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Abstract 

Background: Testing for differential abundance of microbes in disease is a com-

mon practice in microbiome studies. Numerous differential abundance (DA) testing 

methods exist and range from traditional statistical tests to methods designed for 

microbiome data. Comparison studies of DA testing methods have been performed, 

but none performed on microbiome datasets collected for the study of real, complex 

disease. Due to this, DA testing was performed here using various DA methods in two 

large, uniformly collected gut microbiome datasets on Parkinson disease (PD), and their 

results compared.

Results: Overall, 78–92% of taxa tested were detected as differentially abundant by at 

least one method, while 5–22% were called differentially abundant by the majority of 

methods (depending on dataset and filtering of taxonomic data prior to testing). Con-

cordances between method results ranged from 1 to 100%. Average concordance for 

datasets 1 and 2 were 24% and 28% respectively, and 27% for replicated DA signatures. 

Concordances increased when removing rarer taxa before testing, increasing average 

concordances by 2–32%. Certain methods consistently resulted in higher concord-

ances (e.g. ANCOM-BC, LEfSe), while others consistently resulted in lower (e.g. edgeR, 

fitZIG). Hierarchical clustering revealed three groups of DA signatures that were (1) rep-

licated by the majority of methods on average and included taxa previously associated 

with PD, (2) replicated by a subset of methods and included taxa largely enriched in PD, 

and (3) replicated by few to one method(s).

Conclusions: Differential abundance tests yielded varied concordances, and amounts 

of detected DA signatures. Some methods were more concordant than others on both 

filtered and unfiltered data, therefore, if consistency with other study methodology 

is a key goal, one might choose among these methods. Even still, using one method 

on one dataset may find true associations, but may also detect false positives. To help 

lower false positives, one might analyze data with two or more DA methods to gauge 

concordance, and use a built-in replication dataset. This study will hopefully serve to 

complement previously reported DA method comparison studies by implementing 
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and coalescing a large number of both previously and yet to be compared methods on 

two real gut microbiome datasets.

Keywords: Differential abundance, Microbiome, 16S, Parkinson disease

Background

Microbiome research has gained immense traction in recent years driven primarily 

by technological advances in sequencing and exponential increase in computational 

resources and tools. �e availability of these new tools and technologies have solidified 

a place for microbiome research in many fields including the biomedical research com-

munity where a large portion of the research effort is targeted at the gut microbiome [1]. 

A number of diseases have been associated with alterations of individual microorgan-

isms in the gut [1], and these associations are usually made through a statistical analysis 

commonly referred to differential abundance (DA) testing [2]. Differential abundance 

testing involves the use of statistical testing to determine if the relative abundances of 

certain microorganisms are significantly different between defined groups [3]. Numer-

ous DA testing methods exist and include classical statistical tests (e.g. Kruskal–Wallis 

rank-sum test), methods originally developed to detect differential expression of gene 

transcripts in RNA-Seq data and adapted for microbiome analysis (e.g. DESeq2, edgeR), 

methods specifically designed for detecting differentially abundant microorganisms in 

microbiome data (e.g. ANCOM, metagenomeSeq), and methods designed to detect 

differentially abundant features (whether it be microorganisms or gene transcripts) in 

compositional data (e.g. ALDEx2). Differences in choice of DA method can contribute 

to inter-study variation in results, even between studies of the same disease, as most, if 

not all, methods will respond differently to microbiome data due to differences in their 

underlying characteristics. Multiple studies have previously assessed and compared 

the performance of popularly used DA testing methods, measuring their false positive 

rates (FPR), false discovery rates (FDR), sensitivities, and/or specificities using simulated 

data [2–5], with only one of these studies testing different methods on real data [4]. An 

example of how DA testing methods compare to one another when performed on real, 

complex disease gut microbiome datasets is still lacking in the literature. Also, not all 

methods included in previous comparison studies have been compared side by side as 

each study compared few to several methods at a time with slight differences in what 

methods were included in their assessments and comparisons.

Due to the lack of literature on how different DA methods behave and compare to one 

another when performed on real, complex disease gut microbiome datasets, DA testing 

was performed here using a variety of methods on two, large Parkinson disease (PD)—

gut microbiome datasets in order to compare their results. Commonly used DA testing 

methodologies were found in the literature, and used to test for differentially abundant 

microbial genera (referred to as “DA signatures”) between PD and neurologically healthy 

controls in both datasets. DA testing was performed once for all genera that were 

detected in each dataset (referred to as “unfiltered” data), and again for only genera that 

were detected in at least 10% of samples in each dataset (referred to as “filtered” data) in 

order to assess effect of taxonomic data filtering on results. Once DA testing was com-

plete, results were compared within and across datasets. Concordances between meth-

ods varied, although a subset of methods consistently resulted in higher concordances 
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on average, especially with one another. �ese methods also detected DA signatures 

across datasets that included more prevalent genera and seemed more robust to inter-

methodological variation. Another subset of methods consistently produced the least 

concordant results on average with other methods, but some detected DA signatures in 

both datasets involving a subset of rarer genera, all (but one) with higher relative abun-

dances in PD. Almost all concordances for individual methods improved when filtering 

out rarer genera before testing. More concordant methods tended to detect a smaller 

proportion of genera as differentially abundant compared to lower concordant methods, 

but this difference was attenuated when rarer genera were removed before analysis. �e 

vast majority of genera tested (78–92%) were detected as differentially abundant by at 

least one method in each dataset, while 5–22% were called differentially abundant by 

the majority of methods (depending on dataset and filtering of taxonomic data prior to 

testing). Fewer signals were actually replicated in both datasets by at least one method 

(49–68%), and even fewer were replicated by the majority (1–11%) or all (~ 1%) of the 

methods. Hierarchical clustering revealed three groups of DA signatures that were (1) 

replicated by the majority of methods on average and included genera previously associ-

ated with PD, (2) replicated by a subset of methods and included genera largely enriched 

in PD, and (3) replicated by few to one method(s). Input data and source code used to 

perform analyses and create figures and tables can be publicly accessed at the following 

GitHub repository: https:// github. com/ zwall en/ Wallen_ DAMet hodCo mpare_ 2021.

Results

Method characteristics

Methods included in the present study span the fields of traditional statistics, RNA-Seq 

analysis, and microbiome analysis, and have varying underlying characteristics. A sum-

mary of method characteristics and parameters chosen that differed from default for DA 

methods included in this study can be found in Additional files 2 and 3: Tables S1 and S2 

respectively. �e DA methods compared in this study included ANCOM [6], ANCOM 

with bias correction (ANCOM-BC) [7], ALDEx2 (using t-test or Wilcoxon tests) [8], 

baySeq [9], DESeq2 nbinomWald test [10], edgeR exactTest using relative log expres-

sion (RLE) or trimmed mean of M-values (TMM) [11], generalized linear model (GLM), 

Kruskal–Wallis rank-sum test [12], LEfSe [13], limma-voom [14], metagenomeSeq’s fit-

FeatureModel and fitZIG [15, 16], negative binomial GLM with or without zero-inflation 

(GLM NBZI), SAMseq [17], and Welch’s t-test [18]. �e majority of methods utilized 

parametric statistical tests (assumes the data has some form of underlying distribution). 

Of these, the most commonly assumed data distribution was the negative binomial dis-

tribution (DESeq2, baySeq, edgeR RLE, edgeR TMM, GLM NBZI). No data transfor-

mations were performed for negative binomial methods, or metagenomeSeq methods, 

to try and bring the data to normality as non-normality of data is taken into account 

in their statistical models. �e remaining parametric methods (ALDEx2 t-test, t-test, 

limma-voom, GLM, ANCOM-BC) all used statistical tests that assumed a Gaussian dis-

tribution of the data, therefore, transformations were needed before analysis, which here 

included a log transform of some kind. Five methods (ALDEx2 Wilcoxon, ANCOM, 

Kruskal–Wallis, SAMseq, LEfSe) were considered non-parametric (assumes no under-

lying distribution of data) as they used statistical tests that transformed data to ranks. 

https://github.com/zwallen/Wallen_DAMethodCompare_2021
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Methods also differed in what techniques were used to account for varying sequence 

depth between samples. Four of the five negative binomial methods (DESeq2, baySeq, 

edgeR RLE, edgeR TMM) calculated scaling factors for each sample to account for une-

ven sequence count. Cumulative sum scaling (CSS) was used for both metagenomeSeq 

methods. Total sum scaling (TSS; also referred to as relative abundance) was performed 

for LEfSe, and was one of three strategies used for methods that did not have a built-

in normalization function (t-test, GLM, Kruskal–Wallis) as this strategy is commonly 

used in the literature. Log-ratio based transformations were used for ALDEx2 methods, 

ANCOM, and, in addition to TSS, were applied to methods without a built-in normali-

zation function. Log-ratio transformations (including centered log-ratio (CLR) [19] and 

robust CLR with matrix completion (rCLR) [20] used with Kruskal–Wallis, GLM, and 

t-test) are compositionally aware methods that, in addition to normalizing for inter-sam-

ple variation in total sequence count, takes the compositionality of the data into account. 

While not directly implementing a log-ratio transformation, ANCOM-BC’s bias cor-

rection (a sample specific offset term that is introduced into a linear regression and 

accounts for sampling fraction) in conjunction with performing linear regression in log 

scale serves the same purpose as a log-ratio transformation. �e remaining 3 methods 

(limma-voom, GLM NBZI, SAMseq) did not share normalization strategies with any 

other methods. To account for varying sequencing depth, limma-voom utilized a log2-

counts per million (CPM) transformation, the log of the per sample sequencing depth 

was used as an offset variable in the model for GLM NBZI, and SAMseq utilized its own 

unique transformation which included an Anscombe transformation followed by divid-

ing by square root of the sequencing depth. �e majority of methods have been previ-

ously included in some form of method comparison study [2–5], and all seemed to keep 

FPR and/or FDR under 0.2 when performed on simulated data except for fitZIG, edgeR, 

and SAMseq, which were shown to reach upwards of 0.9 (Additional file 2: Table S1).

Comparison of method results across datasets

Datasets differed in size and had significant heterogeneity in microbiome composi-

tion [21], therefore, method calls were compared across datasets to see if there were 

any significant dataset differences in the number, or proportion, of DA signatures being 

detected by DA methods. Within each dataset, 78–92% of genera were detected as dif-

ferentially abundant by at least one method, 5–22% of genera were detected as differ-

entially abundant by at least half of the methods, and only two genera (Agathobacter 

and Roseburia) were detected by all methods, and only when performed on filtered taxo-

nomic data (Additional files 4, 5, 6, 7: Tables S3–S6). No significant difference was found 

between datasets for the average number of methods that detected a particular DA sig-

nature when analyzing filtered data [t(235) = − 0.4, P = 0.7; Additional file 1], but a small, 

yet significant, difference was found between datasets when analyzing unfiltered data 

[t(999) = − 5.1, P = 3E−7; Additional file 1]. When comparing results across datasets for 

replication of DA signatures, 49–68% of genera tested and in common between datasets 

were detected as differentially abundant by at least one method in both datasets, while 

1–11% were detected by at least half of the methods in both datasets (Additional files 4, 

5, 6, 7: Tables S3–S6).
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�e number of DA signatures detected by a particular method in each dataset ranged 

from a small minority to well over 50% of tested genera. For dataset 1, the maximum 

number of DA signatures detected by a particular method was 346 (baySeq, unfiltered 

data, encompassing 78% of tested genera), the minimum detected was 5 (ALDEx2 t-test, 

unfiltered data, encompassing 1% of tested genera), and the mean per method was 

73 ± 95 for unfiltered data (encompassing on average 16% of tested genera) and 33 ± 18 

for filtered data (encompassing on average 25% of tested genera) (Additional files 4, 6: 

Tables S3, S5). For dataset 2, the maximum number of DA signatures detected by a par-

ticular method was 424 (baySeq, unfiltered data, encompassing 76% of tested genera), 

the minimum detected was 11 (ANCOM, filtered data, encompassing 6% of tested gen-

era), and the mean per method was 126 ± 133 for unfiltered data (encompassing on aver-

age 22% of tested genera) and 50 ± 23 for filtered data (encompassing on average 26% 

of tested genera) (Additional files 5, 7: Tables S4, S6). Methods on average detected a 

higher number of DA signatures in the larger, deeper sequenced dataset 2 (unfiltered 

data mean difference = 53, filtered data mean difference = 17) although the difference 

was only found statistically significant for filtered data [t(41) = -2.9, P = 6E−3; Additional 

file 1] due to large variances seen with unfiltered data [t(38) = -1.5, P = 0.13; Additional 

file  1]. No significant difference was found between datasets when the DA signature 

count for each method was normalized by the number of genera tested in the analyses 

[t(30) = − 0.3, P = 0.74; Additional file 1].

Overall, despite differences in the size of datasets and heterogeneity in microbiome 

composition, no significant differences were observed between datasets in the pro-

portion of genera being detected as differentially abundant on average. �e number of 

detected DA signatures per method was significantly increased in dataset 2, but that is to 

be expected since it is a larger, more powered dataset both in sample size and number of 

genera detected.

Concordance of DA signatures between methods and its relationship to proportion 

of genera detected as di�erentially abundant in un�ltered taxonomic data

On average, DA signature calls between methods varied in concordance, with pairwise 

concordances between methods ranging from 1 to 100% similarity with the mean pair-

wise concordance being 24% for dataset 1 and 28% for dataset 2 (Fig. 1a, top and mid-

dle rows; Additional file 8: Table S7A, B). For both datasets, results from baySeq, GLM 

NBZI, fitZIG, edgeR, ALDEx2 t-test, and all instances that utilized the rCLR transform 

consistently had the lowest pairwise concordances on average with other methods (12–

27%). Results from Kruskal–Wallis with TSS, t-test and GLM with TSS and CLR, fit-

FeatureModel, ALDEx2 Wilcoxon, ANCOM, LEfSe, and ANCOM-BC consistently had 

the highest pairwise concordances on average with other methods (28–39%) especially 

among one another (40–64%). Methods that consistently resulted in lower concordances 

seemed to have, on average, detected a higher proportion of genera as differentially 

abundant compared to higher concordant methods (lower concordance mean = 0.3–0.4, 

higher concordance mean = 0.04–0.06; Fig. 1a, top and middle rows; Additional files 4, 

5: Tables S3 and S4). Indeed, when correlating concordances with proportion of genera 

detected as differentially abundant, both dataset 1 and 2 showed a moderate, but highly 

significant, negative correlation where concordances decreased as a higher proportion 
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of genera were called differentially abundant (Fig.  1b, top and middle rows), showing 

that this may be factor in the varying degrees of concordances observed here, and may 

reflect tendencies of some methods to detect larger amounts of false positives, at least in 

unfiltered data.

No significant difference between datasets was found for average pairwise concord-

ances [t(40) = − 1.5, P = 0.14; Additional file  1], however, some individual methods 

seemed to have dataset dependent influences on their concordances, notably Kruskal–

Wallis with CLR and limma-voom (Fig.  1a, top and middle rows; Additional file  8: 

Table S7A, B). For dataset 1, Kruskal–Wallis with CLR resulted in the lowest mean con-

cordance (12%) while it resulted in an above average mean concordance in dataset 2 

(33%). �is might be due to dramatic differences in the proportions of genera detected as 

differentially abundant between datasets (0.6 in dataset 1 versus 0.04 in dataset 2; Fig. 1a, 

top and middle rows; Additional files 4, 5: Tables S3 and S4). �e opposite scenario was 

observed for limma-voom, where it had an above average mean concordance in dataset 

1 (29%), but a below average mean concordance in dataset 2 (21%), which again might 

be due to differences in proportions of differentially abundant genera between datasets 

1 and 2 (0.09 in dataset 1 vs 0.69 in dataset 2). �ese provide examples of how even the 

same method can behave differently depending on the underlying data being analyzed.

When calculating concordances for DA signatures that were replicated across data-

sets (Fig. 1a, bottom row; Additional file 8: Table S7C), the mean pairwise concord-

ance between all methods stayed relatively the same compared to individual datasets 

with no statistically significant change in overall mean concordance (27%, P > 0.4). As 

seen in individual datasets, baySeq, GLM NBZI, fitZIG, edgeR, ALDEx2 t-test, and 

all instances that utilized the rCLR transform consistently had the least similar calls 

on average with other methods (8–26%), and Kruskal–Wallis with TSS, t-test and 

GLM with TSS and CLR, fitFeatureModel, ALDEx2 Wilcoxon, ANCOM, LEfSe, and 

Fig. 1 Pairwise concordances and proportion of genera detected as differentially abundant. Differential 

abundance testing was performed for 445 genera in dataset 1 and 561 genera in dataset 2 using various DA 

methods. Pairwise concordances (proportion of detected DA signatures in common between two methods 

out of the total DA signatures detected for those methods) were then calculated for each pair of methods. 

Column a for each method, the distributions of pairwise concordances and proportion of genera detected as 

differentially abundant for dataset 1 (top row), dataset 2 (middle row), and for DA signatures that replicated 

across datasets (bottom row). b The relationship between pairwise concordances and the proportion of 

genera detected as differentially abundant. Each dot in the boxplots represents a method, plotted according 

to the concordance it had with the method on the x-axis (22 dots for each method in dataset 1 and 21 

dots for dataset 2 and replicated due to SAMseq failing to run for dataset 2). The bottom, middle, and top 

boundaries of each box in the boxplots represent the first, second (median), and third quartiles of the 

concordances. The lines extending from the top and bottom of the box extend to points within 1.5 times 

the interquartile range. Points extending above the whiskers are outliers. Red circles indicate the mean 

concordance for a method. Horizontal red lines indicate the mean concordance for either dataset 1, dataset 

2, or replicated signatures. For dot plots, each concordance value was plotted against the proportion of 

genera deemed differentially abundant by a method, and a linear trend line (black solid line) was fitted to the 

data. The grey area surrounding the trend line is the 95% CI of the fitted line. Pearson’s correlation coefficient 

(r) and corresponding P value (P) were calculated for each dot plot to test strength of the relationship. 

Concordances: pairwise concordances for each method; Proportion DA: proportion of genera detected 

as differentially abundant (DA) by a method; GLM: generalized linear model; CLR: centered log-ratio; KW: 

Kruskal–Wallis; TSS: total sum scaling (relative abundances); rCLR: robust centered log-ratio transformation 

with matrix completion; RLE: relative log expression; TMM: trimmed mean of M-values; NBZI: negative 

binomial zero-inflated

(See figure on next page.)
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ANCOM-BC consistently had the most similar calls on average with other methods 

(27–41%), and among each other (48–64%). In addition, Kruskal–Wallis with CLR 

and limma-voom, who were observed to have dataset specific effects on concordances 

and proportion of differentially abundant genera, resulted in above average mean 

concordances for replicated DA signatures. As expected, proportions of differentially 

abundant genera were reduced for replicated DA signatures, however, the same nega-

tive correlation observed in individual datasets between concordances and propor-

tion of differentially abundant genera held true for replicated DA signatures (Fig. 1b, 

bottom row). �is indicates that concordances (at least how they are being calculated 

here) overall seem to hold steady when calculating them for DA signatures detected 

in a single dataset or detected across datasets.
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E�ect of taxonomic data �ltering on DA method results and concordances

To examine the effects of data filtering on method results and concordances, pair-

wise concordances were calculated for DA testing results for filtered data (Additional 

files 6, 7: Tables S5 and S6). Overall, for both datasets, mean concordances per data-

set improved by 13–15% and individual methods improved by 2–32% when DA test-

ing was performed on filtered data (Fig.  2a, top and middle rows; Additional file  8: 

Table S7D, E). �e only exception was ANCOM whose mean concordance decreased 

by 12% in dataset 1 and 14% in dataset 2, placing it among the consistently lower 

concordant methods, which were again baySeq, GLM NBZI, fitZIG, edgeR, and all 

instances that utilized the rCLR transform, but not ALDEx2 t-test as it’s mean con-

cordance rose to above average for dataset 2 and replicated DA signatures. �e 

group of higher concordant methods also remained the same, but with the addition 

of limma-voom and Kruskal–Wallis with CLR who had some of the largest improve-

ments in mean concordance (+ 22% in dataset 1 and + 37% in dataset 2 for limma-

voom; + 27% in dataset 1 and + 16% in dataset 2 for Kruskal–Wallis with CLR), and 

SAMseq, who failed to run for unfiltered dataset 2, but successfully ran for both fil-

tered datasets.

Although members of lower and higher concordant method groups remained rel-

atively the same, the relationship observed with unfiltered data between concord-

ances and proportion of genera detected as differentially abundant was abolished 

by performing DA testing on filtered data (Fig. 2b, top and middle rows; correlation 

P > 0.7). �is was most likely due to multiple factors including an overall increase in 

the proportion of differentially abundant genera being detected by higher concord-

ant methods, a large decrease in the proportion of differentially abundant genera of 

lower concordant methods such as baySeq (− 0.6 in both datasets) and edgeR TMM 

(See figure on next page.)

Fig. 2 Effect of taxonomic data filtering on pairwise concordances and proportion of genera detected 

as differentially abundant. Differential abundance testing and calculation of pairwise concordances were 

performed again for 133 genera in dataset 1 and 195 genera in dataset 2 after filtering out genera that were 

found in < 10% of samples. Column a for each method, the distributions of pairwise concordances and 

proportion of genera detected as differentially abundant for dataset 1 (top row), dataset 2 (middle row), and 

for DA signatures that replicated across datasets (bottom row). Column b the relationship between pairwise 

concordances and the proportion of genera detected as differentially abundant. Each dot in the boxplots 

represents a method, plotted according to the concordance it had with the method on the x-axis (22 dots 

for each method). The bottom, middle, and top boundaries of each box in the boxplots represent the first, 

second (median), and third quartiles of the concordances. The whiskers (lines extending from the top and 

bottom of the box and ending in horizontal cap) extend to points within 1.5 times the interquartile range. 

The points extending above the whiskers are outliers. Red circles indicate the mean concordance for a 

method. The horizontal red line indicates the mean concordance for either dataset 1, dataset 2, or replicated 

signatures. Values above the box and whiskers are the differences in mean concordance between filtered 

and unfiltered (Fig. 1) data. Values above the bars in bar plots are the differences in proportion of differentially 

abundant genera between filtered and unfiltered (Fig. 1) data. For dot plots, each concordance value was 

plotted against the proportion of genera deemed differentially abundant by a method, and a linear trend 

line (black solid line) was fitted to the data. The grey area surrounding the trend line is the 95% CI of the 

fitted line. Pearson’s correlation coefficient (r) and corresponding P value (P) were calculated for each dot 

plot to test strength of the relationship. Concordances: pairwise concordances for each method; Proportion 

DA: proportion of genera detected as differentially abundant (DA) by a method; GLM: generalized linear 

model; CLR: centered log-ratio; KW: Kruskal–Wallis; TSS: total sum scaling (relative abundances); rCLR: robust 

centered log-ratio transformation with matrix completion; RLE: relative log expression; TMM: trimmed mean 

of M-values; NBZI: negative binomial zero-inflated
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(− 0.2 in both datasets), and a leveling out of limma-voom and Kruskal–Wallis with 

CLR proportions, potentially reflecting a reduction in dataset specific variation with 

removal of rarer genera.

�ese results show that, overall, concordances between methods increased when rarer 

genera were removed before testing, which might be due to a number of factors includ-

ing minimization of noisy data, enriching datasets for more prevalent and stable genera 

that are more robust to method and dataset specific differences, providing a more sta-

ble denominator for data transformations and normalizations, and narrowing the pool 

of tested genera, which would automatically help reduce false positives. Observations 

noted for concordances and proportions of differentially abundant genera for datasets 1 

and 2 held true for replicated DA signatures as well (Fig. 2a, b, bottom row; Additional 

file 8: Table S7F), showing that the supposed benefits of data filtering on concordances 
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and differentially abundant genera proportions mentioned above translates to replica-

tion of DA signatures as well.

Di�erentially abundant genera as a function of mean relative abundance and e�ect size

To observe what type of differentially abundant genera were being detected by DA meth-

ods based on mean relative abundance (MRA) and effect size, the MRAs of tested genera 

(on log scale) and log2 fold change of genera in PD were plotted against each other to 

view DA signatures of each method as a function of MRA and effect size (Fig. 3, Addi-

tional file 10: Fig. S1). Fisher’s exact test was then used to determine if DA signatures 

of each method were enriched for more, or less, common genera (defined as above or 

below the MRA median of each dataset and replicated DA signatures), and/or genera 

that had an effect size above a certain threshold (absolute fold change of ~ 1.3 or greater 

in PD).

For unfiltered data, obvious patterns for MRA were found between DA methods pre-

viously labeled as higher concordant methods versus those that were labeled lower con-

cordant methods. When testing enrichment of DA signatures based on MRA, all DA 

signatures for higher concordant methods in both datasets were enriched for more com-

mon genera (above MRA median of each dataset) as all of these methods resulted in a 

significant Fisher’s exact test odds ratio (OR) well above 1 (Fig. 3, left and middle col-

umns, first five rows; Additional file 10: Fig. S1, left and middle columns, first ten rows). 

More strikingly is that all ORs for replicated DA signatures of higher concordant meth-

ods resulted in an infinite value, meaning that all genera replicated by higher concordant 

methods had a MRA above the median (Fig. 3, right column, first five rows; Additional 

file 10: Fig. S1, right column, first ten rows). �is suggest that higher concordant meth-

ods are overwhelmingly detecting more prevalent genera as differentially abundant, 

and exclusively replicating such. In contrast to this, lower concordant methods were 

found to have enrichment in less common genera (below MRA median; OR < 1), or no 

enrichment in either direction as genera above and below the MRA median were being 

detected and/or replicated as differentially abundant (OR ~ 1) (Fig. 3, bottom five rows; 

Additional file 10: Fig. S1 bottom nine rows). �e only exception to this was ALDEx2 

t-test who had same direction of ORs as the higher concordant methods (OR > 1). When 

looking at MRAs versus log2 fold change in PD of filtered data, DA signatures overall 

seemed to span MRAs above and below the median for the majority of methods, which 

makes sense as the data has already been enriched for more common genera (Additional 

file 11: Fig. S2).

Unlike MRA, there were less obvious patterns observed for detection of DA signatures 

at an absolute fold change threshold of 1.3 (Fig. 3, Additional file 10: Fig. S1). For higher 

concordant methods, there seemed to be a dataset specific influence on whether or not 

genera with absolute fold changes of 1.3 or greater were being preferentially detected 

(Fig. 3, left and middle columns, first five rows; Additional file 10: Fig. S1, left and mid-

dle columns, first ten rows). �e ORs for dataset 1 were consistently higher, and usually 

more significant, than those of dataset 2, and were exclusively greater than 1, suggesting 

that the majority of detected genera’s fold changes were past the implemented thresh-

old. A subset of ORs for dataset 2 were < 1, suggesting that these methods were detect-

ing a higher fraction of DA signatures under the fold change threshold. Whether or not 
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Fig. 3 Detection of differentially abundant genera as a function of mean relative abundance and effect 

size. To observe what type of differentially abundant genera were being detected by methods based on 

mean relative abundance and effect size, the mean relative abundances of tested genera (on log scale) and 

log2 fold change of genera in PD were plotted for dataset 1 (left column), dataset 2 (middle column), and 

replicated signatures (right column), and repeating these plots for each DA method (rows). Fisher’s exact 

test was used to determine if DA signatures were enriched for more or less common genera, and genera 

with absolute fold change of 1.3 or higher. Individual points in the plots represent each tested genus, and 

is plotted according to that specific genus’ mean relative abundance in cases and controls and log2 fold 

change in PD. Composite mean relative abundances and fold changes were used to plot points for replicated 

DA signatures by taking the average between datasets. For each method, points are shaded black if a method 

detected a particular genus as differentially abundant, and grey if not detected as such. Horizontal dashed 

lines represent the median mean relative abundance for either dataset 1, dataset 2, or replicated signatures. 

Vertical dashed lines represent a fold change of ~ 1.3 in positive and negative directions. Blue labeled 

methods are methods that were found to have consistently higher than average concordances in both 

datasets and replicated signatures, while red labeled methods were found to have consistently lower than 

average concordances. For plot clarity, a representative five methods were chosen from each group to display 

for this figure. Full results for all methods can be found in Additional file 10: Fig. S1, and full results for all 

methods with filtered data can be found in Additional file 11: Fig. S2. MRA: mean relative abundance, results 

from Fisher’s exact test testing enrichment of more or less common genera in detected DA signatures; FC: 

fold change, results from Fisher’s exact test testing enrichment of genera with absolute fold changes > or < 1.3 

in detected DA signatures; OR: odds ratio; P: P value of OR; GLM: generalized linear model; CLR: centered 

log-ratio; KW: Kruskal–Wallis; TSS: total sum scaling (relative abundances); rCLR: robust centered log-ratio 

transformation with matrix completion; RLE: relative log expression; NBZI: negative binomial zero-inflated
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the detection of genera with fold changes below the implemented threshold in dataset 

2 is due to increased power in the larger dataset, or increased false positives, remains 

to be seen. Again, like MRAs, the ORs for fold changes of genera being replicated in 

both datasets as differentially abundant were values of infinite, suggesting that only gen-

era with an absolute fold change past the threshold were being replicated (Fig. 3, right 

column, first five rows; Additional file  10: Fig. S1, right column, first ten rows). �is 

observation held true for some of the lower concordant methods, but not all, as some 

methods detected genera above, and below, the implemented fold change threshold in 

both datasets 1 and 2 (Fig. 3, left and middle columns, bottom 5 rows; Additional file 10: 

Fig. S1, left and middle columns, bottom 9 rows). However, although not as resolute as 

the infinite values seen with higher concordant methods, all ORs for replicated DA sig-

natures of lower concordant methods were positive, again, suggesting that the majority 

of genera with absolute fold change past the threshold were being replicated (Fig. 3, right 

column, bottom five rows; Additional file 10: Fig. S1, right column, bottom nine rows). 

When looking at MRAs versus log2 fold change in PD of filtered data, the majority of 

genera detected by methods as differentially abundant had absolute fold changes greater 

than the implemented threshold (all ORs > 1; Additional file 11: Fig. S2), which suggests 

any ORs < 1 observed with unfiltered data might have been driven by detection of rarer 

genera.

�ese results suggest that methods belonging to the higher concordant group of meth-

ods are more likely to detect more common genera as differentially abundant, while 

methods belonging to the lower concordant group either err on the side of less com-

mon genera, or did not show a bias based on MRA. For fold changes, dataset specific 

effects seemed to be at play for higher concordant methods, and some lower concordant 

methods, but the majority of replicated DA signatures passed the absolute fold change 

threshold of 1.3.

Hierarchical clustering of genera and methods based on similarities in DA signatures

To observe what groups of DA signatures either all, or subsets, of methods were con-

verging upon, hierarchical clustering of DA signatures and methods was performed to 

group each based on similarities in DA signature replications (Fig. 4). To increase clarity 

of the hierarchical clustering and visualization using heatmap, results from filtered data 

were used and only genera that were replicated by at least one method as being differen-

tially abundant in both datasets were included in the clustering and heatmap. Hierarchi-

cal clustering grouped DA signatures into three groups. �e first group encompassed 25 

genera (19% of genera tested and in common between datasets) that were more likely to 

be detected as differentially abundant across methods in both datasets (13 ± 5 methods 

on average; Fig. 4, group 1; Additional file 9: Table S8). �is group included genera that 

were found to be both enriched or depleted in PD, and had a wide range of MRAs and 

effect sizes ranging from highly prevalent genera with moderate effect sizes (e.g. Agatho-

bacter, MRA = 0.01–0.03, absolute fold change = 1.8–1.9) to less common genera with 

larger effect sizes (e.g. Ezakiella, MRA = 3E−3–5E−3, absolute fold change = 3.3). �e 

second group included 23 genera (18% of genera tested and in common between data-

sets) that were largely enriched in PD and detected as differentially abundant in both 

datasets by a subset of methods (4 ± 2 methods on average; Fig. 4, group 2; Additional 



Page 13 of 29Wallen  BMC Bioinformatics          (2021) 22:265  

file 9: Table S8). Group 2 also included genera with a range of fold changes and MRAs 

(mean absolute fold change = 2.7–3.1, mean MRA = 2E-3 – 3E-3), but contained a sub-

group of genera that were of interest (Fig. 4, sub-group 2.A). Genera in this sub-group 

Fig. 4 Hierarchical clustering of genera and methods based on similarity in replicated differential abundance 

signatures. Hierarchical clustering was performed to group genera (rows) and methods (columns) based on 

similarities in replicated differential abundance signatures and was visualized via heatmap. Three groups of 

genera were revealed by hierarchical clustering: (1) genera more likely to be called differentially abundant 

by the majority of methods in both datasets, (2) genera who were mostly found enriched in PD and called 

differentially abundant in both datasets by a subset of methods, and (3) genera who were called differentially 

abundant by only 1–3 methods. Group 2 interestingly contained a sub-group of rarer genera with larger 

effect sizes (2.A) compared to other group 2 sub-groups (2.B and 2.C) and groups 1 and 3. All but one of these 

genera were enriched in PD and detected almost exclusively by methods who consistently resulted in lower 

than average concordances. Two groups of methods were also revealed: methods that mainly replicated 

DA signatures of group 2 (a), and the remaining methods (b). Hierarchical clustering was based on method 

results from filtered taxonomic data, and only genera that were detected as differentially abundant in both 

datasets by at least one method were included in the clustering and heatmap (61 in total). Cells correspond 

to a differential abundance signature that was replicated across datasets (value = 1, color = black), or was 

not replicated (value = 0, color = grey). Mean relative abundance ratios for genera in dataset 1 (MRAR_1) and 

dataset 2 (MRAR_2) were plotted next to the heatmap, and given a color gradient from red (lowest MRAR) to 

light grey (MRAR ~ 1) to blue (highest MRAR). Mean relative abundances of genera for dataset 1 (MRA_1) and 

dataset 2 (MRA_2) were also plotted next to the heatmap, and given a color gradient from light grey (lowest 

MRA) to dark green (highest MRA). GLM: generalized linear model; CLR: centered log-ratio; KW: Kruskal–Wallis; 

TSS: total sum scaling (relative abundances); rCLR: robust centered log-ratio transformation with matrix 

completion; RLE: relative log expression; NBZI: negative binomial zero-inflated
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contained only genera that were enriched in PD (barring one), had higher effect sizes 

than other groups (mean absolute fold change = 3.1–3.7), was made up of genera with 

very low MRAs (mean MRA = 6E−4–9E−4), and were largely detected in both data-

sets by a subset of methods that were included in the lower concordant group of meth-

ods previously mentioned above (Fig. 4, sub-group 2.A; Additional file 9: Table S8). �e 

third group included 13 genera (10% of genera tested and in common between datasets) 

who were only replicated by one to a few method(s) (Fig. 4, group 3; Additional file 9: 

Table S8).

Hierarchical clustering of methods revealed two groupings of methods. �e first group 

contained more than half of the lesser concordant methods (baySeq, Kruskal–Wal-

lis with rCLR, edgeR TMM, edgeR RLE, GLM NBZI; Fig. 4, group A; Additional file 9: 

Table S8) that, together, detected the majority of genera included in sub-group 2.A as 

differentially abundant across datasets. �e second group contained the remainder of 

methods (Fig. 4, group B; Additional file 9: Table S8). �e next major split in the method 

dendrogram was between the remaining methods and ANCOM, t-test and GLM with 

rCLR, and ALDEx2 who had the lowest number of replicated DA signatures (8 ± 3). No 

other groupings of methods seemed obvious from the hierarchical clustering, but of 

note, the next major split in the dendrogram for group B was DESeq2, then fitZIG, then 

the higher concordant methods (ANCOM-BC, SAMseq, LEfSe, Kruskal–Wallis with 

TSS and CLR, fitFeatureModel, t-test with TSS and CLR, limma-voom, and GLM with 

TSS and CLR), which made up the majority of the methods that replicated DA signa-

tures in group 1.

Discussion

In summary, various differential abundance testing methods were found in the litera-

ture and used to detect differentially abundant genera in PD patients versus healthy 

controls in two large PD-gut microbiome datasets. Methods spanned multiple fields 

and had both common and unique characteristics when compared to one another. 

Differential abundance signatures were detected by all methods and the number of 

DA signatures detected by each method ranged from a small subset of genera to over 

half of the genera tested. Overall, 78–92% of genera tested were found to be differ-

entially abundant by at least one method in each dataset, while 5–22% were called 

differentially abundant by the majority of methods (depending on dataset and fil-

tering of taxonomic data prior to testing). Pairwise concordances between method 

calls varied overall, but were improved by using taxonomic data that had rarer genera 

removed before DA testing was performed. Regardless of whether unfiltered or fil-

tered taxonomic data was being analyzed, certain methods consistently resulted in 

higher mean pairwise concordances (e.g. ANCOM-BC, LEfSe), while others consist-

ently resulted in lower mean pairwise concordances (e.g. edgeR, fitZIG). Higher con-

cordant methods tended to detect more common genera as differentially abundant 

while lower concordant methods either did not have an obvious preference, or erred 

toward less common genera. �e relationship between detected DA signatures and 

fold change of genera in PD was less obvious, but there seemed to be a dataset effect 

for higher concordant methods, and some lower concordant methods, where more 

genera with absolute fold change < 1.3 were detected in dataset 2. For all methods, 



Page 15 of 29Wallen  BMC Bioinformatics          (2021) 22:265  

the majority of genera being replicated as differentially abundant in both datasets had 

absolute fold change of 1.3 or greater. Hierarchical clustering revealed three groups 

of DA signatures that were (1) replicated by the majority of methods on average and 

included genera previously associated with PD, (2) replicated by a subset of meth-

ods and included genera largely enriched in PD, and (3) replicated by one to a few 

method(s). Although datasets were heterogeneous in microbiome composition, no 

significant differences were observed between datasets in average concordances and 

the proportion of genera being detected as differentially abundant on average.

�e variation between method results reported here aligns with the variation 

between differential abundance testing method performances previously reported 

in method comparison studies [3–5]. Performance of methods could not be assessed 

here, as analyses were conducted on real datasets where the true answers are 

unknown, but it was observed that certain methods consistently resulted in above 

average pairwise concordances, and even higher pairwise concordances among each 

other, while other methods consistently resulted in lower than average pairwise con-

cordances. Interestingly, methods found here to have above average pairwise con-

cordance were also previously reported to have lower FPR and/or FDR (less than 0.1; 

e.g. ANCOM-BC, Kruskal–Wallis, t-test, ALDEx2, fitFeatureModel, ANCOM; Addi-

tional file 2: Table S1). �is, along with observations made in the current study, might 

help explain why they resulted in such high concordances with each other. Methods 

with lower FPR/FDR have been previously reported to be conservative in their per-

formance [3], detecting less taxa as differentially abundant compared to higher FPR/

FDR methods (which was also observed here). In this study, these methods seemed 

to detect DA signatures across datasets that included more prevalent genera (i.e. the 

relationship between detected genera and MRA shown in Fig. 3) and were robust to 

inter-methodological variation (i.e. genera shown in Fig.  4, group 1 that were more 

likely to be replicated by the majority of methods on average). Taken together, we can 

extrapolate that methods with lower FPR and/or FDR might be more likely to con-

verge on the same taxa because they are detecting less taxa as differentially abundant 

overall, and the signatures they do detect are more prevalent and stable members 

of the microbial community that are potentially more robust to methodological and 

population variation. Based on results of this study, these methods seem to be good 

candidates for detection of DA signatures that will be more resistant to inter-study 

variation in DA method choice. �is comes with the caveat that some true associa-

tions might be missed as these methods seem to be detecting more “high confidence” 

hits, and therefore, might be conservative as previously stated. In contrast, some 

methods found here to have below average pairwise concordance were also previ-

ously reported to have higher FPR and/or FDR (greater than 0.13; e.g. baySeq, edgeR, 

fitZIG, GLM NBZI; Additional file 2: Table S1). In this study, lower concordant meth-

ods overall detected a higher proportion of genera as differentially abundant com-

pared to higher concordant methods, which undoubtedly plays a role in their higher 

FPR/FDR. However, this is not the only factor as was shown in this study when the 

relationship between concordances and proportion of differentially abundant genera 

was removed with data filtering, yet members of the lower concordant group of meth-

ods still remained constant for the most part.
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A surprising finding from this study was the effect of input data filtering prior to DA 

testing, but intuitively, it makes logical sense that removal of rarer taxa increases the 

concordance between method results. Minimizing the pool of taxa available for detec-

tion will automatically help remove some potential false positives, especially for methods 

such as baySeq and fitZIG that detected a large amount of rarer genera as differentially 

abundant. Filtering data also lowers the multiple testing correction burden, so more 

conservative methods, such as the high concordant methods of this study, will detect a 

higher proportion of taxa as differentially abundant. �is, in conjunction with reduced 

proportion of differentially abundant taxa for more liberal methods, will bring method 

results more into alignment with one another as was observed in this study. However 

this was not the case for all methods as shown with ANCOM. Filtering of input data 

before analysis actually decreased the number of detected DA signatures for ANCOM. 

�is might be due to the different statistics used by ANCOM compared to the stand-

ard FDR q-value used by the other methods included in this study. To determine sig-

nificance, ANCOM calculates a W statistic, which is the number of times the log-ratio 

of a taxon with every other taxon being tested was detected to be significantly differ-

ent across groups (in this case PD versus control) [6]. Because W statistics are based 

on pairwise comparisons between all taxa being tested, they will automatically decrease 

overall if less taxa are included in the analysis, and the threshold range for significant W 

statistics will also decrease. In addition, if low prevalent taxa are being removed, this will 

not only decrease the W statistics overall, but now W statistic calculation might become 

more conservative since more prevalent, and potentially more stable, taxa have been 

selected for, the ratios of which might not differ enough to be detected as significant at 

a particular W statistic threshold. �is could potentially make the analysis overly con-

servative (as seen in this study), therefore, if using ANCOM, it might be beneficial to 

perform ANCOM using the full surveyed microbiome, removing none, or only the very 

rare taxa, before analysis. �is effect was not observed for the more recently updated 

ANCOM-BC, as ANCOM-BC uses a linear regression framework to perform DA test-

ing without the use of pairwise log-ratio comparisons and calculation of W statistics.

A finding from this study that helped illustrate the behavior of the methods on the 

data analyzed here was the detection of two groups of genera that were converged upon 

by either the majority or subset of methods. Hierarchical clustering of genera based on 

similarity in DA signature replication showed one group of genera that were more likely 

to be detected as differentially abundant in both datasets by the majority of methods on 

average (Fig. 4, group 1). �eoretically, this group might be looked at as the “high confi-

dence” group, as methods from across the spectrum tended to detect the genera in this 

group as differentially abundant in both datasets, especially those methods in the higher 

concordant group. �is group included genera previously associated with PD such as 

Bifidobacterium, Lactobacillus, and short-chain fatty-acid producing bacteria Faecali-

bacterium, Roseburia, Blautia, and other members of the Ruminococcaceae and Lachno-

spiraceae family [22, 23]. It also included members of a correlated poly-microbial group 

of genera found previously to be increased in PD (Porphyromonas, Corynebacterium_1, 

Prevotella, Ezakiella, Varibaculum) [21]. Hierarchical clustering also revealed a sec-

ond group of genera that were only detected as differentially abundant in both datasets 

by a subset of methods, and contained an interesting sub-group that contained mostly 
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genera enriched in PD that had low control MRAs, and higher effect sizes on average 

compared to the rest of group 2, and groups 1 and 3 (Fig. 4, sub-group 2.A; Additional 

file 9: Table S8). Without the use of these methods, this group of genera might have been 

missed, arguing that, although some of these methods were previously reported to have 

higher FPR/FDR [3–5], they might detect DA signatures that may be missed by more 

conservative methods. It seems these methods should be used with caution, however, as 

stated earlier they tended to detect a large portion of genera as differentially abundant, 

and may replicate false positives by chance just from the sheer volume of differentially 

abundant taxa being detected.

One of the biggest limitations of this study is the lack of ability to test the actual per-

formance of these methods, as no simulations were performed and only real data was 

used, so the true answers are unknown. Luckily, the majority of the methods studied 

here have been previously subjected to comparison studies on simulated data, and 

results from those studies could be used to inform the discussion of the results from this 

study [2–5]. Unfortunately, not all methods implemented in this study had previously 

reported performance metrics (i.e. LEfSe and Kruskal–Wallis, t-test, and GLM with CLR 

and rCLR), therefore, it is difficult to speculate reasons for why they resulted in higher or 

lower concordances with other methods. A methodological limitation of this study is the 

choice of parameters used for each method. Each method may contain multiple func-

tions with multiple parameters, and it was beyond the scope of this study to try different 

combinations of parameters to fully optimize each method for the data being analyzed. 

Parameter choices were made based on what was default for the method and/or what 

was recommended for the method by the method authors especially in the context of 

microbiome data analysis, but this process is inherently biased as it was not attempted to 

try every combination of parameter choice possible for each method. Another methodo-

logical limitation of this study is the variation in normalization strategies used for differ-

ent methods to account for inter-sample differences in total sequencing depth. Different 

normalization strategies have been previously shown to impact method performance 

[4], therefore, changes in normalization strategy for some methods might minimize or 

exacerbate differences seen here between method results. It was beyond the scope of this 

study to assess the effect of all available normalization strategies on DA method con-

cordances, therefore, normalization strategies were chosen for methods based on if a 

built in normalization method was available within the method function itself, or the 

method’s R package, and recommended by method authors (i.e. calculation of scaling 

factors for DESeq2, edgeR, baySeq; CSS for metagenomeSeq methods; log-ratios for 

ALDEx2 and ANCOM; bias correction in ANCOM-BC; log2-CPM for limma-voom; 

SAM normalization for SAMseq; offset variable for GLM NBZI). If a DA method did 

not have a built-in transformation/normalization strategy (i.e. Kruskal–Wallis, Welch’s 

t-test, GLM), they were performed using two commonly implemented transformation/

normalization strategies seen in the literature (i.e. TSS and the compositionally aware 

CLR), and additionally, a more recently described, compositionally aware transforma-

tion (robust CLR with matrix completion) [20]. Because this study was performed on 

two datasets collected for the study of a specific disease in a specific aged population 

with data derived from a specific host source (stool), the results reported here might 

not translate to all types of microbiome datasets. Both datasets analyzed here were also 
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created using uniform methodology, therefore, results may also change if attempting to 

analyze two datasets created using different methodologies. �e genera detected in this 

study as differentially abundant between PD and control subjects should be interpreted 

with caution as the goal of this study was to compare the results of different DA methods 

when performed on microbiome datasets of real, complex disease, and did not take into 

account any confounding variables that might drive false signals. Because no confound-

ers were taken into account during the analyses of this study (e.g. PD medications, con-

stipation, age, sex, diet), differentially abundant genera detected in this study cannot be 

reported as truly “associated” with PD as the proper steps to guard against false positives 

due to underlying study population characteristics were not taken. Still, majority of gen-

era listed as part of group 1 have been previously reported as associated with PD [21], 

and genera listed as part of sub-group 2.A provide interesting findings that will hopefully 

be elucidated further in future investigations.

Although true performance of methods could not be assessed in this study due to the 

lack of ground truth for detected DA signatures, comparisons performed here revealed 

some potential strengths and shortcomings of individual methods, at least when per-

formed on data similar to what was used in this study. An obvious strength for some of 

the methods used here was the ability to detect and replicate DA signatures that were 

more concordant with other methods on average regardless of dataset and whether 

unfiltered or filtered data was used as input. �ese methods include ANCOM-BC, GLM 

with CLR and TSS, t-test with CLR and TSS, Kruskal–Wallis with TSS, and LEfSe as 

they were consistently included in the higher concordant group of methods regardless 

of the scenario. For detection of DA signatures that will be the most resistant to meth-

odological and inter-study variation, ideally one would choose multiple DA methods 

to implement and assess their concordances, but if needing to choose one DA method, 

the recommendation based off the present, and previous, comparison studies would be 

to choose method(s) from the ones stated above that take compositionality of data into 

account (ANCOM-BC and/or GLM or t-test with CLR). Based on comparisons per-

formed in this study, t-test with CLR seems to have the overall highest and most stable 

concordances of the three, but if needing to include covariates and more complex linear 

models, ANCOM-BC and GLM with CLR are valid choices, and will provide statistics 

and P values for further post analyses such as meta-analysis. Kruskal–Wallis with CLR 

would be assumed a good choice since t-test is a parametric test and CLR transforma-

tion does not always address non-normality of the data fully, but a blatant shortcoming 

of using Kruskal–Wallis with CLR was observed in this study. Concordances on average 

were found to be unstable for Kruskal–Wallis with CLR, being more influenced by data-

set and data filtering compared to the other methods that utilized this transformation 

(t-test and GLM). �is might be due to a difference in the geometric mean, used as the 

denominator in CLR, between PD and control subjects for some genera, which Kruskal–

Wallis may be more sensitive to, and therefore, would have had a higher proportion of 

genera detected as differentially abundant (as seen for dataset 1, unfiltered data). Fur-

ther investigation into this is warranted to elucidate the reasoning behind this instability. 

Another shortcoming was noted for the rCLR transformation with matrix completion 

when used with GLM, t-test, and Kruskal–Wallis. Concordances for methods using the 

rCLR transformation were consistently in the lower concordant group of methods, and 
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showed dataset specific effects on the proportion of genera that were being detected as 

differentially abundant for unfiltered data. Additionally, very few DA signatures were 

replicated when using the rCLR transformation in both unfiltered and filtered data, 

which might be a sign of spurious DA signatures being detected. �is might be due 

to the matrix completion step after the CLR transformation of non-zero components. 

While the matrix completion algorithm makes the best guess it can on what data should 

be filled in for missing data, it is still only a guess, and may introduce artifacts into the 

data. Also, keeping the non-missing data relatively the same, but providing imputed val-

ues for zero entries does not accurately recapitulate what occurs during sequencing if 

zeros present in the data are due to low sampling of the microbial community. If that is 

the case, then the existing values also need to be adjusted for the imputed input.

Conclusion

In conclusion, various differential abundance testing methods were performed for two 

large PD-gut microbiome datasets and their results were compared. Results varied 

between methods, but some methods resulted in higher pairwise concordances, while 

others resulted in lower concordances. Filtering of genera before analysis improved 

concordances overall except for ANCOM, where filtering reduced the number of DA 

signatures detected, most likely due to the way W statistics are calculated and used 

for significance. �e majority of methods converged on a group of DA signatures that 

seemed more robust to inter-methodological differences, while a subset of methods 

converged on a smaller sub-group of DA signatures involving genera mostly enriched in 

PD with low relative abundances. �is study helps to fill a void in the literature on how 

different DA methods behave when performed on real, complex disease oriented gut 

microbiome datasets, and hopefully it will help inform future studies looking to perform 

these types of analyses, especially those working with gut microbiome data derived from 

stool for studying Parkinson disease.

Methods

Subjects, metadata, gut microbiome

�e original study was approved by institutional review boards at all participating insti-

tutions. Subjects, metadata, and gut microbiome data of datasets 1 and 2 have been 

previously described [21, 24]. We enrolled subjects and collected metadata and stool 

samples from 212 PD and 136 neurologically healthy control subjects for dataset 1, and 

323 PD and 184 neurologically healthy controls for dataset 2. Dataset 1 subjects were 

enrolled in Seattle, WA, Albany, NY, and Atlanta, GA, while all dataset 2 subjects were 

enrolled in Birmingham, AL. Methods for enrollment and collection of metadata and 

fecal samples were uniform across enrollment sites. PD was diagnosed according to the 

UK Brain Bank criteria by movement disorder specialists. Controls were self-reported 

free of neurological disease. Metadata were collected using questionnaires, or extracted 

from medical records. Stool samples were collected at home using DNA/RNA-free ster-

ile swabs and mailed through U.S. postal service. All subjects provided written informed 

consent for their participation in the study.
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DNA was extracted from stool samples using the automated MoBio PowerMag Soil 

DNA Isolation Kit (dataset 1) or manual MoBio PowerSoil DNA Isolation Kit (data-

set 2). Hypervariable region 4 (V4) of the 16S rRNA gene was amplified with primers 

515F-806R. Paired-end 150 bp (dataset 1) or paired-end 250 bp (dataset 2) sequencing 

was performed on V4 amplicons using Illumina MiSeq. Fifteen samples in dataset 1 

resulted in low sequence count and were excluded.

Bioinformatic processing of sequences was performed separately for each dataset. 

Primers were trimmed from sequences using cutadapt v 1.16 [25]. DADA2 v 1.8 was 

used for quality trimming and filtering sequences, de-replicating sequences, inferring 

amplicon sequence variants (ASVs), merging of forward and reverse sequences, and 

detection and removal of chimeras [26]. Final ASV tables for dataset 1 and dataset 2 

contained 6,844 unique ASVs for 201 PD and 132 controls samples and 12,198 unique 

ASVs for 323 PD and 184 control samples respectively. Taxonomy was assigned to ASVs 

using DADA2’s native implementation of the Ribosomal Database Project naïve Bayes-

ian classifier with SILVA v 132 as reference and a bootstrap confidence of 80% [27]. Phy-

logenetic trees were constructed by first performing a multiple sequence alignment with 

DECIPHER v 2.8.1 [28], then building a phylogenetic tree with phangorn v 2.8.1 [29]. 

Phyloseq v 1.24.2 was used to create a phyloseq object for each dataset containing their 

respective ASV table, taxonomy classifications, phylogenetic trees, and subject metadata 

[30]. To agglomerate ASV level phyloseq objects to genus level, the tax_glom function 

in phyloseq was used without removal of unclassified genera. Total number of genera 

detected in dataset 1 was 445. Total number of genera detected in dataset 2 was 561. 

Total number of genera in common between both datasets was 380.

Di�erential abundance testing

Differential abundance testing was performed in datasets 1 and 2 separately. Method 

characteristics and parameters chosen for each method that differed from default can be 

found in Additional file 2, 3: Tables S1 and S2 respectively. All methods were performed 

twice, once for all genera detected in datasets 1 and 2 (referred to as "unfiltered data"), 

and again, for genera present in at least 10% of samples (referred to as “filtered data”; 

133 genera in dataset 1, 195 genera in dataset 2, and 129 genera in common between 

datasets) to observe effect of taxonomic data filtering on method results and compari-

sons. For methods that did not have a built-in transformation/normalization strategy 

(i.e. Welch’s t-test, Kruskal–Wallis rank-sum test, generalized linear model), three strate-

gies were performed on genera abundances before testing: the commonly used TSS (also 

referred to as relative abundances), the more compositionally aware CLR transform [19], 

and a more recently described robust CLR transform with matrix completion using the 

OptSpace algorithm [20]. �e TSS and CLR of each abundance count was calculated 

using the following formulas in R v 4.0.5:

where Xtaxa is the raw abundance of the current genus whose abundances are being 

transformed, and X1, X2, … Xn are the raw abundances of every genus in the same sam-

ple as the current genus. �e rCLR was calculated in the same manner as the CLR, but 

TSS : [Xtaxa/ sum(X1,X2, . . .Xn) ]

CLR :
[

log (Xtaxa + 1) − mean
(

log(X1 + 1, X2 + 1, . . . Xn + 1)
) ]
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no pseudo-count of 1 was added, only non-zero components of the data were included, 

and the transform was followed by matrix completion of missing values using the Opt-

Space function in the R package ROptSpace v 0.2.2 [31]. When performing TSS for para-

metric methods (t-test and GLM), abundances were given a pseudo-count of 1, then log 

transformed before applying TSS, as this normalization method has no built in strategy 

for improving normality of the data. Remaining details for performing DA testing for all 

methods are as follows.

Analysis of compositions of microbiomes (ANCOM) [6]

Raw counts of genera were used as input to the ANCOM.main function from the 

ANCOM v 2 R code (downloaded from https:// sites. google. com/ site/ siddh artha manda 

l1985/ resea rch). PD vs control was specified as the main variable. �e taxa-wise FDR 

option (multcorr = 2) was chosen for the multiple testing correction method. An FDR 

significance threshold of 0.05 was chosen for calculation of W statistics. W statis-

tics greater than or equal to 80% of the total number of genera tested were considered 

significant.

Analysis of compositions of microbiomes with bias correction (ANCOM-BC) [7]

Raw genera counts were used as input to the ancombc function in the ANCOMBC R 

package v 1.0.5 specifying the p_adj_method to be “BH” and zero_cut threshold to be “1” 

(so ANCOM-BC itself would not perform any data filtering). All other options were left 

as default.

ALDEx2 [8]

Raw genera counts were used as input for the aldex function in ALDEx2 R package v 

1.22.0 specifying 1000 Monte Carlo samples. Both Wilcoxon (ALDEx2 Wilcoxon) and 

t-test (ALDEx2 t-test) were used for testing differences in genera relative abundances 

between PD and controls. P values were corrected for multiple testing using BH FDR 

method implemented in the aldex function.

baySeq [9]

PD and control designations were used as the replicate structure. A list of two group 

structures was created where one group structure specified all subjects belonged to the 

same group, and the other specified PD and control groups. �e replicate structure, list 

of group structures, and raw genera counts were combined into a countData object. 

Total sequence counts per sample were calculated and manually supplied to the count-

Data object. Priors were estimated from a negative binomial distribution using the func-

tion getPriors.NB in baySeq R package v 2.14.0, then likelihoods were estimated using 

function getLikelihoods in baySeq. FDR values were calculated using the topCounts 

function in baySeq.

https://sites.google.com/site/siddharthamandal1985/research
https://sites.google.com/site/siddharthamandal1985/research
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DESeq2 nbinomWaldTest [10]

Using raw genera counts, normalization factors were calculated using the function esti-

mateSizeFactors in DESeq2 R package v 1.30.1 specifying type = “poscounts”. Testing 

for differential relative abundance between PD and controls was performed using the 

DESeq function in DESeq2 with default parameters. P values were corrected for multi-

ple testing using BH FDR method implemented in the results function in DESeq2.

edgeR exactTest-TMM (edgeR TMM) [11]

Using raw genera counts, normalization factors were calculated with the TMM method 

using the calcNormFactors function in edgeR R package v 3.32.1. Common and tagwise 

dispersions were then estimated using estimateCommonDisp and estimateTagwiseDisp 

functions in edgeR. Testing for differential relative abundance between PD and controls 

was performed using exactTest function in edgeR. P values were corrected for multiple 

testing using BH FDR method implemented in the topTags function in edgeR.

edgeR exactTest-RLE (edgeR RLE) [11]

Using genera counts with a pseudo-count of 1 added, normalization factors were calcu-

lated with the RLE method using the calcNormFactors function in edgeR. �e remaining 

steps were the same as edgeR TMM.

Generalized linear model (GLM)

A standard linear regression model using Gaussian distribution was fitted for the trans-

formed abundances of each genus with the glm function from the R stats package speci-

fying PD vs control as the independent variable. P values were calculated using the base 

summary function in R and corrected for multiple testing using BH FDR method imple-

mented in the p.adjust function from stats package.

Kruskal–Wallis rank-sum test [12]

�e kruskal.test function from the stats R package was used to test for significant differ-

ences in transformed genera abundances between PD and controls. P values were cor-

rected for multiple testing using Benjamini-Hochberg (BH) FDR method implemented 

in the p.adjust function from stats package.

Linear discriminant analysis E�ect Size (LEfSe) [13]

Genera counts were transformed using TSS. Sample IDs, case/control class designa-

tions, and genera relative abundances were exported from R and used as input for LEfSe 

v 1.0.8.post1 (downloaded using LEfSe bioconda recipe https:// bioco nda. github. io/ recip 

es/ lefse/ README. html). Only genus level taxonomy designations were included in 

the LEfSe input. �e LEfSe input was formatted using the lefse-format_input.py script 

specifying the normalization value to be “1E6”. LEfSe analysis was then ran on the for-

matted data using the run_lefse.py script with default parameters. Since LEfSe only out-

puts uncorrected P values for features that it finds significant, LEfSe analysis was ran 

again, but this time specifying parameters that would output all P values. �e full range 

https://bioconda.github.io/recipes/lefse/README.html
https://bioconda.github.io/recipes/lefse/README.html
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of LEfSe P values were multiple testing corrected using BH FDR method implemented in 

the p.adjust function from stats package. �ese corrected P values were substituted for 

the uncorrected P values outputted by the default LEfSe run.

limma-voom [14]

Using raw genera counts, TMM values were calculated using the calcNormFactors func-

tion in edgeR. Log2-CPM transformation and mean–variance trend estimation was per-

formed using the voom function in limma R package v 3.46.0. Testing was performed by 

first fitting a linear model for each genus using function lmFit in limma, then testing for 

differential relative abundance between PD and controls using the eBayes function in 

limma. P values were corrected for multiple testing using BH FDR method implemented 

in the topTable function in limma.

metagenomeSeq zero-in�ated Gaussian (�tZIG) [15, 16]

CSS was applied to genera counts using the cumNorm function in metagenomeSeq R 

package v 1.32.0. A zero-inflated Gaussian model was fitted for each genus using func-

tion fitZig in metagenomeSeq. P values were corrected for multiple testing using BH 

FDR method implemented in the MRfulltable function in metagenomeSeq.

metagenomeSeq �tFeatureModel [15, 16]

CSS was applied to genera counts using cumNorm function in metagenomeSeq. A zero-

inflated log-normal model was fitted for each genus using function fitFeatureModel in 

metagenomeSeq. P values were corrected for multiple testing using BH FDR method 

implemented in the MRfulltable function in metagenomeSeq.

Negative binomial generalized linear model with and without zero-in�ation (GLM NBZI)

Total sequence count was calculated for each sample. Using raw counts, a negative-bino-

mial generalized linear model with and without a zero-inflation component was fitted 

for each genus with the glmmTMB R package v 1.0.2.1 using log(total sequence count) as 

an offset variable, and PD vs control as the independent variable. Results were extracted 

from the model with the lowest Akaike information criterion. P values were calculated 

using the base summary function in R and corrected for multiple testing using BH FDR 

method implemented in the p.adjust function from stats package.

SAMseq [17]

�e SAM method for normalization of sequence counts (Anscombe transformation, 

then dividing by the square root of sequencing depth) was applied to genus counts 

using the samr.norm.data function in the samr R package v 3.0. Normalized values were 

rounded to the nearest integer. Normalized genera counts were used as input for the 

SAMseq function in the samr R package specifying “Two class unpaired” as the response 

type and the fdr.output as “1” in order to get full result list. FDR q-values were extracted 

from “siggenes.table” in the SAMseq output.
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Welch’s t-test (t-test) [18]

�e t-test function from the stats R package was used to test for significant differ-

ences in transformed genera abundances between PD and controls. P values were cor-

rected for multiple testing using BH FDR method from the p.adjust function.

Unless otherwise mentioned above, significance was set at FDR < 0.05. Significant 

differences in a genus’ relative abundance between PD and control groups is referred 

to as a “DA signature” for the purpose of this manuscript. For a particular method, a 

DA signature was considered replicated in both datasets if it reached multiple testing 

corrected significance in both datasets for that method, and was found to have a PD 

to control mean relative abundance ratio (MRAR; also referred to as fold change) in 

the same direction for both datasets.

Concordance of DA signatures across DA methods

To measure similarity in detected DA signatures between methods, pairwise con-

cordances were calculated between each pair of methods. To calculate pairwise con-

cordances between methods for each dataset individually, a binary genus by method 

matrix was first created with values denoting which methods did (1), or did not (0), 

detect a DA signature between a genus and PD. �en, for each pair of methods in 

turn, concordances were calculated by summing the number of detected DA signa-

tures that were the same between both methods (both having 1 for a particular genus) 

and dividing by the total number of detected DA signatures between both methods. 

Calculating concordance in this manner gives the proportion of DA signatures in 

common between two methods out of the total detected DA signatures, providing 

a measure of how well two methods are hitting the same targets. To calculate pair-

wise concordances between methods for DA signatures that replicated across data-

sets, a binary genus by method matrix was first created with values denoting which 

methods replicated a DA signature (1), or did not detect and/or replicate a DA signa-

ture (0). �e MRAR of PD to control subjects was used to determine effect direction. 

Only tested genera that were in common between both datasets were included in the 

matrix (380 genera for unfiltered data, and 129 for filtered). �en, for each pair of 

methods in turn, concordances were calculated by summing the number of replicated 

DA signatures in common between both methods and dividing by the total number of 

replicated DA signatures. Pairwise concordances, along with the proportion of genera 

found differentially abundant for each method were visualized for dataset 1, dataset 2, 

and replicated DA signatures as a boxplot and bar plot respectively using the ggplot2 

R package v 3.3.3 [32]. Methods were ordered from lowest (left) to highest (right) 

overall mean pairwise concordance between dataset 1, dataset 2, and replicated DA 

signatures. Mean pairwise concordance for each method was calculated in order to 

see how similar a DA method’s calls were compared to all other methods on average. 

Methods with a mean pairwise concordance lower than the mean pairwise concord-

ance of all methods in a particular dataset, or for replicated DA signatures, were con-

sidered to be part of a “lower concordant” group, while methods with a higher than 

average mean pairwise concordance were considered to be part of a “higher concord-

ant” group.
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Testing relationship between concordances and proportion of di�erentially abundant 

genera

To determine if a relationship existed between concordances and the proportion of 

genera that were being detected as differentially abundant by each method, both val-

ues were plotted against each other for dataset 1, dataset 2, and replicated DA signa-

tures. A trend line was then fitted to the data and added to the plots to visualize any 

relationship between the two variables. To determine strength and statistical signifi-

cance of any relationships, a Pearson’s correlation test was performed between con-

cordances and proportion of differentially abundant genera, and results annotated on 

each plot.

E�ect of taxonomic data �ltering on method results and concordances

To determine if taxonomic data filtering has an effect on method results, pairwise 

concordances, and the relationship between concordances and proportion of dif-

ferentially abundant genera, pairwise concordances were recalculated for method 

results derived from performing DA testing on taxonomic data that had rarer genera 

excluded before analysis. �e differences between these concordances and previously 

derived concordances were calculated to observe how filtering input data affects the 

resulting concordances between methods. Differences between filtered versus unfil-

tered data were also calculated for the proportion of differentially abundant genera. 

Concordances and proportion of differentially abundant genera were then plotted as 

previously mentioned, with the addition of these differential values. Concordances 

and proportion of differentially abundant genera were replotted against each other, 

and retested to observe if any relationships detected with unfiltered data was modi-

fied by using filtered data.

Di�erentially abundant genera as a function of mean relative abundance and e�ect size

To determine what type of differentially abundant genera were being detected by 

methods based on MRA and effect size, the MRAs of tested genera (on log scale) and 

the log2 fold change of genera in PD were plotted against one another for dataset 1, 

dataset 2, and replicated signatures. Fisher’s exact test was used to statistically test 

if detected DA signatures for a particular method were enriched for more, or less, 

prevalent genera (defined as those that have a MRA above, or below, the median for 

a dataset or replicated DA signatures). Fisher’s exact test was also used to test if a 

significant amount of DA signatures for each method were being detected at a par-

ticular effect size threshold (absolute fold change in PD of ~ 1.3 or greater), which was 

chosen based on what was expected to be the smallest meaningful fold change in PD.

Hierarchical clustering of genera based on similarities in replicated DA signatures

To determine if any groups of DA signatures were being converged upon by all or 

a subset of methods, hierarchical clustering was performed to group DA signatures 

based on similarities in DA signature replication between methods. �e same binary 

genus by method matrix used for calculating concordances for replicated DA signa-

tures when performing DA testing on filtered data was used as input to hierarchical 
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clustering, then hierarchical clustering results were visualized in a heatmap using 

the heatmap.3 function (downloaded from https:// raw. githu buser conte nt. com/ obigr 

iffith/ biost ar- tutor ials/ master/ Heatm aps/ heatm ap.3.R on 10/21/2019). �e default 

distance function (dist function from stats R package) was used to calculate Euclid-

ean distances between genera and methods. �e hierarchical clustering function was 

specified to be diana from the cluster v 2.1.1 R package. DIANA (DIvisive ANAly-

sis) performs a divisive hierarchical clustering algorithm [33], which, in this situation, 

attempts to group DA signatures based on the similarities in replicated DA signatures 

between methods. �e PD to control MRARs and MRAs for each genus were also 

plotted next to the heatmap. MRARs were given a color gradient from red (lowest 

MRAR) to light grey (MRAR ~ 1) to blue (highest MRAR). MRAs were given a color 

gradient from light grey (lowest MRA) to dark green (highest MRA). Hierarchical 

clustering was also performed for methods in an effort to arrange and group them 

based on their result similarities.

Testing for di�erences between datasets

To test for differences between datasets for various metrics, t-tests were performed and 

results recorded in the Additional file 1.
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Additional �le 4: Table S3. Dataset 1 false discovery rate (FDR) q-values for differential abundance methods when 

performed on unfiltered data. Dataset 1 FDR q-values for all differential abundance methods were aggregated into 

one table along with the mean relative abundance of each genus for PD patients (Case MRA) and control subjects 

(Control MRA) and the mean relative abundance ratio of Case MRA to Control MRA (MRAR). 201 PD patients and 132 

controls were included in all analyses. All genera detected in dataset 1 (445 genera) were included in the analyses. If 

an analysis resulted in an "NA" for a result, or a result was not outputted by the method, a 1 was placed for the FDR 

q-value. Calculations for the number of detected DA signatures for each method are located at the bottom of the 

table. Calculations for the number of methods that detected or replicated a genus as differentially abundant are 

located to the right of the table.

Additional �le 5: Table S4. Dataset 2 false discovery rate (FDR) q-values for differential abundance methods when 

performed on unfiltered data. Dataset 2 FDR q-values for all differential abundance methods were aggregated into 

one table along with the mean relative abundance of each genus for PD patients (Case MRA) and control subjects 

(Control MRA) and the mean relative abundance ratio of Case MRA to Control MRA (MRAR). 323 PD patients and 184 

controls were included in all analyses. All genera detected in dataset 2 (561 genera) were included in the analyses. If 

an analysis resulted in an "NA" for a result, or a result was not outputted by the method, a 1 was placed for the FDR 

q-value. Calculations for the number of detected DA signatures for each method are located at the bottom of the 

table. Calculations for the number of methods that detected or replicated a genus as differentially abundant are 

located to the right of the table.
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Additional �le 6: Table S5. Dataset 1 false discovery rate (FDR) q-values for differential abundance methods when 

performed on filtered data. Dataset 1 FDR q-values for all differential abundance methods were aggregated into 

one table along with the mean relative abundance of each genus for PD patients (Case MRA) and control subjects 

(Control MRA) and the mean relative abundance ratio of Case MRA to Control MRA (MRAR). 201 PD patients and 132 

controls were included in all analyses. Genera detected in at least 10% of samples (133 genera) were included in the 

analyses. If an analysis resulted in an "NA" for a result, or a result was not outputted by the method, a 1 was placed for 

the FDR q-value. Calculations for the number of detected DA signatures for each method are located at the bottom 

of the table. Calculations for the number of methods that detected or replicated a genus as differentially abundant 

are located to the right of the table.

Additional �le 7: Table S6. Dataset 2 false discovery rate (FDR) q-values for differential abundance methods when 

performed on filtered data. Dataset 2 FDR q-values for all differential abundance methods were aggregated into 

one table along with the mean relative abundance of each genus for PD patients (Case MRA) and control subjects 

(Control MRA) and the mean relative abundance ratio of Case MRA to Control MRA (MRAR). 323 PD patients and 184 

controls were included in all analyses. Genera detected in at least 10% of samples (195 genera) were included in the 

analyses. If an analysis resulted in an "NA" for a result, or a result was not outputted by the method, a 1 was placed for 

the FDR q-value. Calculations for the number of detected DA signatures for each method are located at the bottom 

of the table. Calculations for the number of methods that detected or replicated a genus as differentially abundant 

are located to the right of the table.

Additional �le 8: Table S7. Pairwise concordances between methods with summary statistics calculations. Differen-

tial abundance testing was performed using 23 methods on both unfiltered (A-C, 445 genera dataset1, 561 genera 

dataset 2), and filtered (D-F, 133 genera dataset 1, 195 genera dataset 2) taxonomic data. Values in heatmap cells are 

pairwise concordances of differential abundance signature calls between two methods. Concordances within each 

dataset (A,B,D,E) were calculated by first creating a binary taxa by method matrix denoting which methods did (value 

of 1) or did not (value of 0) detect a certain differential abundance signature, then between each pair of methods, 

calculating the proportion of detected differential abundance signatures in common out of the total detected 

between the two methods. Calculation of concordances for replicated differential abundance signatures (C,F) 

were calculated by first creating a binary taxa by method matrix that denoted whether a signature was replicated 

(multiple testing corrected significant and same case:control mean relative abundance ratio in both datasets) across 

datasets (value of 1), or was not replicated (value of 0), then between each pair of methods, calculating the propor-

tion of replicated signatures in common out of the total replicated between the two methods. Cells are colored by 

a blue (lower concordance) to white (around the mean pairwise concordance of each heatmap) to orange (higher 

concordance) color gradient. Methods are ordered from lowest (bottom, left) to highest (top, right) mean pairwise 

concordance. SAMseq did not successfully run for dataset 2 unfiltered data, therefore, table values for SAMseq have 

been put as "NA" and colored grey in B and C. KW: Kruskal-Wallis; GLM: generalized linear model; CLR: centered 

log-ratio transformation; TSS: total sum scaling; rCLR: robust CLR with matrix completion using OptSpace algorithm; 

TMM: trimmed mean of M-values; GLM NBZI: generalized linear model assuming negative binomial distribution with, 

or without, zero-inflation; RLE: relative log expression.

Additional �le 9: Table S8. Table further describing heatmap in Fig 4. A table was created to mirror the heatmap in 

Fig 4 in order to further describe the values being represented in the heatmap visualization and calculate number 

of methods replicating a particular DA signature. Table rows and columns are ordered to match Fig 4. Values for 

mean relative abundance ratios and mean relative abundances of each taxon in dataset 1 (MRAR_1 and MRA_1) and 

dataset 2 (MRAR_2 and MRA_2) from the heatmap in Fig 4 are shown. For each method column, cells are labeled to 

show what DA signature replicated ("Replicated") or did not replicate ("-") instead of the actual values used for gener-

ating the heatmap (1 and 0 respectively). Calculations for the number of methods a DA signature was replicated by 

are located at the right most column of the table. Only taxa that had at least 1 method replicate it’s DA signature are 

included in the table. Heatmap and hierarchical clustering is based on method results when performed on filtered 

data (excluding taxa found in < 10% of samples). KW: Kruskal-Wallis; GLM: generalized linear model; CLR: centered 

log-ratio transformation; TSS: total sum scaling; rCLR: robust CLR with matrix completion using OptSpace algorithm; 

TMM: trimmed mean of M-values; GLM NBZI: generalized linear model assuming negative binomial distribution with, 

or without, zero-inflation; RLE: relative log expression.

Additional �le 10: Figure S1. Detection of differentially abundant genera as a function of mean relative abundance 

and effect size. To observe what type of differentially abundant genera were being detected by methods based on 

mean relative abundance and effect size, the mean relative abundances of tested genera (on log scale) and log2 

fold change of genera in PD were plotted for dataset 1 (left column), dataset 2 (middle column), and replicated 

signatures (right column), and repeating these plots for each DA method (rows). Fisher’s exact test was used to 

determine if DA signatures were enriched for more or less common genera, and genera with absolute fold change 

of 1.3 or higher. Individual points in the plots represent each tested genus, and is plotted according to that specific 

genus’ mean relative abundance in cases and controls and log2 fold change in PD. For each method, points are 

shaded black if a method detected a particular genus as differentially abundant, and grey if not detected as such. 

Horizontal dashed lines represent the median mean relative abundance for either dataset 1, dataset 2, or replicated 

signatures. Vertical dashed lines represent a fold change of ~1.3 in positive and negative directions. Blue labeled 

methods are methods who were found to have consistently higher than average concordances in both datasets and 

replicated signatures, while red labeled methods were found to have consistently lower than average concordances. 

Grey labeled methods are those that were found to have varied mean concordances. MRA: mean relative abun-

dance, results from Fisher’s exact test testing enrichment of more or less common genera in detected DA signatures; 

FC: fold change, results from Fisher’s exact test testing enrichment of genera with absolute fold changes > or < 1.3 

in detected DA signatures; OR: odds ratio; P: P value of OR; GLM: generalized linear model; CLR: centered log-ratio; 

KW: Kruskal- Wallis; TSS: total sum scaling (relative abundances); rCLR: robust centered log-ratio transformation 
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with matrix completion; RLE: relative log expression; TMM: trimmed mean of M-values; NBZI: negative binomial 

zero-inflated.

Additional �le 11: Figure S2. Detection of differentially abundant genera as a function of mean relative abundance 

and effect size when performing differential abundance testing on filtered taxonomic data. To observe what type of 

differentially abundant genera were being detected by methods based on mean relative abundance and effect size 

when performed on filtered taxonomic data, the mean relative abundances of tested genera (on log scale) and log2 

fold change of genera in PD were plotted for dataset 1 (left column), dataset 2 (middle column), and replicated sig-

natures (right column), and repeating these plots for each DA method (rows). Fisher’s exact test was used to deter-

mine if DA signatures were enriched for more or less common genera, and genera with absolute fold change of 1.3 

or higher. Individual points in the plots represent each tested genus, and is plotted according to that specific genus’ 

mean relative abundance in cases and controls and log2 fold change in PD. Composite mean relative abundances 

and fold changes were used to plot points for replicated DA signatures by taking the average between datasets. For 

each method, points are shaded black if a method detected a particular genus as differentially abundant, and grey 

if not detected as such. Horizontal dashed lines represent the median mean relative abundance for either dataset 

1, dataset 2, or replicated signatures. Vertical dashed lines represent a fold change of ~1.3 in positive and negative 

directions. Blue labeled methods are methods who were found to have consistently higher than average concord-

ances in both datasets and replicated signatures, while red labeled methods were found to have consistently lower 

than average concordances. Grey labeled methods are those that were found to have varied mean concordances. 

MRA: mean relative abundance, results from Fisher’s exact test testing enrichment of more or less common genera in 

detected DA signatures; FC: fold change, results from Fisher’s exact test testing enrichment of genera with absolute 

fold changes > or < 1.3 in detected DA signatures; OR: odds ratio; P: P value of OR; GLM: generalized linear model; 

CLR: centered log-ratio; KW: Kruskal- Wallis; TSS: total sum scaling (relative abundances); rCLR: robust centered log-

ratio transformation with matrix completion; RLE: relative log expression; TMM: trimmed mean of M-values; NBZI: 

negative binomial zero-inflated.
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