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ABSTRACT m 
Gradient corrections to the local spin density (LSD) approximation for the exchange- 
correlation energy are making density functional theory as useful in quantum chemistry 
as it is in solid-state physics. But which of the many gradient-corrected density functionals 
should be preferred a priori? We make a graphical comparison of the gradient 
dependencies of some popular approximations, discussing the exact formal conditions 
which each obeys and identifying which conditions seem most important. For the 
exchange energy, there is little formal or practical reason to choose among the 
Perdew-Wang 86, Becke 88, or Perdew-Wang 91 functionals. But, for the correlation 
energy, the best formal properties are displayed by the nonempirical rw91 correlation 
functional. Furthermore, the real-space foundation of rw91 yields an insight into the 
character of the gradient expansion which suggests that rw91 should work especially 
well for solids. Indeed, while improving dissociation energies over LSD, rw91 remains the 
most "local" of the gradient-corrected exchange-correlation functionals and, thus, the 
least likely to overcorrect the subtle errors of LSD for solids. To show that our analysis of 
spin-unpolarized functionals is sufficient, we also compute spin-polarization energies for 
atoms, finding ~ w 9 1  values only slightly more negative than SD values. 
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exchange-correlation energy E x , [  n , n , I, a func- 
tional of the up- and down-spin electron densities, 
and its functional derivative, the exchange-correla- 
tion potential, vxc, ,(r) = 6Ex,/6n,(r) [2-41. They 

o h  and Sham [l] proved that the exact also proposed the local spin density (LSD) approxi- 
ground-state density and energy of a many- mation, 

E ,LS~[  n , , n , I = / d 3 r n ( r ) ~ , , ( n  , ( r ) ,  n (r)), (1) 
electron system may be found through the self- 
consistent solution of a single-particle problem like 
that of Hartree-Fock (HF) theory, but with the 
exchange energy and potential replaced by the where n = n ,  + n l  and E,,(n,, n , )  is the 
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TABLE 1 
Atomization energies of molecules (eV). 

Molecule HF LSD pw91 Expt. 

C,a 0.73 7.51 6.55 6.36 

C d , a  45.1 9 68.42 61.34 59.67 

H,Ob 5.71 11 .oo 9.59 9.51 
0,b 1.25 7.48 5.93 5.12 

H,b 3.29 4.65 4.52 4.49 

~ 

a From [19], using a basis set of 18 s-type, nine p-type, and 
four d-type single Gaussians on each atom. For C, and 
C,H,, the zero-point vibrational energy has been omitted 
from the calculated and experimental values. 

~ ~ 9 1 ,  using a triple-zeta valence plus polarization basis 
set, and Expt. are from 1381; HF, using a 6-31~* basis, from 
[28]; and LSD, using a basis-free numerical method, from 
1231. 

exchangecorrelation energy per particle for an 
electron gas of uniform spin densities n , and n 1. 
This approximation has served solid-state physics 
well for almost 30 years. 

More recently [5-161, generalized gradient 
approximations (GGAS), in which the exchange- 
correlation energy is approximated by the form 

have become popular in both quantum chemistry 
and condensed matter physics. They typically yield 
total energies [ 17-20] and atomization energies 
[21-311 that are more accurate than those of the HF 
or LSD approximations, as illustrated by Table I, as 
well as improved barriers to chemical reactions 
[32-341 and improved lengths of hydrogen [35-381 
and metal-ligand [39] bonds. GGAS can also correct 
the more subtle LSD errors in the lattice constants 

and bulk moduli of solids, as illustrated in 
Table 11. 

The correct input ~,,(n , , n ) which makes Eq. 
(1) exact in the limit of constant density is well 
known [40,41], and this limit itself is important in 
the theory of crystalline metals. But there are many 
different prescriptions for the input 

to Eq. (2). The choice of a "best" GGA for all 
electronic systems requires an understanding of 
how each functional is constructed and what exact 
conditions it does or does not obey, as well as 
extensive numerical testing. 

The gradient-dependence of each GGA is most 
easily visualized [191 in the spin-unpolarized case 
( n  = n = n/2), where we may write 

Here, 

is the exchange energy per particle for a uniform 
gas of density n, 

is the local Fermi wave vector, and Fxc(rs, s) is the 
enhancement factor over local exchange. For each 
GGA under discussion, we shall plot F,, as a func- 
tion of the reduced density gradient 

TABLE II 
Properties of solid metals. 

Lattice constant (bohr) Bulk modulus (GPa) 
Metal LSD PW91 Expt. LSD pw91 Expt. 

6.36 6.51 6.57 15.0 13.4 13.0 
7.65 7.97 7.98 9.2 7.1 7.4 
5.53 5.66 5.74 21 2 1 84 1 57 
6.14 6.25 6.24 1 89 167 1 70 

a From [191. 
From [20]. 
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TABLE 111 
Spin-polarization energies of atoms (in eV), using 
analytic Hartree - Fock densities, as in 1561. 

the next section, we discuss those conditions which 
constrain functionals in regions of r, and s which 
dominate real systems. Other exact conditions are 

Atom c p,’ LSD Pw91 

H (1s t ) ’  1 -0.98 -1.18 
Li (2s t)’  1 -0.24 -0.27 
Be+’ (2s f ) ’  1 -0.49 -0.53 
B (2p T I ’  1 -0.26 -0.28 
WP t)3(2p 1)’ 1 -0.38 -0.39 
sc (4s)’(3d f ) ’  1 -0.18 -0.19 
C(2P f) ’  4 -1.22 -1.28 
o (2p t13(2p 1)’ 4 -1.43 -1.48 

N (2p ? I 3  9 -3.09 -3.14 
sc (4s f)’(3d r)‘ 5 -0.99 -1.10 

Note that A€,, - EP:, where P, is the net number of 
electron spins in a shell with principal quantum number n. 

for several values of the local Wigner-Seitz radius, 

r, = ( 4 a n / 3 ) ~ ” ~ .  (7) 

These plots permit a ready comparison [42] of one 
GGA with another and a check on many of the exact 
conditions [43] which a density functional should 
satisfy. 

To illustrate why we consider only the spin- 
unpolarized case, Table I11 shows spin-polarization 
energies, 

evaluated for several atoms and ions. Although 
GGA favors spin polarization more than does LSD, 
the difference is small. Thus, for many purposes, 
we may compare GGAS by comparing only their 
spin-unpolarized enhancement factors F,,( rs, s). 

For practical purposes, the most important exact 
conditions are those which constrain Fx,(rs ,  s) in 
the ranges of r, and s that dominate systems and 
properties of physical interest. Typically, r, ,< 1 
and s ,< 1 in the core of an atom, with the largest 
values of s occurring in the outermost part of a 
shell of principal quantum number n, just before 
the next shell cuts in. Valence electrons in metals 
have 1 5 r, ,< 6 and s ,< 2, with s = 0 on the 
boundary of a unit cell. Moving out through the 
surface of a finite system, r, and s do grow expo- 
nentially. However, these low-density regions 
make little contribution to the energy. 

The focus of this article is a comparison of 
popular functionals on the basis of those formal 
properties wluch are important for real systems. In 

discussed in the third section. Then, in the fourth 
section, we consider the three most popular func- 
tionals for exchange, showing their substantial 
similarity. In the following section, we make a 
detailed graphical comparison of eight popular 
functionals for exchange and correlation. The sixth 
section is a discussion of the character of the gradi- 
ent expansion and its generalization. We conclude 
in the final section with a summary of results for 
the shopper in a hurry. 

Exact Conditions for the 
Discriminating Shopper 

Every functional of the GGA form Eq. (2) is 
properly size-consistent, i.e., the energy of a sys- 
tem of well-separated fragments (e.g., separated 
atoms) is just the sum of the energies of the indi- 
vidual fragments, so that binding energy curves 
may be predicted. But no GGA is properly self- 
interaction free [MI, i.e., no can exactly can- 
cel the Hartree electrostatic self-energy for every 
one-electron density. 

Formally, the exchange-correlation energy is 
[45, 461 

where nxc(r, r’) is the density at r’ of the 
exchange-correlation hole around an electron at r, 
and nxc  = n,  + n,. The exchange hole density aris- 
ing from the Pauli exclusion principle is strictly 
negative: 

and represents a deficit of exactly one electron: 

The correlation hole arising from the Coulomb 
repulsion does not change the electron number: 

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 31 1 
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Another hole condition which has been thought to 
be exact [461 is 

nxc(r, r) = nED(r, r). (13) 

Satisfaction of Eqs. (10)-(13) provides a powerful 
rationale [45,47] for the LSD approximation and for 
certain GGAS. Recently, we showed [481 that Eq. 
(13) is not exact, except in the high-density, low- 
density, and fully spin-polarized limits. Neverthe- 
less, Eq. (13) can be remarkably accurate for realis- 
tic electron densities. 

For a uniform system, LSD is exact, i.e., 

Fxc(rsr s = 0)  = ~ , , ( d / ~ , ( n ) .  (14) 

For a slowly varying density (s -=c 11, i.e., a 
density which varies little over the range of the 
exchange-correlation hole, which has radius = rs,  
the second-order gradient expansion is exact, i.e., 

Fxc(rs, s << 1) = Fxc(rs,  s = 0 )  

+[a, + a, (r , ) Is2  + ..., (15) 

where the gradient coefficients a ,  and a , ( r , )  are 
known [5, 49-51]. In most GGAs, Fxc(rsr s) deviates 
strongly from Eq. (15) for s 2 0.1; thus, recovery of 
the exact gradient coefficient a c ( r s )  as s -+ 0 is not 
a very important condition for most practical pur- 
poses. 

Coordinate scaling [43, 52-571 provides some 
powerful constraints. Define a uniform scaling of 
the density n(r) by 

n,(r) = y3n(yr), (16) 

for y > 0, so that the total number of electrons, 
n = /d3rny(r ) ,  remains fixed for all y. The funda- 
mental scaling inequality is 1521 

E,,[n,] > yE,,[nl; ( y  > I), (17) 

which implies, since s,(d = s(yr), 

Moreover [521, 

i.e., 

Fx(rs,  s) = F,(s). (20) 

In the high-density limit ( y  -+ to), we have 1521 

(21) 

i.e., 

(22) r,+O lim Fxc(rsr S )  = F , ( s ) .  

Since Fc(rs = 0, s) = 0, Eqs. (18) and (22) imply 
that 

Furthermore 153, 541, 

lim E,[n,] > -a. (24) 
7,- 

These conditions are important, because they con- 
strain F,,(r,, s) in the dominant range of small or 
moderate rs and s. 

Other Exact Conditions 

Some exact conditions on Ex, are satisfied only 
when Fxc(rs, s) is constrained at Zurge values of rs 
and s. For example, the Lieb-Oxford bound [15, 
581 is satisfied if 

(25) F,,(r,, s) I 2.27, 

and various nonuniform scaling relations [ 53-55] 
are satisfied only if [431 

and 

However, Lacks and Gordon [591 found that the 
interaction between rare-gas atoms at large separa- 
tion was better modeled by F,, = s 2 I 5  at large s. 
Becke [113 matched the asymptotic ( r  + w) ex- 
change energy density of an atom with F, = s/ln s, 
while Engel et at. [60] matched the asymptotic 
exchange potential ( - l / r )  with F, = s. In fact, the 
GGA form itself [Eq. (2)] fails for s x=- 1, so it is not 
surprising that various exact conditions imply con- 
tradictory large s limits for Fxc(rs, s). 

We also note that the correct r -+ 00 limit for the 
exchange-correlation potential v,,, ,(r) of an atom 
is not - l / r ,  but - l / r  + C/2, where C is a 
positive constant, as a result of averaging over the 
discontinuity in the exact Kohn-Sham potential 
when the electron number crosses an integer [61, 
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621. LSD and GGA are continuum approximations; 
they include an estimate of the constant C/2 in 
their exchange-correlation potentials in the interior 
of the atom, but break down as r -+ 00. Whenever 
the ground states of the positive and negative ions 
can be found by removing or adding an electron in 
the highest occupied Kohn-Sham energy level of 
the neutral atom, the constant C is just the differ- 
ence between the ionization energy and the elec- 
tron affinity of the atom. To take boron as an 
example, C/2 = 4.0 eV accounts for the difference 
between the LSD and GGA 2p t orbital energy and 
minus the ionization energy. 

For many atoms, the optimized local exchange 
potential vX,=(r) is known [63-651, and ~ , , ~ ( r )  -+ 

- l / r  as r -+ m. Some GGAS have been constructed 
[66, 671 by fitting 6E,/6nu(r) to ~ ~ , ~ ( r ) ,  but we 
suggest, in light of the previous paragraph, that it 
would be better to fit V6E,/6nu(r) to Vv,, u(r). 

Finally, we note that the low-density limit 

1 n(r>n(r'> 
AEnl = lim -Ex,[ ny] + f(d3r/d3r' 

7-0 y lr - r'I 

has been shown to be a convex functional [43], i.e., 

A[d,n ,  + d2n21 I d,A[n,l + d,A[n21, (29) 

where ni 2 0, /d3rni(r) = N, d i  2 0, and d,  + 
d,  = 1. This is a severe constraint which GGAS are 
probably unable to obey [42] and provides a chal- 
lenge for the approximate functionals of the future. 

Exchange Energy 

The local spin density (LSD) approximation for 

F,LSD(s) = 1, (30) 

satisfies Eqs. (101, (10, (13), (141, (20), and (25), but 
violates conditions Eqs. (15) and (26). 

The second-order gradient expansion approxi- 
mation [51] (GEA), 

exchange, 

F,GEA(s) = 1 + 0.1234s2, (31) 

additionally satisfies Eq. (151, but violates Eq. (26), 
and, more importantly, the hole conditions Eqs. 
(10) and (11). Nevertheless, GEA is typically an 
improvement over LSD for the exchange energy of 
an atom. 

The GEA exchange hole density n,(r + u, r) is 
reasonable for small values of the interelectronic 
separation u = lul. But, for large values of u, the 
GEA hole displays [9, 10, 681 an undamped 
cos(2kFu) oscillation which satisfies the hole nor- 
malization condition of Eq. (11) only with the help 
of a convergence factor. 

To cure these pathologies, Perdew and Wang [ 91 
devised the real-space cutoff procedure, in which 
the spurious long-range part of the GEA hole den- 
sity is sharply cut off to restore the constraints of 
Eqs. (10) and (11). This real-space cutoff procedure 
follows naturally from a real-space analysis of E,, 
[69]. The result is a numerically defined nonempir- 
ical function F,(s). This function was subsequently 
fitted to an analytic form, rw86, 

FTw86(s) = (1 + 1 . 2 9 6 ~ ~  + 14s4 + 0 . 2 ~ ~ ) ' ' ' ~  
(32) 

Thus, with no empirical input, the pw86 functional 
reduced the error in the calculated exchange ener- 
gies of atoms from the LSD level of 10% or less to 
1% or less. (Incidentally, as discussed in the previ- 
ous section, rw86 also happens to give a good 
account of the interaction between rare-gas atoms 
at large separation [59].) 

Subsequently, Becke [ 11 J proposed a GGA for the 
exchange energy, ~ 8 8 ,  that reproduces the exact 
asymptotic ( r  -+ behavior of the exchange en- 
ergy density and depends on a single parameter 
which was adjusted to minimize the error in the 
exchange energies of the rare-gas atoms. This func- 
tional is at least as successful as is rw86, despite 
the fact that the gradient coefficient a, of Eq. (15) 
is considerably overestimated by the ~ 8 8  func- 
tional, thereby demonstrating the relative unim- 
portance of satisfying Eq. (15). 

More recently, Perdew and Wang [15, 16, 191 
noted that both the rw86 and 888 functionals vio- 
lated Eqs. (25) and (26). Starting from Becke's 
form, they modified the large s behavior to satisfy 
Eqs. (25) and (26) and the small s behavior to 
recover Eq. (31). 

In the important range 0 < s < 2, the pw86, 888, 
and rw91 enhancement factors are not very differ- 
ent, as will be apparent from a study of the r,  = 0 
curves for pw86, BP, and rw91 in the next section. 
Although rw91 is designed to satisfy the largest 
number of "universal" conditions valid for all 
electronic densities, there is no compelling formal 
reason to prefer one functional over the other. The 

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 31 3 



PERDEW AND BURKE 

r,=2 1.2 
-I 

differences between these functionals are probably 
smaller than is the error made in using the GGA 
form [Eq. (2)]. Thus, the real-space cutoff proce- 
dure [B, 91 may be considered as a justification for 
all three of these functionals. 

Exchange-Correlation Energy 

The first GGA for the correlation energy was 
proposed by Ma and Brueckner [51, who observed 
that the unmodified GEA unfortunately gave posi- 
tive correlation energies for atoms. Since then, a 
number of GGAS have been proposed for E,. 

It is possible to treat the exchange energy ex- 
actly, as in Hartree-Fock theory, leaving only the 
correlation energy to be approximated by a GGA 
[ 70-731 :Numerical results for atoms and molecules 
are typically better than €or Hartree-Fock alone, 
but not so good as when GGA is used for exchange 
and correlation together. The atomization energy 
of C, in Table I is a particularly striking example 
1191 of a cancellation of error between GGA ex- 
change ( X I  and correlation (c): The GGA-xc atom- 
ization energy of 6.55 eV is close to the experimen- 
tal value of 6.36 eV, but the GGA-x atomization 
energy of 5.0 eV is far from the Hartree-Fock 
value of 0.73 eV. 

Because the exchange-correlation hole around 
an electron is deeper and more localized than is 
the exchange hole, LSD and GGA are better approxi- 
mations for exchange and correlation together than 

1.8 
t 

r,=O 
L o l l  I " "  ' " ' I  " ' 4  

0 1 2 3 

FIGURE 1. F,,(s) for LSD. 

2.0 

1.5 

"0 1.0 

0.5 

0.0 

- 
m 

2 

0 1 2 3 
s=IVnl/2kFn 

FIGURE 2. F,,(s) for GEA. 

for either separately. Thus, we display FXc(rs, s) in 
the following figures. 

Figure 1 is a plot of F,, in the LSD approxima- 
tion [l, 411 of Eq. (14). The curves are horizontal 
lines, as the LSD approximation is independent of 
the local density gradient. In the high-density limit 
( T ,  = 01, where exchange dominates, FgD(rs, s) = 

1. Thk increase in F,L,SD beyond 1 for finite values 
of r,  represents the correlation contribution. Be- 
cause the LSD hole is the hole of a possible physical 
system (the uniform electron gas), the LSD approxi- 
mation respects Eqs. (10)--(14), (18), (221, and (25). 
However, LSD violates Eqs. (151, (24), (261, and (27). 

The gradient expansion approximation 1501 
(GEA), Eq. (15) to second-order in s, does not fare 
so well. Its exchange-correlation hole is not the 
hole of any physical system and so violates the 
hole conditions [Eqs. (lOH12)I. In particular, the 
correlation hole integrates not to zero, but to a 
positive number. Figure 2 shows the parabolic 
curves FxCEA(rsr s), which do not even reduce to 
F,GEA(s) when r,  --f 0, as they should according to 
Eq. (22). While GEA is an improvement over LSD for 
slowly varying densities (s -=zz 1 everywhere), it 
is typically worse than LSD for real electronic 
systems. 

The first of the modern GGAS was proposed by 
Langreth and Mehl [6], as shown in Figure 3. This 
functional was constructed from a decomposition 
[74] of E x ,  into contributions from various wave 
vectors k of dynamic density fluctuations within 
the random-phase approximation (RPA). (This wave 
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n rn 
W 

0 
X 

L 

1.8 

1.6 

1.4 

1.2 

1 .o 
0 1 2 3 

s=IVnl/2kFn 
FIGURE 3. F,,(s) for LM. 

vector is the Fourier transform variable of the 
interelectronic separation u.) Essentially, the full 
GEA for exchange was retained by LM, but the 
spurious small k (large u )  contribution to the gra- 
dient term in the correlation energy was replaced 
by zero for k < flVnl/n, where the cutoff parame- 
ter f = 0.15 was adjusted to provide an overall fit 
to the correlation energies of atoms and metal 
surfaces; f = 1/6 had been expected on theoretical 
grounds. Figure 3 shows that LM cures the worst 
error of GEA, by turning off the correlation contri- 

n rn 
v 

0 
X 

G( 

2.0 

1.8 

1.6 

1.4 

1.2 

1 .o I I I 1  , I ,  1 ,  I -  

0 1 2 3 
s = IVn 1/2kFn 

FIGURE 4. F,,(s) for ~ ~ 8 6 .  

bution to F,, in the limit Y, -j 0. However, the 
curve-crossing in Figure 3 does violate the Eq. (18). 
Moreover, because the LM functional is based on 
RPA, it does not recover the correct uniform gas 
limit of Eq. (14). 

The Perdew-Wang 1986 functional of Figure 4 
combines rw86 exchange [9] with the Perdew 1986 
[lo] correlation energy functional. The latter was 
constructed via a wave vector cutoff procedure 
similar to that of LM, but with beyond-RrA inputs 
for the uniform and slowly varying electron gases. 
Since Eq. (12) is satisfied by any choice of the 
cutoff wave vector flVnl/n, where f > 0, the pa- 
rameter f was found by fitting the correlation 
energy of the neon atom. ~ ~ 8 6  obeys the exact 
conditions of Eqs. (14) and (15). It still has curve- 
crossing problems, but not as severe as those of 
LM. It violates Eqs. (25)-(27) and Eq. (23). Some- 
times, Becke exchange [ l l ]  is combined with 
Perdew 86 [lo] correlation to form the BP approxi- 
mation, shown in Figure 5, which is similar to 
~ ~ 8 6 ,  as discussed in the previous section. 

A more recent correlation energy functional is 
that of Lee, Yang, and Parr [12], which is often 
used in conjunction with 888 for exchange [ l l ]  to 
form BLYP. The LYP functional starts from the 
Colle-Salvetti formula for the correlation energy 
in terms of the electron density and the non- 
interacting kinetic energy density, then replaces 
the latter by its second-order density-gradient ex- 
pansion. (The Colle-Salvetti formula itself is de- 
rived from a number of theoretical approximations 

2.0 

1.8 

1.6 

1.4 

1.2 

1 .o 
0 1 2 3 

s=IVnl/2kFn 
.FIGURE 5. F,,(s) for BP. 
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2.0 

1.8 

- 1.6 

2 1.4 

1.2 

1 .o 

rn 
v 

0 1 2 3 
s= IVnl/2k,n 

FIGURE 6. Fx,(s) for BLYP; the two unlateled curves 
are for r, = 6 (lower) and r, = 18 (higher). 

and is fitted to the correlation energy of the helium 
atom.) The result is then cast into the GGA form of 
Eq. (2) via integration by parts [751 and plotted in 
Figure 6. Clearly, BLYP is inaccurate in the uniform 
limit (s  = 01, i.e., Eq. (14) is violated. BLYP also 
violates Eqs. (151, (181, and (2514271, but notably 
obeys Eq. (24): It makes the correlation energy 
scale to a constant in the high-density Iimit. 

Becke exchange may also be combined with 
Wilson-Levy [131 (WL) correlation to form BWL, 

A rn 

2.0 

1.8 

1.6 

1.4 

1.2 

1 .o I , , , ,  

0 1 2 3 
s=lVnl/2kan 

FIGURE 7. Fx,(s) for BWL. 

- 
W 
rn 

6( 

2.0 
t r.=- \ -I 

1.8 1 
t -I 

1.6 

1.4 

1.2 

1 .o 
0 1 2 3 

s=(Vnl/2kFn 
FIGURE 8. F,,(s) for p a l .  

shown in Figure 7. The WL correlation functional 
was designed to satisfy a few, but not all, of the 
scaling relations that were known at the time of its 
construction. Starting from a Wiper-like form with 
gradient corrections, the coefficients in this func- 
tional were adjusted to minimize [ dE,[ n,I/dyl* 
for eight closed-shell atoms, while fitting the corre- 
lation energy of the He atom. We see that BWL is 
inaccurate in the uniform (s  = 0) and slowly vary- 
ing (s << 1) limits; in the latter limit, it does not 
even reduce to the form of Eq. (15). WL also vio- 
lates Eqs. (18) and (251, but, like BLYP, it respects 
Eq. (24). 

Like LSD and GEA, and unlike the other GGAS 
discussed here, the Perdew-Wang 91 [14-16, 191 
( ~ ~ 9 1 )  functional, shown in Figure 8, is nonempiri- 
cal, in the sense that it was constructed using only 
the gradient expansion for the hole density plus 
the exact conditions of the second and third sec- 
tions. The construction of the rw91 exchange en- 
ergy was discussed in the previous section. The 
rw92 correlation energy is also constructed via a 
sharp real-space cutoff of the spurious long-range 
part of the gradient expansion for the hole density, 
with the cutoff radius chosen to obey Eq. (12). 
Unlike the exchange part, the correlation part of 
rw91 is taken directly from the real-space cutoff, 
with no further modification. This leads naturally 
to satisfaction of Eq. (27). In fact, it is clear from 
Figure 8 that pw91 correlation "turns off" as the 
reduced density gradient s increases. 
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Of all the density functionals discussed here, 
rw91 best satisfies the formal properties of the 
second and third sections. In fact, it satisfies a2Z of 
the numbered exact conditions, except Eq. (24), 
which it nearly satisfies, and the convexity condi- 
tion of Eq. (281, which no GGA is known to satisfy. 
(At unrealistically high densities and small gradi- 
ents, rw91 also violates [76] Eq. (23). With a very 
slight modification proposed by Levy and Perdew 
[43], rw91 can be made to satisfy Eqs. (23) and 
(24).) 

Comparison of Figures 1-8 shows that ~ ~ 9 1  is 
”more local” (i.e., more like LSD) than any of the 
other GCAS. Also, it becomes increasingly more 
local as the density is reduced. The explanation for 
the latter behavior is that, as rs increases from 0 to 
m, the hole density at u = 0 drops from its high- 
density limit of -n/2 to its low-density limit of 
-n ,  and, because it integrates to -1, the hole 
becomes more localized on the scale of r,. This 
explains why LSD works as well as it does and also 
why it works better for exchange and correlation 
together than for exchange alone. 

~ 

Character of the Gradient Expansion 
and Its Generalization 

The first-principles density-gradient expansion 
of the system-averaged exchange-correlation hole, 

is known [15, 161 only to second order in V and 
constitutes an input into ~ ~ 9 1 .  The exchange hole 
nx(r,r + u) is known [77] to third order in V. The 
noninteracting kinetic energy, constructed [781 
from the Taylor expansion of nx(r,r + u) to sec- 
ond order in u, is known [79] to sixth order in V. 

Based on this limited knowledge, the gradient 
expansion seems to have the following character 
(771: In a system of slowly varying electron density 
n(r), the addition of each successive term of higher 
order in V improves the description of the hole 
close to its electron (small u), but worsens the 
description of the hole far away (large u) .  In such a 
system, the kinetic energy has a rapidly conver- 
gent gradient expansion. The exchange-correlation 
energy 

N (n,,(u>) 
2 U 

E,, = - /d3u (34) 

would also have a rapidly convergent gradient 
expansion if the electron-electron interaction were 
short-ranged, but the Coulomb interaction, 1 / u ,  
foils this expectation. 

If we define a set of reduced density deriva- 
tives, sich as s in Eq. (61, or 

where k, = ( 4 k , / ~ ) ’ / ~  is the Thomas screening 
length, or V2n/[(2k,)2nl, etc., we may imagine a 
system in which all such reduced derivatives are 
well bounded. A bulk solid is a realistic example 
of such a system, apart from the cusps in 
the electron density, which may be removed by 
pseudopotential theory. Even in such a system, we 
should not expect that the gradient expansion for 
E x ,  converges as terms of higher order in V are 
added, although we know it gives the right 
asymptotic expansion in the limit where all re- 
duced density derivatives are small. However, in 
each order we may construct a generalized gradient 
expansion by cutting off the spurious large u con- 
tributions to n x c  in a way that respects Eqs. 
(10)-(12). We have no reason to doubt that this 
sequence will converge. The first member of this 
sequence is LSD, and the next, apart from minor 
ambiguities in the selection of a cutoff procedure, 
etc., is the rw91 generalized gradient approxima- 
tion. (Note that the noninteracting kinetic energy is 
unufected [80] by real-space cutoffs at finite values 
of 24.1 

These considerations suggest that pseudopoten- 
tial models of bulk solids may be the most refined 
future testing grounds for gradient expansions and 
generalized gradient approximations against more 
intensive calculations. For these systems, 
Hartree-Fock results [ 72, 811 are already available 
for testing kinetic and exchange energy function- 
als, and quantum Monte Carlo results [82] have 
begun to appear for testing exchange-correlation 
energy functionals. However, Kohn-Sham theory 
[ l ]  requires that the external potential to be local 
(i.e., multiplication) operator V(r), while most 
pseudopotentials are nonlocal [18, 29, 83-85] or 
angular momentum dependent operators V(r, r’). 
Only recently have realistic, nonempirical, local 
pseudopotentials been constructed [ 861 for solids. 

It should be noted that even very realistic 
pseudopotentials can introduce subtle errors of 
their own. Thus, for comparisons between GGA and 
experimental results for solids or other systems, we 
recommend careful all-electron, full-potential cal- 
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culations like those of [ 19,20,87,88]. (The cusps of 
the all-electron density should not significantly 
affect bond lengths, vibration frequencies, or atom- 
ization energies.) 

Conclusions 

Comparison shopping among various general- 
ized gradient approximations for the exchange- 
correlation energy, on the basis of known exact 
formal conditions, leads to the following conclu- 
sions: Among exchange functionals, the ~ ~ 8 6 ,  888, 
and rw91 brands are about equally good. Among 
correlation functionals, the nonempirical rw91 
brand seems the best. Its construction is based on 
an (albeit speculative) insight into the character of 
the gradient expansion and its generalization. 
Subroutines which evaluate the pw91 exchange- 
correlation energy density and potential from the 
electron spin densities and their derivatives are 
available gratis by electronic mail from 
perdew@mailhost. tcs.tulane.edu. 

While improving atomization energies over LSD 
(Table I), r-1 remains the most "local" of the 
gradient corrected exchange-correlation function- 
als, as seen in Figures 1-8, and thus the least likely 
to overcorrect the subtle errors of LSD for solids 
(Table 11). Of course, the ultimate test is in the 
marketplace, so we have recently reviewed 1421 
many comparisons of GGA predictions with experi- 
mental or exact results over a wide range of real or 
model systems. 
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