R™) denote
the L? projection onto 7 -piecewise polynomial functions or vectors of order k, e.g.,
o f)|T = f fdz for all T € T and all f € L*(;R™). For any interior edge
=

E € £(Q) there are two adjacent triangles T~ and T* with E = 8T~ NadT*. For
any E € £(Q). let vg be the normal vector of E that points from T~ to T, for
boundary edges F € £(99Q) let vg be the outward unit normal vector of Q. De-
fine the jump of v € P(T) across E € £(Q) by [v]g := v|lpr- — vlr- and define
[v]g = v|g for E € £(9Q). The average of v € P(T) across E € £(Q) is defined by
(v)E := (vlp- +v|r+)/2 and for boundary edges E € £(3Q) by (v)g :=v|g.

Given such a shape-regular triangulation 7T, recall the FEM under consideration.
CFEM. The Courant finite element space reads

(2-1.a) Ve(T) := {vc € Pi(T) | vc is continuous and vanishes on 9Q}.

The corresponding (unique) Galerkin approximation uc € V(7)) satisfies
(2.1.b) / Vuc - Vuedr = / focdz  for all ve € V(T).
Ja Ja
CR-NCFEM. The Crouzeix-Raviart finite element space reads

(2.2.a) CRY(T) := {vcr € P\(T) | vcr is continuous at midpoints of interior

edges and vanishes at midpoints of boundary edges}.

A general function in CR}(7") does not belong to H 1(Q). However, the T-piecewise
gradient Yncucr, with (Wncver)|r = V(ver|r) for all T € T, exists and Wcvcr €
Py(T; R?). The (unique) Crouzeix-Raviart approximation ucg € CRy(T) satisfies

(2.2.b) J/ VUneucr - Wcver dx = J/ fvcrdzx for all ver € CR(I)(T)
Q Q

RT-MFEM. The mixed lowest-order Raviart—-Thomas finite element space reads
(2.3.a)

RTo(T) := {grr € H(div,Q) | for allT € T3ar ¢ R?3br c R forallz € T,
grrir(z) = ar + brz}.

The (unique) mixed finite element approximation (prr.urt) € RTo(7T) x RB(T) sat-
isfies

[ PRT ' qrr dT + J/ ugr divgrrdz = 0 for all grr € RTo(T);
Q

(2.3.b) Ja
o f + divprr = 0.

DGFEM. Our comparison includes some class of DGFEM which contains popular
choices such as the symmetric interior penalty method (SIPG) [22, 1, 25], the non-
symmetric interior penalty method (NIPG) [31], and the local DG (LDG) (19, 16].
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The abstract setting for the DGFEM under consideration is as follows., Consider the
space Ve (T) := P(T) of T-piecewise affines with associated jump-seminorm

(2.4) Lo 3= |EI™|[o]&l}ae
EcE

and norm

(2.5) o llpe = (Ve * 13200y + 1 #13)/2

The bounded and coercive (with respect to || ¢ ||pg) DG bilinear form epg:Vpa(T) x
Voo{T) = R extends afy.(1)xveim) 10 Vba(T) x Vog(T) and satisfies

(2.6) la{v, ve) — apc(vpa,ve)l < Cillv = vpellpcl| Ve |l L2

for all ve € V(T), v € Hy{R), and vpg € Vpe(T) with some universal positive
constant C} independent of hy. The (unique) DG approximation upg € Vpa(T)
satisfies

r
(2.7) aDG(“DGaUDG) = j _f‘UDG dr for all UpG € "DG(T)
4]

Assume further that there exists some bounded linear operator I : Vpg(T) — Ve(T)
and some positive constant Cz that does not depend on ht such that

(2.8) ltpg — Ic vpellpe < Czlvpals

holds for all vpg € Vpa(T).

It is shown in [24, sect. 3.2] that the DGFEM mentioned above (SIPG, NIPG.
LDG) fit into this abstract framework. Moreover, the operator I may be chosen
based on averaging (10, 11, 12, 26]; see (3.1) below for a precise definition.

2.2. Main results. This subsection presents the comparison results proved in
section 3. The Lebesgue and Sobolev spaces L2(€2) and H'(f2) are defined as usual
and we define || - || == || - [ L2¢q) and ose(f, T) := ||hr(f — Hof)||.

THEOREM 2.1 (equivalence of CFEM and CR-NCFEM). It holds that

[Vu — Vuc|| < |V — Weuckll £ |Vu — Vue|| + ose(f, T).

Remark 1 (two possible conjectures). In the context of Theorem 2.1 and the
hypercircle identities, two possible conjectures are that the conforming or the non-
conforming error is controlled by the distance of these two discrete solutions up to
oscillations, i.e.,

[Vu — Vuc|| £ ||Vuc — Woucr| + ose(f, T)

and

[|[Vu — Wcucrll < [|Vuc = Weucrl| + osc(f, T).

The two statements are false, in general, because for f = 1, and the criss-cross
triangulation 7 of the unit square @ = (0, 1)? into four congruent triangles as depicted
in Figure 2.1, it holds that ue = uecr # u.
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F1G. 2.1. Criss-cross triangulation of the unit square (left) and a red-refined triangle (right).

THEOREM 2.2 (equivalence of CFEM and DGFEM). [t holds that
[Vu — Vuc| £ [lu - upglipg < IIVu = Vuclf + osc(f, T).

Note that the first inequality in Theorem 2.1 and the first inequality in Theo-
rem 2.2 hold without data oscillation terms.

Remark 2 (equivalence of DGFEMs). By transitivity, Theorem 2.2 establishes the
equivalence (up to data oscillations) of all DGFEM under consideration, in particular
SIPG, NIPG, and LDG.

THEOREM 2.3 (comparison of RT-MFEM and CR-NCFEM). It holds that

IVu = Weucrll < [|Rf]l + Ve — prrll £ IV — Weucrl| + ose(f, T).

THEOREM 2.4 (comparison of CFEM and RT-MFEM on a fixed mesh). Given
any regular triangulation T of the polygonal Lipschitz domain Q in R?, there exists
some constant C(T) such that

IV(u = uc)ll < C(T) (I1Vu - prrl + ose(£, 7).

The constant C(T) may depend on the triangulation T, but does not depend on the
right-hand side f € L?(Q) and the solution u € H} () or its reqularity.
THEOREM 2.5 (superiority of RT-MFEM). The conjecture

[[Vu — Weucr|l < [|Vu — prrll + osc(f. T)

is false, in general, in the sense that, given f = 2 and M > 0, there exist some convez
Lipschitz domain Q = Qp; and a quasi uniform triangulation T = Ty such that

M ([ Ve = prel| + 0sc(£, T)) < [V~ Vacucsl

Remark 3. The counterexample in the proof of Theorem 2.5 explains that for
a sequence of triangulations (7;)sen the corresponding sequence of constants C(Tz)
in Theorem 2.4 may be unbounded. The indirect proof of Theorem 2.4 employs
compactness and, hence, does not provide further information on that growth. It is
conjectured that C(7) depends only on the polygonal domain Q and interior angles
of T (see section 5.1 for a numerical experiment) but not on the mesh-size.

3. Proofs.

3.1. Proof of Theorem 2.1. The first proposition is already included in [13,
Theorem 5.1] with a different proof.

PROPOSITION 3.1. Any uvcr € CRy(T) satisfies

min ver — Vouell & min ver — Vull.
S Wcver cll i WNcvcr I
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Proof. Let wr := U{K € T| TN K # 0} denote the patch of first order layers
around T and let £(wr) := {E € €| ENT # 0} denote its edges. For z € N define
T(z)={TeT|zeT}.

Given vcg € CRy(T) define Ic ver € Vo (T) by

(3.1) (Ucver)(z) = T S (verlr)(2)

TeT(z)
for any interior node z € N'(Q). For T € T and vcr € CRy(T), define

p1(ver) = ||[Wnc(ver — Ic ver)liLz ()

and

p2(vcr) = \/ > IE(Wcver) - Telelid2 gy »

v Ee&(wr)

where 7g denotes a unit vector tangential to E. If p2(vcr) = 0, then vep is continuous
on wr and ver|g = 0 for a boundary edge E C 9QN&7, hence Ic vcr = ver on T and
pr(ver) = 0. Since p; and p; are seminorms on CR{(T), there exists a constant, such
that p; < py on CR{(T). A scaling argument shows that the constant is independent
of the mesh-size. The sum over all T € T and the bounded overlap of the patches
(wr | T € T) show that

IWe(ver — Ic ver)l? £ Z Z |E] "[(W(‘UCR)'TE]E"%'I(E)

TET E€&(wr)

< Z |E| l[(Wever) - Te)Ell 2k -

Eecé&

A standard argument with edge-bubble functions (cf. [32]; see [13, Proof of Theo-
rem 5.1 for details) shows

Z |E| |[(Wever) - TElEN 208y "llll IIV\CUCR - V.

Ee&

Hence, one inequality is proven. The reverse inequality follows from VVe(T) C
VH(R). 0

The remaining part of this subsection is devoted to our proof of Theorem 2.1.
The inclusion Vo(T) € CRY(T) and Galerkin orthogonality show

[Weucr — Vuc|| = nyilinam [Weucr — Vel -

Together with Proposition 3.1 and the triangle inequality it follows that

IVu — Vuc|| < [[Ve — Wcucrll + [Wwecucr — Vucl|l < [|[Ve — Weucrl,

which is the first inequality in Theorem 2.1.

A proof of the second inequality can be found in [7], while here a different, direct
proof is given.
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Let e := Inc v — ucr, where the nonconforming interpolation Incu € CR{I,(T) is
defined uniquely by

-[ Incuds = ][ uds forall Ecé&.
JE E

Since Wic(Inc u) = Ig(Vu), it holds that

IVu — Weucrl Lz < |[Vu = We Inc ull L2y + | Weel L2(n)

(3.2)
<|IV(u - uc)llLz@y + | Wcell L2 )

Since Wnce is constant on E € £, [e] is affine on E € £ and vanishes in the midpoint
of E, it follows for ec := Ic e € Vo(T) (with I from (3.1)) that

[VncellZz(n) = J/Q Wce - Wele — ec)dz

=5 / [(e — ec)Wnce - vg|gds

Eee’E

< >0 W vElgllLag li<e = ec)ell 2

Ee&(Q)

< [ Y IENWce- velgliagm, |3 1 e - ecdellags.

V Eec@ Ee€

Let Qg :=U{T € T | ENT # 0} denote the patch of first order around E and let
T(Qg) denote its triangles. Define for vcr € CR'(T(Qg))

3
p3(vcr) := |E|”2||(ver — 1o UCR)EHLz(E) and  pa(vcr) = |[MncverllLz@s)-

If ps(vcr) = 0, then vcr is constant on each T € T(2g). Since vcr is continuous on
the midpoints of interior edges of T (QE), vcr is constant on £2z. Hence, vcr = Ic vcr
on E and p3(vcr) = 0. Since p3 and py are seminorms on CR! (T (QE)), there exists
a constant such that p3 < py on CR}(T(Qg)). A scaling argument shows that the
constant is independent of the mesh-size. The sum over all interior edges of 7 and
the bounded overlap of the patches (g | E € £) show that

> I (e - ec)ell1a(e) S IVcel®

Eek&

This leads to

(33) IWcel> < D IEl[Wce - velgllia g, -

Eeg(Q))

For any vertex z € N, let ¢ denote the associated hat function (i.e., ¢ is continuous,
T-piecewise affine, and ¢.(y) = 4 for all y € N). Given any E = conv{a,b} € £
with E = T, NT_ for T} = conv{a,b,c},T- = conv{a,b,d} € T, let bg := 6 papp —
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10¢qa woee —10p0app0a be some bubble function supported on wg := T, UT_. Compute
(3.4)

|EI' I[(Wee) - velgll 2 gy = { /E [(We Inc u — Weucr) - ve] g ds

= / be [(Welncu — u) - vg|pds — JL YE ((Wcucr) - ve|g ds
E

= / Welncu — u) - Vbedr - / Aubgdr - / Woucr - Wete dr
wi N (1]

/ f(b[.; S (,"1-;)(11‘
Q

Since, by definition. f (bg — Ye)dx = 0 and ||bg — ¥g||L=() = 1, the Poincaré
T:

+

< /VN('(I.\'(;U—U)'VbEdI
Q

inequality leads to

(3.5) /Q f(be—vE)dx < lwel 21 = Mof llaun)-

/ (f-Tof) (b5~ vi) dz

Moreover, ||Vbg||L2(n) = 1 and Ve Inc u = [Ip(Vu) yield

(3.6) / WelIlncu—u) - Vbedr| < [Welu — Inc )| 12w < IV(u— we)| L2ws)-
19

The combination of (3.2)-(3.6) plus the finite overlap of (wg | E € £) proves the
second inequality in Theorem 2.1. 0

3.2. Proof of Theorem 2.2. The triangle inequality yields
(3.7) IV(u = uc)ll = l|lu — ucllpc < llu — ubcllpc + llubc — uclipa-
The inclusion Vo(T) C Vpg(T), Galerkin orthogonality

apc(upG — uc,upg —uc) = min__ epg(upc — uc, upG — ve),
vec€Ve(T)

coercivity and boundedness of apg (with respect to || e |[pg), and the property (2.8)
of the averaging operator I¢ yield

lupc — ucllpg < apc(upc — uc, upg — uc)
(3.8)
= apc(upg — uc, upc — Ic upg) < {lunc — ucllpclubcly.

Since the jump seminorm vanishes on V, we have
(3.9) llubc — uclloe £ inf |lupc - vlibe.

The combination of (3.7)-(3.9) proves the first inequality in Theorem 2.2.
The proof of the second inequality follows directly from the novel result

(3.10) e — upgllpc < min llu — vbgllpe + osc(f, T)
vDG EVpa(T)

from [24, sect. 3.2]. O
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3.3. Proof of Theorem 2.3. Let iicr € CR(7) denote the Crouzeix-Raviart
solution with respect to the right-hand side Ilof. Marini [28] shows that

PRT = Wctcr — (Ilof)(e — mid(T)),

where mid(7)|7 = mid(T) and mid(T) denotes the barycenter of T € T and (e —
mid(T)) € Pi(T) equals (z — mid(T)) at z € T € T. Hence,

Vu — Weucrl| < [[Vu — prrll + lprr — Weicr|l + [|[Wetcr — Weucrl||
< IVu — prell + £l

This proves the first inequality in Theorem 2.3. The proof of the second one exploits
Marini's identity again:

Ve — prr|| < [|[Vu — Wetcr| + Wcicr — prrll S [|Vu — Wcucr|| + ||Rfl-

The efficiency of ||Af]| up to oscillations [32], namely,

(3.11) IAfll < IVu — Wcucrl|l +osc(f, T),

concludes the proof.
This statement is also included in [7]. a

3.4. Proof of Theorem 2.4. It appears instructive to start a general indirect
proof to point out where the compactness comes into the play which is then followed
by a perturbation argument.

Step 1. Let PMP(-), CFEM(-), and RTMFEM(-) denote the solution operators
associated with (1.1), (2.1.b), and (2.3.b). If the theorem is false, there is a sequence
of right-hand sides f, € L?*(Q) with corresponding solutions u, := PMP(f,) and
approximations uc(n) := CFEM(f,) and prr(n) := RTMFEM(f,) such that

(3.12) n([|Vun — pre(n)|| + o0sc(fn, T)) < [V (un — uc(n))|.

Step 2. Since the aforementioned operators PMP(-), CFEM(-), RTMFEM(-) are
homogeneous of degree one, the scaling f,,/| fn]| in (3.12) leads to a new sequence of
right-hand sides f, of L? norm one which satisfies (3.12). In other words, we may
and will assume without loss of generality that f, in (3.12) satisfies

(3.13) {|fnll =1 forallneN.

Step 3. Since the right-hand sides f,, are bounded in (3.13), there exists a subse-
quence n; with fn, = fo in L?(2). Rellich’s compactness embedding theorem leads
to strong convergence f, — fx in H™!(Q). Since PMP(-) : H~}(Q) — Hj(R) is a
Riesz isomorphism, it follows that u,, — us in H}(§2). The stability of the discrete
approximation operators also imply boundedness in the discrete spaces (recall that T
is fixed). For a selection of a further subsequence (not relabeled), strong convergence
follows. In other words, we may and will assume without loss of generality that the
subsequence n; leads to

fa; = fo in HTY(Q), Un, — Uss in HY(Q),

B9 prr(ng) o prr(o0) in RI(T),  clng) = uc in Ve(T).
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Step 4. Since the right-hand side in (3.12) is bounded as j — oo and the left-hand
side involves 1; — oo,

lim (||Vun, — prr(ny)ll + osc(fn;, T)) = 0.
j—o0

This and the convergence (3.14) imply that
pr1(0¢) = Ve, and  osc(fo,T) = 0.

In other words, the solution u,. = PMP(f) for f € Py(T) satisfies Vu, € RTy(7)-

Step 5. Elliptic regularity for the Poisson model problem with homogeneous
Dirichlet boundary conditions along the entire boundary states that us, € H3(R2) N
H*3(Q) for s > 1/2. Hence, Vux, € RTy(T) is continuous. Some elementary calcu-
lations on two Raviart-Thomas functions which are globally continuous on an edge
patch wg of an interior edge E show that they need to coincide in the sense that
Vuy is affine on wg. Since the interior edge patches are overlapping, this shows
that uo is a quadratic polynomial on 2 with homogeneous boundary data. Some
typical example on a circle is provided in the counterexample below. On a polygonal
domain, the fact that there is some corner specifies the quadratic polynomial uy to
be some particular edge-bubble function. This, in turn, shows that u.. = 0 is the
only remaining solution. This implies fo. = 0.

Step 6. The point is that fo. = 0 is not at all a contradiction to (3.13)-(3.14)
for general right-hand sides in L?(Q2). Thus we restrict the above arguments to the
class of right-hand sides f and f, in Py(T). The finite dimension then yields strong
convergence in Py(7) endowed with any norm, e.g., endowed with the L?(2) norm.
This leads to the contradiction f,, = fo and || f,,|| = 1 implies || fo|| = 1. In other
words, steps 1-6 lead to an indirect proof of the following proposition of step 7.

Step 7. Proposition: Given any regular triangulation 7 of the polygonal Lip-
schitz domain €2 in R? into triangles, there exists some constant C(T) such that for
any right-hand side f € Py(T) and @ = PMP(f) the associated conforming P; FEM
solution @ic = CFEM(f) and the RT-MFEM solution PRT = RTMFEM(f) satisfy

(3.15) IV(& - dc)|| < C(T)| Vit - prerll-

The proof is with steps 1-6 and the observation that piecewise constant functions
have no oscillations.

Step 8. The indicated perturbation concerns an arbitrary right-hand side f €
L%(Q) and its piecewise integral mean f := Iof € Py(T). The original solution

u = PMP(f) compares to i = PMP(f) via
(3.16) IV (u - a)|| < osc(f,T)/m.

The proof is a standard exercise with the weak form or e := u — @ and
IVel2 = [ (f - Tof)edz = [ (f — Tof)(e - Toe) da
Jil CAYS

followed with a weighted Cauchy inequality with the mesh-size hy € Py(7T) and
the piecewise Poincaré inequality with Payne-Weinberger constant for the convex
triangles. The same proof also verifies the discrete analogue

(3.17) IV(uc — ac)|l < osc(f, T)/x.
Notice that prr = RTMFEM(f) = RTMFEM(f) = prr-
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Step 9. The combination of (3.15)—(3.17) show with appropriate triangle inequal-
ities that

19 (e = ue)ll £ V(@ - @)l + ose( £, 7)
< &(T) IV = prrll + ose(£,7)) < C(T) (IVu = prell + osc(f, 7))

This concludes the proof with a constant C(7) which depends on C(T) and, hence,
on the interior angles in T. ]

3.5. Proof of Theorem 2.5. The counterexample concerns the quadratic poly-
nomial up,

ug(z) := (1 - |z|*)/2 in the unit disk B = B(0,1).

Note that ug € C°°(R2) solves —Au = 2 in B and u = 0 on dB. Moreover, Vu =
—-I € RT()(T)

Given a small 0 < h < 1 as the uniform edge-length of a regular polygon 2 with
vertices on 9B, let T denote a shape-regular quasi-uniform triangulation of Q with
maximal mesh-size = h. Let u € HJ(f?) solve —Au = 2 in .

The point of departure is the claim ||V(u — ug)|| < h3/2. To prove this, observe
that, since up — u is harmonic with boundary values ug|5q,

IV(u —up)|| = min {||Vv| | ve H(R) : v|sn = uplsn}.

Therefore it remains to design some function w € H'() with wjsg = uglsn and
|Vw|| < h¥2. To do so, set, for any E € £ with E = conv{a,b} = QN T for some
T € T and nodal basis functions ¢, and ¢ of the Courant FEM,

/ \
h2pap0p € H'(Q) with suppwg =T and w= ( Z wE) c HY(Q).
EcEEC8N

wg 1=

N =

Since wg(z) = ug(x) for all z € E, and ||Vwg| = h?, it follows that

INu-uwsli< [ 3 [Vwel?~h¥2
V EcE:ECON

For Q(f,T) := {grt € RTo(T)| divgrr = —Ilof }, the RT-MFEM approximation
prr of Vu on Q is characterized by

[Vu — prr|| = min{ |Vu — grrll | qrr € Q(2,7)}-

This is well understood in the context of minimization under side restrictions and its
connection to saddle-point problems [6]. Since Vup € Q(2,T), it follows that

(3.18) IVu — prerll < [V(u — up)ll £ AY2.
Since f = 2, it holds that osc f,7 =0 and ||hf|| = h. Hence. (3.11) and (3.18) imply
Ch™'2(|Vu — pre || + 0se(f, T)) < || Vu ~ Ycucall.

Given M > 0, the choice h = (C/M)? proves the assertion of Theorem 2.5. ]
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\

F1G. 4.1. The control volume w; .

4.3.2. DGFEM on nonconforming meshes. Often, the large number of de-
grees of freedom in DGFEM compared to CFEM is justified by the possibility of
using nonconforming meshes. These meshes may contain some finite number of hang-
ing nodes per edge. Define V5, (T) := Pi(T) for some nonconforming triangular mesh
T. It is shown in [26] that also for such meshes there exists an averaging operator
Ic : VG(T) > V that satisfies (2.8) with suitably redefined jump seminorm. The
image Ic(V5g(T)) = Vig(T) NV defines some conforming space V&(7). One might
not want to use V&(T) for actual computations but the corresponding Galerkin so-
lution u¢ serves for a comparison. The proof of Theorem 2.2 in section 3.2 remains
valid in this setting and establishes the comparison

IVu = Vug|l < llu = ubcllo < IVu — Vug| + oscx(f, T)

for nonconforming meshes. Hence, even on nonconforming meshes, the accuracy of
DGFEM is limited by the accuracy that is provided by its largest conforming subspace.
Analogous results hold for nontriangular meshes.

4.4. Results for finite volume FEM. A common way [23] to design the con-
trol volumes w? for each node z € N(2) for the finite volume finite element method
(FVFEM or vertex-based finite volumes) (18] is to connect the barycenter of the tri-
angles of T with the midpoints of their edges as depicted in Figure 4.1. Then FVFEM
seeks upy € Vo (T) with

r \ :
(j Vupy - V. dz=) Vupy -v ds = / f dzx for all z € N(Q),
Q Bw? Juw?

where . € Vo(T) is the nodal basis function with ¢,(z) = 1 and . (y) = 0 for all
y € N\ {z}. Hence, CFEM and FVFEM differ only by the right-hand sides [18].
Define e(z) := (uc(2) — upv(2)) € R, z € N, through

Uc — UFV = Z e(z)p.
2EN

and the characteristic function x:|,; = 1 and x:|o\,; = 0 and let er € R for any
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T € T. The fact that ][(npz —x:)dzx =0 for al T € T leads to
T

Ve =) = [[(f = Tof) (uc = urv = ¥ elexz ) az

2EN

Y elz)x:—er

< osc(f,T) (IIV(uc —upy)| + Z diam(T)~!
3 2EN(T)

TeT

L7(T))'

Since the eigenvalues of the mass matrix M := (fT Pz, Pz d:c)). x—1.0 2 are larger than
|T'|/12, any T € T with vertices z), zo, z3 satisfies

Z e(z) x; —er

2

=IT|/3 ) (e(2) —er)?

2EN(T) L3(T) 2€N(T)
e(z1) —er\ e(z1) —er
<4 |e(ze) —er | M e(z2) —er
e(z3) —er/ e(z3) —er
2
<4i > (e(z) —er)e: =4 |luc — upv — er||Ta(r)-
2€N(T) LX(T)

The choice er := f uc — upy dr and a piecewise Poincaré inequality then yield
T

IV(uc — upv)]| < osc(f, 7).
Hence, ||V(u — uc)|| + osc(f, T) = (| V(u — upv)|| + osc(f, T).

5. Numerical illustration. The first experiment illustrates the counterexample
of Theorem 2.5 which appears to be nongeneric. The second example with a corner-
singularity shows equality of convergence rates as a typical behavior.

5.1. Illustration of Theorem 2.5. In the first experiment, the domains £;,
J=2,...,9, are regular polygons with 27 edges whose vertices lie on the unit sphere
dB(0,1) as in the proof of Theorem 2.5. For each domain Q, a series of red-refined

triangulations T, := red® (%) of an initial triangulation 7 determines the discrete

solutions ugi‘” and p(R’{) of (2.2.b) and (2.3.b). For the red-refinement of the tri-

angulation each triangle is refined as in Figure 2.1. The initial triangulations are
given as follows. 7% is the criss-cross triangulation and given the triangulation 7, a
red-refinement red(7) of 7 is modified in that the new boundary nodes are projected
to the circle dB(0,1). This defines 7, ;; the triangulations %, B, % are depicted in
Figure 5.1.

Table 5.1 contains the quotients of the flux errors with exact solution u'?) based

on the Poisson model problem on €; and its flux approximations VNCU((}li:([ ) and pg.'rl !

based on the triangulation 7,
' £
Ve — pii|
- T
IVu® ~ Vouy |

The convergence history plot of Figure 5.2 shows the flux errors plotted against the
number of degrees of freedom. The crosses and the triangles mark the errors for the

(5.1) q(€,J) ==
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T

P

Fic. 5.1. ‘B, A, and k& from subsection 5.1.

TABLE 5.1
Quotient q(t, ) from (5.1) for RT-MFEM and CR-NCFEM.

€=0 1 2 3 4 5 6 7

J =2 | .94097 90727 .90405 90346 90335 .90333 .90333 .90333
3| .51218 72172 77759 .80313 81703 .82517 .83011
4] .34413 56908 .66257 .71381 .74579 .76746
5| .23909 43216 .53576 .60128 .64662
6 | .16793 .31867 .41264 .47906
7| 11856  .23084 .30735
8 | .0B424 .16622
9 | .06103

Crouzeix-Raviart and the Raviart-Thomas solution. In order to compute the error,
for each domain Q2; some P reference solution is computed on 7 ;;-;. The dashed
lines connect the errors for the triangulations 73, 73, . . . . 7Tg of the proof of Theorem 2.5
and show the expected convergence rates.

The Raviart-Thomas errors show a larger convergence rate on the initial trian-
gulations than the Crouzeix-Raviart errors, while for a fixed domain the Raviart-
Thomas errors converge with the same convergence rate as the Crouzeix-Raviart
errors after a very long preasymptotic plateaux. The same behavior can be observed
in Table 5.1: For a fixed ¢ the quotients ¢(¢, j) are decreasing while for a fixed j the
quotients first increase and then stay on the same level.

Since the errors of CR-NCFEM and CFEM are equivalent, the reciprocal of the
quotients g(¢, j) may serve as a lower bound for the constant C(7 ) in Theorem 2.4
(up to some multiplicative constant which does not depend on the domain or the
mesh-size). This lower bound ¢(¢,j)~"! increases with j in this experiment. However,
Table 5.1 strongly suggests that g(£, j)~' remains bounded as ¢ increases. These ex-
perimental results confirm the conjecture from Remark 3 which says that the constant
C(T) from Theorem 2.4 depends only on the domain Q and interior angles of 7 but
not on the mesh-size.

5.2. Numerical comparison on L-shaped domain. The second example
is devoted to a prototypical equivalent behavior of Courant FEM, CR-NCFEM,
DGFEM, and RT-MFEM. The corner singular functions on a typical corner of a
polygonal domain Q C R2, for instance, do not allow for the improved convergence of
RT-MFEM.
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10° : .

104;' -
2107 -
(6]

10_37 -

-4
10 P+ . ' = 4 b '
10' 10° 10° 10° 10°
nDoF

F1G. 5.2. Errors of CR-NCFEM (x ) and RT-MFEM (V) in subsection 5.1.

To illustrate this, let the origin 0 be a nonconvex vertex of J§) with maximal

interior angle w such that, up to some smooth truncation function, the leading singular
function has the form

Using(T, @) =1 sin(ap) for0<r<land0<yp<w

with 1/2 < a := m/w < 1. Given any triangle T with vertex 0, the approximation

error of the flux Vug,, = ar® !(sinayp,cosayp) by Raviart-Thomas functions is
bounded from below by

min_ [|Vugng(z) — (a,b) — cx| L2¢r) = hy
ab,ceER

and, hence, is of the same order as the interpolation error of the piecewise affine nodal
or edgewise interpolation in V(7)) or CR}(7T). For meshes where this defines the
convergence rates like in the numerical examples below, this shows that RT-MFEM
has the same order of convergence and is not superior to the remaining finite element
schemes.

The L-shaped domain Q = [—-1,1]2\ ([0, 1] x [-1,0]) illustrates this with the right-
hand side f = 2. The discontinuous Galerkin schemes under consideration are the
symmetric interior penalty method and the nonsymmetric interior penalty method
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FI1G. 5.3. The initial triangulation for the red-refined triangulations (left) and a graded mesh
(Tight) of the L-shaped domain from subsection 5.2.

10° : : : . .
107} :
S
5
| 1/3
——C
2| =—CR 1
10 5 gipG
——NIPG
—-RT . s M ST .
10' 10° 10° 10* 10° 10°

ndof

FiG. 5.4. Errors of CFEM, CR-NCFEM, SIPG, NIPG, and RT-MFEM for uniform red-refined
meshes on the L-shaped domain.
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FiG. 5.5. Errors of CFEM, CR-NCFEM, SIPG, NIPG, and RT-MFEM for graded meshes on
the L-shaped domain.

with the bilinear forms

apnc(upnG, vnG) = / Weupc - Vevpgdz — 8 ) J/ [upc]g (WcvpG)E - vEds

EeE
v Z/ [vpclg (WcupG)E - veds + z E]| / [upcle [vpcleds
EeE gee 1B JE

for § =1 for SIPG and é = —1 for NIPG and penalty parameter n = 10.

The solutions of (2.1.b), (2.2.b), (2.7), and (2.3.b) are computed on a sequence
of red-refined triangulations %, 7,..., % and a sequence of graded meshes 7-'G for
Jj=3,4,8, 16, 32, 64, 128, 256 with grading parameter 8 = 3/2, where j denotes the
vertices on one side of one macro triangle. The initial triangulation % for the red-
refined triangulations and the graded mesh 7;¢ are depicted in Figure 5.3. The errors
for solutions on a red-refined triangulation are computed by a P, reference solution on
% and the errors for a solution on a graded mesh '[G are computed by a P» reference

solution on red® (7]'0) Figures 5.4 and 5.5 reveal the expected convergence rates 1/3
(resp., 1/2) for uniform (resp., graded) meshes for all three methods. The equivalence
of the three methods is clearly visible.

Note added in proof After this work was completed, the authors learned that the
statements of Lemma 5.1 and Proposition 5.2 in [5] result in equivalence of conforming
FEM with SIPG for very large penalization with an independent proof. Hence the
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result of Theorem 2.2 of this paper generalizes that partial result to a larger class of
DG schemes.
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