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AND POSITIVITY OF SPECTRUM

Peter Li & Jiaping Wang

Abstract

The first part of this paper is devoted to proving a comparison
theorem for Kähler manifolds with holomorphic bisectional curva-
ture bounded from below. The model spaces being compared to
are CP

m, Cm, and CH
m. In particular, it follows that the bottom

of the spectrum for the Laplacian is bounded from above by m2

for a complete, m-dimensional, Kähler manifold with holomorphic
bisectional curvature bounded from below by −1. The second part
of the paper is to show that if this upper bound is achieved and
when m = 2, then it must have at most four ends.

0. Introduction

In 1975, Cheng [1] proved a comparison theorem for the first Dirichlet
eigenvalues of the Laplacian on geodesic balls. One of the consequences
is a sharp upper bound for the bottom of the spectrum on a complete
manifold with Ricci curvature bounded from below.

Theorem 0.1 (Cheng). Let Mn be a complete Riemannian manifold
of dimension n. Suppose the Ricci curvature of M has a lower bound
given by

RicM ≥ −(n − 1).
Then, the bottom of the spectrum of the Laplacian must satisfy the upper
bound

λ1(M) ≤ (n − 1)2

4
.

Cheng’s estimate is sharp and equality is achieved by the hyperbolic
space form H

n. A key ingredient of Cheng’s theorem is the Laplacian
comparison theorem asserting that the Laplacian of the distance func-
tion ∆r has an upper bound for manifolds whose Ricci curvature is
bounded from below.
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A natural question is to study those manifolds satisfying the equality
case in Cheng’s theorem, i.e., M satisfying

(0.1) RicM ≥ −(n − 1)

and

(0.2) λ1(M) =
(n − 1)2

4
.

Other than the fact that H
n is an example of the equality case, it was

not known what can be said about this class of manifolds.
More examples of complete manifolds satisfying (0.1) and (0.2) can

be found by considering hyperbolic manifolds M = H
n/Γ obtained by

the quotient of H
n with a Kleinian group Γ. According to a theorem of

Sullivan [14], the bottom of the spectrum, λ1(M), can be expressed by
the Hausdorff dimension, δ(Γ), of the limit set of Γ. In fact, he proved
that if Γ is geometrically finite, then

λ1(M) =

{
(n−1)2

4 , if δ(Γ) ≤ n−1
2

δ(Γ)(n − 1 − δ(Γ)), if δ(Γ) ≥ n−1
2 .

Hence, (0.2) is equivalent to δ(Γ) ≤ n−1
2 for geometrically finite Γ.

In 1995, Lee [6] proved that if M is a conformally compact Einstein
manifold with

RicM = −(n − 1),
whose conformal infinity has non-negative Yamabe invariant, then (0.2)
is valid. This theorem provided more examples of manifolds satisfying
(0.1) and (0.2).

In [12], the authors proved the following theorems:

Theorem 0.2. Let Mn be a complete Riemannian manifold of di-
mension n ≥ 3. Suppose M satisfies (0.1) and (0.2). Then, M must
either be:

(1) A warped product manifold M = R × N of dimension n = 3 with
metric given by

ds2
M = dt2 + cosh2 t ds2

N ,

where N2 is a compact manifold with Gaussian curvature bounded
from below by −1;

(2) A warped product manifold M = R × N with metric given by

ds2
M = dt2 + e2t ds2

N ,

where Nn−1 is a compact manifold with non-negative Ricci curva-
ture; or

(3) M has only one end.
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When n = 2, they proved that

Theorem 0.3. Let M2 be a complete Riemannian surface. Suppose
the Gaussian curvature of M satisfies

KM ≥ −1

and
λ1(M) =

1
4
.

Then, M must either be:
(1) A warped product manifold M = R × S

1 with metric given by

ds2
M = dt2 + e2t dsS1 ,

where S
1 is the circle; or

(2) M has no finite volume ends.

At this point, we should point out that in a previous work [11] of
the authors where they generalized the theorems of Witten–Yau [17],
Cai–Galloway [3], and Wang [16], they proved that:

Theorem 0.4. Let Mn be a complete Riemannian manifold of di-
mension n ≥ 3. Suppose M satisfies (0.1) and

λ1(M) ≥ (n − 2).

Then, M must be either:
(1) A warped product manifold M = R × N with metric given by

ds2
M = dt2 + cosh(2t) ds2

N ,

where Nn−1 is a compact manifold with Ricci curvature bounded
from below by −(n − 2); or

(2) M has only one end with infinite volume.

The purpose of this article is to investigate the corresponding setting
for complete Kähler manifolds. The authors observed in [11] that on a
Kähler manifold, one can rule out the existence of two infinite volume
ends much easier than the Riemannian case, hence prompted this study.
A major new ingredient in this paper is a comparison theorem (Theo-
rems 1.5 and 1.6) for Kähler manifolds whose holomorphic bisectional
curvature is bounded from below. It is a general principle that holo-
morphic bisectional curvature is more suitable for the Kähler category.
Though assumptions on the holomorphic bisectional curvature are more
restrictive compared to assumptions on the Ricci curvature, the results
obtained, however, should be sharper.

Now, let us assume that Mm is a Kähler manifold of complex di-
mension m. Let {e1, · · · , em} be a unitary frame for the (1, 0)-part of
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the complexified tangent space, T 1,0
x M . The holomorphic bisectional

curvature is denoted by

Rαᾱββ̄ = 〈Reαeᾱeβ , eβ̄〉
for α, β = 1, · · · ,m.

Definition 0.5. Let Mm be a Kähler manifold of complex dimension
m. We say that the holomorphic bisectional curvature of M is bounded
from below by a constant K, denoted by

BKM ≥ K

if
Rαᾱββ̄ ≥ K(1 + δαβ)

for any unitary frame {e1, e2, . . . , em}.
Note that for the simply connected complex space forms CP

n, C
n and

CH
n, their holomorphic bisectional curvatures satisfy

Rαᾱββ̄ = K(1 + δαβ),

where K = 1, 0 and −1, respectively.
We would like to point out that a complex Hessian comparison the-

orem for the Busemann function was proved by Greene–Wu [5] in 1978
for Kähler manifolds with non-negative holomorphic bisectional curva-
ture, i.e., BKM ≥ 0. In their recent paper [4], Cao–Ni proved the
complex Hessian comparison theorem for the distance function on a
Kähler manifold with BKM ≥ 0. Since the assumption BKM ≥ −1 is
not the same for the cases α = β and α �= β, it is difficult to come up
with a comparison theorem. In Section 1, we gave a new proof of the
Hessian comparison theorem for the Riemannian case which allows us
to generalize to the Kähler case.

A consequence of the comparison theorem (Theorem 1.6) is a ver-
sion of Cheng’s upper bound for λ1(M) for Kähler manifolds with
BKM ≥ −1. In fact, we proved (Corollary 1.7) that

λ1(M) ≤ m2.

Similar to Cheng’s estimate, this estimate is also sharp as equality is
achieved by the complex hyperbolic space form CH

m. Of course, one
now faces the question of what can be said about those Kähler manifolds
satisfying

(0.3) BKM ≥ −1

and

(0.4) λ1(M) = m2.
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In Section 3, we proved that (Theorem 3.1) if Mm satisfies (0.3) and

λ1(M) ≥ m,

then M must have only one end with infinite volume. In particular, for
those manifolds satisfying (0.3) and (0.4), we will only have to content
with finite volume ends.

Finally, in Section 4, we considered complete Kähler surfaces satisfy-
ing (0.3) and (0.4). We showed that such a surface must have at most 4
ends, one of which has infinite volume and the rest have finite volumes.
Unfortunately, we do not know if this is sharp, and we suspect that it
is not. We also suspect that this finiteness phenomenon should also be
true in high dimensions.

1. Comparison theorems

In this section, we will prove a sharp comparison theorem for Kähler
manifolds satisfying curvature bounds. We will start by giving a new
proof for the Riemannian case to illustrate the ideas. This argument,
which relies on the commutation formula for covariant derivatives, also
gives a slight extension of the Riemannian case.

Let (Mn, g) be a complete Riemannian manifold and let r(x) =
d(x, p) be the distance function to a fixed point p ∈ M . For any unit
vector V in the unit tangent sphere Sn−1

p (M), we define

ρ(V ) = sup{T : γV (t) = expp(tV ) is minimizing on [0, T ]}
to be the maximum distance for the geodesic in the direction of V to
be minimizing. We also let

Cp = {ρ(V )V : ρ(V ) < ∞, V ∈ Sn−1
p (M)}

to be the tangential cut locus of p. The cut locus of p ∈ M is denoted
by Cut (p) = expp(Cp). Moreover,

M = expp(Σ(p)) ∪ Cut (p),

where
Σ(p) = {tV : 0 ≤ t < ρ(V ), V ∈ Sn−1

p (M)}
and

expp : Σ(p) → expp(Σ(p))
is a diffeomorphism. It is known that the set Cut(p) has measure zero in
M . The polar coordinate system (r, θ) on the tangent space Tp(M) also
induces a coordinate chart on expp (Σ(p)). The definition of exponential
map implies that r(x) = t if x = expp(tθ) for t < ρ(θ). Moreover, r(x)
is smooth on expp (Σ(p)) \ {p} and |∇r| = 1 on expp (Σ(p)) \ {p}.

We begin by defining the following notion of curvature.



48 P. LI & J. WANG

Definition 1.1. For any integer 1 ≤ � ≤ n − 1, we defined the �-
sectional curvature of a pair {w, V }, where w ∈ TpM and V ⊂ TpM is
an �-dimensional subspace perpendicular to w, by

K�
M (w, V ) =

�∑
i=1

〈Rweiw, ei〉

with {e1, e2, . . . , e�} being an orthonormal basis for V .

Note that K�
M (w, V ) does not depend on the choice of orthonormal

basis {ei}. We say that a manifold M has �-sectional curvature bounded
from below by a constant K if

K�
M (w, V ) ≥ �K

for all pairs {w, V } at any point p ∈ M . When � = 1, this is equivalent
to saying that the sectional curvature KM ≥ K. When � = n − 1, this
is equivalent to the Ricci curvature bounded by

RicM ≥ (n − 1)K.

To set up our model for the comparison theorem, we consider M �+1
K to

be the (� + 1)-dimensional, simply connected, space form of constant
sectional curvature K. For a fixed origin p̄ ∈ M �+1

K , we denote the
distance function from any point x̄ to p̄ by r̄(x̄).

Theorem 1.2. Let M be a complete Riemannian manifold of dimen-
sion n. Assume that the �-sectional curvatures of M satisfy K�

M ≥ �K.
Then, within the cut locus of a fixed point p ∈ M and for any V ⊂ TxM
perpendicular to ∇r(x),

�∑
i=1

D2(r)(ei, ei) ≤
�∑

i=1

D̄2(r̄)(ēi, ēi)

with {e1, . . . e�} being any orthonormal basis of V and {ē1, . . . ē�} being
an orthonormal basis of Tp̄M

�+1
K with ēi ⊥ ∇̄r.

Proof. For x ∈ expp(Σ(p))\{p}, let γ be the minimal normal geodesic
joining p to x. At x, we choose an orthonormal frame {e1, . . . , en}, such
that e1 = ∇r. By parallel translating the frame {ei}, we obtain an
orthonormal frame along γ also denoted by {ei}n

i=1 with the property
that e1 = ∇r. Since |∇r|2 = 1 on expp(Σ(p)) \ {p}, by taking covariant
derivative of this equation, we obtain

0 = (|∇r|2)αα(1.1)

= 2
n∑

i=1

riα riα + 2
n∑

i=1

ri riαα,
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for each 2 ≤ α ≤ n. Since γ is a geodesic and each ei is parallel
along γ, each term on the right-hand side of (1.1) can be interpreted as
covariant derivatives. The commutation formula for covariant derivative
then implies

n∑
i=1

ri riαα =
n∑

i=1

ri rααi +
n∑

i,j=1

Riαjα ri rj.

Substituting into (1.1) and using the fact that |∇r| = 1 = r1, we obtain

(1.2) 0 ≥ 2r2
αα + 2

∂(rαα)
∂r

+ 2KM (e1, eα).

Suppose V ⊂ TxM is spanned by {e2, . . . , e�+1}, then summing over
α = 2, . . . , � + 1, (1.2) becomes

(1.3) 0 ≥
�+1∑
α=2

r2
αα +

∂

∂r

(
�+1∑
α=2

rαα

)
+ K�

M (e1, V ).

Using the lower bound of the �-sectional curvature, the inequality

�+1∑
α=2

r2
αα ≥ 1

�

(
�+1∑
α=2

rαα

)2

,

and by setting f(t) =
∑�+1

α=2 rαα(γ(t)), (1.3) can be expressed as

(1.4) 0 ≥ 1
�
f2(t) + f ′(t) + �K.

Note that since a smooth Riemannian metric is locally Euclidean,

lim
t→0

t f(t) = �.

We will now consider the three separate cases when K = 0, K > 0,
and K < 0.

Case 1. When K = 0, inequality (1.4) becomes

f ′(t) +
1
�
f2(t) ≤ 0.

This implies that f ′(t) ≤ 0 and f(t) is a decreasing function. Let (0, T )
be the largest interval such that f(t) > 0, then we have(

1
f

)′
= − f ′

f2
≥ 1

�

and f(t) ≤ �
t on (0, T ). Since f(t) ≤ 0 for t ≥ T , we can still conclude

that f(t) ≤ �
t on (0, ρ(θ)).
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Case 2. When K > 0, inequality (1.4) can be written as

�f ′(t)
f2(t) + �2K

≤ −1.

This implies that
d

dt
tan−1

(
f

�
√

K

)
≤ −

√
K.

Integrating from 0 to t, we have

tan−1

(
f

�
√

K

)
≤ π

2
−

√
Kt,

implying that
f(t) ≤ �

√
K cot

(√
Kt
)

.

Case 3. When K < 0, let T be the first time such that

f2(t) + �2K = 0.

Then, on (0, T ), we have f2(t) + �2K > 0 and

�f ′(t)
f2(t) + �2K

≤ −1.

This implies that

d

dt
coth−1

(
f

�
√|K|

)
≥
√

|K|

and
f(t) ≤ �

√
|K| coth

(√
|K|t

)
on (0, T ). For t ≥ T , we claim that f(t) ≤ �

√|K|. Indeed, if f(t1) >

�
√|K| for t1 > T , then there exists t2∈ (T, t1) such that f ′(t2)≥0 and

f(t2) > �
√|K|. In this case,

f ′(t2) +
1
�
f2(t2) + �K > 0,

which is a contradiction. Thus,

f(t) ≤ �
√

|K|
for T ≤ t < ρ(θ), and we conclude that

f(t) ≤ �
√

|K| coth
(√

|K|t
)

for 0 < t < ρ(θ).
The Theorem follows by observing that r11 = 0 and that the above

inequalities become equalities on a simply connected space form with
constant sectional curvature. q.e.d.
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Observe that the standard Laplacian comparison theorem and the
Hessian comparison theorem follow from Theorem 1.2 by setting
� = n − 1 and � = 1, respectively. Moreover, the Bishop comparison
theorem is also a corollary. Indeed, if we consider the polar coordinate
system (r, θ), Gauss lemma implies that

ds2
M = dr2 + gαβ(r, θ) dθα dθβ , α, β = 2, . . . , n.

If we denote

J(r, θ) =
√

det(gαβ)

to be the area element of the geodesic sphere ∂Bp(r), then

∆M =
∂2

∂r2
+

∂

∂r
(ln J)

∂

∂r
+ ∆∂Bp(r).

Thus,

∆Mr =
∂

∂r
(ln J)

on expp (Σ(p)) \ {p}.
Corollary 1.3 (Bishop). If RicM ≥ (n − 1)K, then

J(r, θ)
JK(r)

is a non-increasing function of r, where JK(r) is the area element of
the geodesic sphere of radius r in the space form Mn

K given by

JK(r) =




sinn−1
(√

Kr
)

, if K > 0

rn−1, if K = 0

sinhn−1
(√|K|r

)
, if K < 0.

Moreover, if Ap(r) and Vp(r) denote the area of ∂Bp(r) and the vol-
ume of Bp(r), respectively, then

Ap(r2)
Ap(r1)

≤ JK(r2)
JK(r1)

and
Vp(r2)
Vp(r1)

≤
∫ r2

0 JK(r)dr∫ r1

0 JK(r)dr

for r1 ≤ r2.

The following theorem is a global version of the Laplacian comparison
theorem. For a proof, we refer to [7].
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Corollary 1.4. If RicM ≥ (n − 1)K, then

∆r(x) ≤ ∆̄r̄ (r(x))

in the sense of distributions, where ∆̄ is the Laplacian on the space form
Mn

K and r̄ is the distance function of Mn
K with respect to a fixed point.

That is to say, for any ϕ ∈ C∞
0 (M) with ϕ ≥ 0, we have∫

M
r(x)∆ϕ(x) ≤

∫
M

(
∆̄r̄
)
ϕ.

We are now ready to prove the comparison for Kähler manifolds.
Recall that if the Kähler metric of M is given by ds2 = hαβ̄ dzα dz̄β ,
then the gradient and the Laplacian is given by

〈∇f,∇g〉 = 2hαβ̄(fαgβ̄ + fβ̄gα)

and

∆f = 4hαβ̄ ∂2f

∂zα∂z̄β
.

Theorem 1.5. Let Mm be a complete Kähler manifold such that its
bisectional curvature BKM ≥ 0. Then, on expp (Σ(p)) \ {p}, we have

(r2)αᾱ ≤ 1.

Proof. For any x ∈ M , we choose a unitary frame {e1, · · · , em} at x
and parallel translate each eα along the minimizing geodesic γ. We also
parallel translate each eα so that they are defined on a neighborhood
of γ. Setting u = r2, a similar calculation as in the Riemannian case
above shows that

|∂u|2αᾱ =
∑

δ

(uδuδ̄)αᾱ

=
∑

δ

(|uδᾱ|2 + |uαδ|2
)

+ uαᾱδuδ̄ + uαᾱδ̄uδ + Rαᾱδη̄uδ̄uη

≥ 1
2
〈∇uαᾱ,∇u〉 + |uαᾱ|2.

Let f(t) = uαᾱ (γ(t)). Then, we have

f2(t) + tf ′(t) ≤ f(t)

and f(0) = 1. If there exists t > 0 such that f(t) ≥ 1+ ε for some ε > 0,
then using the initial condition

lim
r→0

(r2)αᾱ = 1

there must be a 0 < t1 ≤ t such that f ′(t1) ≥ 0 and f(t1) = 1 + ε. This
contradicts the differential inequality above and the theorem follows.

q.e.d.
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Theorem 1.6. Let Mm be a complete Kähler manifold with its holo-
morphic bisectional curvature satisfying the bound BKM ≥ −1. Then,
on expp (Σ(p)) \ {p}, we have

∆r(x) ≤ 2(m − 1) coth(r(x)) + 2 coth(2r(x))

= ∆̄r̄(r(x)),

where ∆̄ and r̄ are the Laplacian and the distance function of the model
manifold CH

m.

Proof. For any x, we choose a unitary frame {e1, · · · , em} at point x
such that

e1 =
1
2

(∇r −√−1J ∇r).

We parallel translate each eα along the minimizing geodesic γ between
p and x and then to a neighborhood of γ. Along γ, one easily checks
that the Hessian of r must satisfy r11 = −r11̄. Therefore,

0 = |∇r|211̄
= 2 |r11̄|2 + 2 |r11|2 + 〈∇r11̄,∇r〉 + 2R11̄11̄r1r1̄

≥ 4 |r11̄|2 +
∂

∂r
(r11̄) − 1.

Let f(t) = r11̄ (γ(t)). Then, we have

(1.5) 4 f2(t) + f ′(t) ≤ 1

and limt→0 t f(t) = 1
4 . It is then not difficult to see that

(1.6) f(t) ≤ 1
2

coth(2t).

For α �= 1, we have

0 = |∇r|2αᾱ

≥ 2 |rαᾱ|2 + 〈∇rαᾱ,∇r〉 + 2R11̄αᾱr1r1̄

≥ 2 |rαᾱ|2 +
∂

∂r
(rαᾱ) − 1

2
.

Let w(t) = rαᾱ (γ(t)). Then, we have

(1.7) 4w2(t) + 2w′(t) ≤ 1
2

and limt→0 t w(t) = 1, hence

(1.8) w(t) ≤ 1
2

coth(t).
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Finally, we have

∆r = 4
m∑

α=1

rαᾱ

≤ 2(m − 1) coth(r) + 2 coth(2r).

Equivalently, this can be written as

∆(ln(cosh(r))) ≥ 2m.

One computes readily that equality is achieved on CH
m. q.e.d.

Corollary 1.7. Let Mm be a complete Kähler manifold with its holo-
morphic bisectional curvature satisfying the bound BKM ≥ −1. Then,
for any x ∈ M and 0 ≤ r ≤ R, the volume of the geodesic balls satisfy

Vx(R)
Vx(r)

≤ VCH
m(R)

VCH
m(r)

,

where VCH
m(r) denotes the volume of the geodesic ball of radius r in

CH
m. In particular, the bottom of the spectrum of M has an upper

bound given by λ1(M) ≤ m2.

Proof. The volume comparison theorem follows similar to the Rie-
mannian case by applying Theorem 1.6. Taking r = 1 in the volume
comparison inequality, we have

Vp(R) ≤ C VCH
m(R)

≤ C e2mR

for all R ≥ 1. However, in [11], we have proved that

Vp(R) ≥ C exp(2
√

λ1(M)R).

Combining with the upper bound, we conclude that λ1(M) ≤ m2 as
claimed. q.e.d.

Theorem 1.8. Let Mm be a complete Kähler manifold with its holo-
morphic bisectional curvature satisfying the bound BKM ≥ 1. Then, on
expp (Σ(p)) \ {p}, we have

∆r(x) ≤ 2(m − 1) cot(r(x)) + 2 cot(2r(x))

= ∆̄r̄(r(x)),

where ∆̄ and r̄ are the Laplacian and the distance function of the model
manifold CP

m.
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Proof. Following the argument as in the proof of Theorem 1.6, except
(1.5) and (1.6) become

4 f2(t) + f ′(t) ≤ −1

and

f(t) ≤ 1
2

cot(2t),

respectively. Also (1.7) and (1.8) become

4w2(t) + 2w′(t) ≤ −1
2

and

w(t) ≤ 1
2

cot(t),

respectively. The theorem now follows as claimed. q.e.d.

Corollary 1.9. Let Mm be a complete Kähler manifold with BKM ≥
1. Then, the diameter d(M) of M is bounded above by

d(M) ≤ π

2
,

which is the diameter of the model space CP
m. Moreover, the volume of

M is bounded by

V (M) ≤ 1
m

sin2m(d(M))

≤ V (CP
m).

Proof. Suppose the diameter of M is greater than π
2 . Then, there

exists a pair of points p, x ∈ M such that r(x) > π
2 and x ∈ expp (Σ(p))\

{p}. Using the fact that ∆r(x) is given by the mean curvature H(x) of
the geodesic sphere of radius r(x) at x, the bound given by Theorem
1.8 asserts that the function r cannot be smooth since the upper bound

2(m − 1) cot(r) + 2 cot(2r)

becomes −∞ at r = π
2 . This contradicts the assumption that d(M) > π

2 ,
and the first part of the theorem follows.

If we write x = (r, θ) in polar coordinates and let A(r, θ) be the
area element of the sphere of radius r centered at p, then ∂

∂rA(r, θ) =
H(r, θ)A(r, θ). The comparison theorem then asserts that

A−1(t, θ)
∂A(t, θ)

∂r
≤ 2(m − 1) cot(t) + 2 cot(2t).
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Integrating over the interval 0 ≤ t ≤ r, we obtain

A(r, θ) ≤ sin2(m−1) r sin 2r

= 2 sin2m−1 r cos r.

Following the same argument as in the Riemannian case (see [7]), we
conclude the volume comparison

V (M) = Vp(d(M))

≤ 2
∫ d(M)

0
sin2m−1 r cos r dr

=
1
m

sin2m(d(M)).

q.e.d.

Following Cheng’s argument [1], one can also conclude the following
eigenvalue comparison theorem.

Corollary 1.10. Let Mm be a complete Kähler manifold with holo-
morphic bisectional curvature bounded from below by K, where K is
either 1, 0, or −1. Then, the first Dirichlet eigenvalue, λ1(Bp(r)), of
the geodesic ball of radius r centered at p ∈ M must be bounded from
above by

λ1(Bp(r)) ≤ λ1(BM̄ (r)),
where λ1(BM̄ (r)) is the first Dirichlet eigenvalue of the geodesic ball of
radius r on the model manifold M̄m. The model is taken to be CP

m,
C

m, or CH
m for K being 1, 0, or −1, respectively.

2. Estimates for harmonic functions

Throughout this section, we assume Mm is a complete Kähler man-
ifold of complex dimension m with holomorphic bisectional curvature
bounded by

(2.1) BKM ≥ −1.

We also assume that the bottom spectrum of M satisfies

(2.2) λ1(M) ≥ m2.

The first step is to give precise estimates on the volume growth or vol-
ume decay of an end of M . The volume estimates will then be used to
derive sharp estimates for the barrier harmonic functions on the corre-
sponding end.

Recall that an end E is defined to be an unbounded component of
M \ D for some compact set D. Without loss of generality, we may
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assume that D = Bp(R0) is a geodesic ball centered at some fixed point
p ∈ M with radius R0 > 0. We will denote VE(R) to be the volume of
the set Bp(R)∩E, and VE(∞) is simply the volume of E. Also, we recall
(see [8] and [9]) that an end E is said to be a non-parabolic (or parabolic)
end if it admits (or does not admit) a positive Green’s function for the
Laplacian on E with Neumann boundary condition on ∂E.

Let us first recall Theorem 1.4 of [11] stated for the class of manifolds
being considered.

Theorem 2.1. Let E be an end of a complete Kähler manifold M
satifying (2.2). Then, either

(1) E is a parabolic end with finite volume, and it must have exponen-
tial volume decay given by

VE(∞) − VE(R) ≤ C1 exp(−2mR)

for R ≥ R0 + 1 and some constant C1 > 0 depending only on E;
or

(2) E is a non-parabolic end with infinite volume, and it must have
exponential volume growth given by

VE(R) ≥ C2 exp(2mR)

for R ≥ R0 + 1 and some constant C2 > 0 depending only on E.

On the other hand, if M satisfies (2.1), then by setting r = 1 in
Corollary 1.7, we conclude that for any x ∈ M ,

(2.3) Vp(R) ≤ C3 exp(2mR)

for sufficiently large R. On the other hand, if we let x ∈ ∂Bp(R1), r = 1
and R = R1 + 1 in Corollary 1.7, then we have

Vx(1) ≥ C4 Vx(R1 + 1) exp(−2m(R1 + 1))

≥ C4 Vp(1) exp(−2m(R1 + 1)).

Since Bx(1) ⊂ Bp(R1 + 1), this can be rewritten as

(2.4) Vp(R) ≥ C5 exp(−2mR)

for x ∈ ∂Bp(R). Combining (2.3), (2.4) with Theorem 2.1, we obtain
the following corollary.

Corollary 2.2. Let Mm be a complete Kähler manifold satisfying
(2.1) and (2.2). Let p ∈ M be a fixed point and E be an end of M given
by an unbounded component of M \ Bp(R0). Then, either

(1) E is a parabolic end with finite volume, and it must have exponen-
tial volume decay given by

C1 exp(−2mR) ≤ VE(∞) − VE(R) ≤ C2 exp(−2mR)
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for R ≥ R0 + 1 and some constants 0 < C1 < C2 depending only
on E; or

(2) E is a non-parabolic end with infinite volume, and it must have
exponential volume growth given by

C3 exp(2mR) ≤ VE(R) ≤ C4 exp(2mR)

for R ≥ R0 + 1 and some constants 0 < C3 ≤ C4 depending only
on E.

According to Theorem 0.1 in [11], the condition λ1(M) > 0 implies
that M must have infinite volume. Hence, we may assume that M has
a non-parabolic end E1. In the following discussion, we assume that M
also has a finite volume, parabolic end E2.

Recall that the theory of Li–Tam [9] (also see [8]) asserts that there
exists a positive harmonic function f satisfying the following properties:

(1) inf∂Bp(r)∩E1
f(x) → 0 as r → ∞;

(2) sup∂Bp(r)∩E2
f(x) → ∞ as r → ∞; and

(3) f is bounded and has finite Dirichlet integral on M \ E2.
In order to obtain the appropriate estimates on f , we will give an

outline of the construction. Let us consider the sequence of harmonic
functions vR satisfying

∆vR = 0 on E1(R),

vR = 1 on ∂E1,

and
vR = 0 on ∂Bp(R) ∩ E1.

The assumption that E1 is non-parabolic implies that vR converges uni-
formly on compact subsets of E1 to a non-constant harmonic function v.

Similarly, let uR be a sequence of harmonic functions satisfying

∆uR = 0 on E2(R),

uR = 0 on ∂E2,

and
uR = cR on ∂Bp(R) ∩ E2.

The assumption that E2 is parabolic implies that there exist a subse-
quence Ri → ∞ and a sequence of constants ci = cRi → ∞ such that
the sequence of functions

ui = uRi

converges uniformly on compact subsets of E2 to a harmonic function
u. Multiplying u by a constant if necessary, we may assume that∫

∂E1

∂v

∂ν
= −

∫
∂E2

∂u

∂ν
.
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After this normalization, it was proved (also see [15]) that there exists
a harmonic function f defined on M which is bounded distance from v
and u on the corresponding ends E1 and E2. Moreover, f will satisfy
the properties stated above.

It was proved in Lemma 1.2 of [11] that on M \ E2, the Dirichlet
integral of the function f must satisfy the decay estimate

(2.5)
∫

(Bp(R+1)\Bp(R))\E2

|∇f |2 ≤ C exp(−2mR)

for R sufficiently large.

Theorem 2.3. Let M be a complete Kähler manifold satisfying (2.1)
and (2.2). On the parabolic end E2, the function f satisfies the gradient
estimate

|∇f |(x) ≤ C exp(2mr(x))
as x → ∞ and x ∈ E2 with r(x) being the distance from x to the fixed
point p ∈ M .

Proof. Let u be the harmonic function defined on E2 obtained from
the above construction. Observe that since the Ricci curvature is bound-
ed from below, the gradient estimate of Cheng–Yau [2] (also see [13])
implies that

(2.6) |∇(log u)|2 ≤ C

on E2 \ E2(R0 + 1). Integrating along a geodesic joining from x ∈
E2 \ E2(R0 + 1) to ∂Bp(R0 + 1) ∩ E2, this implies that

u(x) ≤ C6 exp(C r(x)).

Applying the gradient estimate again, this yields the estimate

(2.7) |∇u|(x) ≤ C u(x) ≤ C7 exp(C r(x))

for some constant C7 > 0.
For R > 0, let us denote

si(R) = sup
x∈∂Bp(R)∩E2

|∇ui|.

Since ui is harmonic, the Ricci curvature bound implies that |∇ui| sat-
isfies the Bochner formula

∆|∇ui| ≥ −2(m + 1) |∇ui|.
If x ∈ ∂Bp(R) such that si(R) = |∇ui|(x), then the mean value inequal-
ity of Li–Tam [10] implies that

|∇ui|2(x)Vx(1) ≤ C

∫
Bx(1)

|∇ui|2.
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Combining with the volume lower bound (2.4), we have

s2
i (R) ≤ C exp(2mR)

∫
Bx(1)

|∇ui|2.

On the other hand, if we let a = infBx(1) ui and b = supBx(1) ui, then∫
Bx(1)

|∇ui|2 ≤
∫

Ωb\Ωa

|∇ui|2,

where Ωa = {x |ui(x) ≤ a}. Note that by the maximum principle, if
x ∈ E2 \E2(R0 + 2) and for i sufficiently large, then 0 < a < b < ci and
the set Ωb \ Ωa is bounded. Hence, the quantity on the right-hand side
is finite. However, Stoke’s theorem yields that∫

Ωb\Ωa

|∇ui|2 = b

∫
∂Ωb

∂ui

∂ν
− a

∫
∂Ωa

∂ui

∂ν
,

where ν is the outward unit normal to the sets ∂Ωa and ∂Ωb. On the
other hand, we also have

0 =
∫

Ωa

∆ui

=
∫

∂Ωa

∂ui

∂ν
−
∫

∂Bp(R0)∩E2

∂ui

∂ν

for any a > 0. Therefore, we conclude that

s2
i (R) ≤ C exp(2mR)

(
sup

Bx(1)
ui − inf

Bx(1)
ui

) ∫
∂Bp(R0)∩E2

∂ui

∂ν

≤ C exp(2mR) sup
Bx(1)

|∇ui|
∫

∂Bp(R0)∩E2

∂ui

∂ν

≤ C exp(2mR) si(R + 1)
∫

∂Bp(R0)∩E2

∂ui

∂ν
.

Setting

A =

(
C

∫
∂Bp(R0)∩E2

∂ui

∂ν

) 1
2

,

we can rewrite the above inequality as

si(R) ≤ A exp(mR) s
1
2
i (R + 1).

Iterating this inequality k times, we conclude that

si(R) ≤ A
�k−1

j=0 2−j

exp


k−1∑

j=0

2−j m (R + j)


 s2−k

i (R + k).
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Letting i → ∞, this implies that

(2.8) s(R) ≤ A
�k−1

j=0 2−j

exp


k−1∑

j=0

2−j m (R + j)


 s2−k

(R + k)

where s(R) = sup∂E2(R) |∇u|. Note that since

∞∑
j=0

2−j = 2,

exp


 ∞∑

j=0

2−j m (R + j)


 = exp


 ∞∑

j=0

j 2−j


 exp(2mR)

= C exp(2mR),

and by (2.7)

lim
k→∞

s2−k
(R + k) ≤ lim

k→∞
C2−k

7 exp
(
C (R + k)2−k

)
= 1,

after letting k → ∞ in (2.8), we obtain

s(R) ≤ C exp(2mR)

= C exp(2mR).

Integrating along geodesics, this gives the estimate

u(x) ≤ C exp(2mr(x))

as x → ∞ and x ∈ E2. Since f − u is bounded on E2, the same upper
bound is valid on f . Applying the gradient estimate (2.6) on f , we
obtain the growth estimate as claimed. q.e.d.

Corollary 2.4. Let M be a complete Kähler manifold satisfying (2.1)
and (2.2). There exists a constant C > 0 such that the complex Hessian
of f satisfies the growth estimate∫

Bp(R)
|fαβ̄ | ≤ C R

for all R ≥ 1.

Proof. Using the fact f is harmonic and the Ricci curvature of M has
uniform lower bound, from the Bochner formula and a standard cut-off
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argument, we have∫
(Bp(R+2)\Bp(R+1))\E2

|fαβ̄|2 ≤ C

∫
(Bp(R+3)\Bp(R))\E2

|∇f |2

≤ C exp(−2mR),

where we used (2.5) for the last inequality.
On the end E2, Theorem 2.3 and the volume decay estimate in Corol-

lary 2.2 imply that∫
(Bp(R+2)\Bp(R+1))∩E2

|fαβ̄|2 ≤ C

∫
(Bp(R+3)\Bp(R))∩E2

|∇f |2

≤ C exp(2mR).

Combining these two estimates, we conclude that∫
Bp(R+2)\Bp(R+1)

|fαβ̄|

=
∫

(Bp(R+2)\Bp(R+1))\E2

|fαβ̄| +
∫

(Bp(R+2)\Bp(R+1))∩E2

|fαβ̄|

≤
(∫

(Bp(R+2)\Bp(R+1))\E2

|fαβ̄|2
) 1

2

V
1
2

p (R + 2)

+

(∫
(Bp(R+2)\Bp(R+1))∩E2

|fαβ̄|2
) 1

2

(VE2(R + 2) − VE2(R + 1))
1
2

≤ C.

The corollary now follows by iterating and summing over this estimate.
q.e.d.

3. Infinite volume ends

In this section, we will prove that for a broad class of Kähler mani-
folds, there are only one end with infinite volume. A version of this
theorem was first proved in [11] where the authors assumed a lower
bound on the Ricci curvature. In the following theorem, we will present
a version which a lower bound of the holomorphic bisectional curvature
is assumed.

Theorem 3.1. Let M be a complete Kähler manifold of complex
dimension m. Suppose the holomorphic bisectional curvature of M is
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bounded below by BKM ≥ −1 and the bottom of the spectrum λ1(M) of
M satisfies

λ1(M)
3
2 + mλ1(M) − m(m + 1) > 0.

Then, M must have only one end with infinite volume. In particular, if

λ1(M) ≥ m,

then M must have only one end with infinite volume.

Proof. Following the proof of Theorem 2.1 in [11], if M has more
than one infinite volume ends, then there exists a harmonic function f
with finite Dirichlet integral. It follows from Lemma 3.1 of [8] that it
must be pluriharmonic. On the other hand, if we set h = |∇f |, then
the Bochner formula for pluriharmonic function (see [8]) becomes

(3.1) ∆h ≥ −2(m + 1)h +
|∇h|2

h
,

since the assumptions on the holomorphic bisectional curvature imply
that the Ricci curvature of M is bounded by

RicM ≥ −2(m + 1).

If we let g = hp, 0 < p < 1, then by an argument similar to (2.5) of
[11], and the volume estimate of Corollary 1.7, we have∫

Bp(2R)\Bp(R)
g2

≤ C Rp

(∫ 2R

R
exp

(
− p

1 − p
2
√

λ1(M)r
)

exp(2mr) dr

)1−p

.

Choosing p to satisfy

(3.2) p
√

λ1(M) = (1 − p)m,

we conclude that ∫
Bp(R)

g2 = O(R).

Moreover, since (3.1) implies that g = hp satisfies

∆g ≥ −2p(m + 1)g +
|∇g|2

g
,

by Lemma 4.1 of [11], we obtain(
λ1(M) − 2p(m + 1)(1 + δ)

1 + 2 δ

)∫
M

φ2 g2 ≤
(

1 +
δ2

1 + 2δ

)∫
M

|∇φ|2 g2

for all δ > 0. Now, if
λ1(M) > p(m + 1),
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then there exists a sufficiently large δ such that

λ1(M) − 2p(m + 1)(1 + δ)
1 + 2 δ

> 0.

Arguing as in Theorem 4.2 of [11], we conclude that g = 0 and M has
only one infinite volume end. However, condition (3.2) for p asserts that

p =
m

m +
√

λ1(M)
,

hence, we need

(3.3) λ1(M)(m +
√

λ1(M)) − m(m + 1) > 0.

This proves the first part of the theorem.
Note that since the function

q(x) = x3 + mx2 − m(m + 1)

is strictly increasing when x > 0 with q(0) < 0, (3.3) will be fulfilled as
long as λ1(M) > x2

0, where x0 > 0 is the positive solution to the cubic

x3 + mx2 − m(m + 1) = 0.

The second part follows by observing that q(
√

m) = m(
√

m − 1) ≥ 0.
Hence, the assumption that λ1(M) ≥ m implies that λ1(M) > x2

0 for
m > 1. q.e.d.

Following the argument in [11], one can also prove the following finite-
ness theorem.

Theorem 3.2. Let M be a complete Kähler manifold of complex
dimension m. Let x0 be the unique positive solution to the cubic

x3 + mx2 − m(m + 1) = 0.

Suppose there exists a geodesic ball Bp(R0) ⊂ M such that λ1(M \
Bp(R0)) ≥ x2

0 + ε for some ε > 0. Also assume that

BKM ≥ −1

on M \ Bp(R0). Then, M must have finitely many ends with infinite
volume. In particular, there exists a constant C(m,R0, α, v, ε) > 0
depending on the quantities n, R0, ε, α = infBp(3R0) RicM , and v =
infx∈Bp(2R0) Vx(R0), such that the number of infinite volume ends of M
is at most C.
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4. Finite volume ends

To deal with finite volume ends, since the constructed harmonic func-
tion may not be pluriharmonic, we will utilize a Bochner type formula
for the Laplacian of the length of the complex Hessian.

Lemma 4.1. Let M be a Kähler manifold with complex dimension
m. If f is a harmonic function on M , then

∆|fαβ̄|2 ≥ −8m ρ |fαβ̄ |2 +
m + 1
2m

|fαβ̄|−2 |∇|fαβ̄|2|2,

where fαβ̄ denotes the complex Hessian of f and BKM (x) ≥ −ρ(x) is
the pointwise lower bound of the holomorphic bisectional curvature of
M .

Proof. Let {z1, · · · , zm} be complex normal coordinates at a point
z ∈ M . The Hermitian metric can be written in the form

ds2 = hαβ̄ dzα z̄β

where 1 ≤ α, β ≤ m. Using the Kähler condition

1
4
∆|fαβ̄|2 = �|fαβ̄|2(4.1)

= hθη̄ ∂θ∂η̄

(
hαγ̄ hτβ̄ fαβ̄ fτ γ̄

)
= hθη̄

(
(∂θ∂η̄h

αγ̄)hτβ̄ fαβ̄ fτ γ̄ + hαγ̄(∂θ∂η̄h
τβ̄) fαβ̄ fτβ̄

+ hαγ̄ hτβ̄(∂θfαβ̄)(∂η̄fτ γ̄) + hαγ̄ hτβ̄(∂η̄fαβ̄)(∂θfτ γ̄)

+hαγ̄ hτβ̄ (∂θ∂η̄fαβ̄) fτ γ̄ + hαγ̄ hτβ̄ fαβ̄ (∂θ∂η̄fτ γ̄)
)

at the point z, where we have used the assumption that ∂θh
αγ̄(z) = 0 =

∂η̄hαγ̄(z). Using the assumption that ∆f = 0, we have

0 = ∂α∂β̄ (hθη̄fθη̄)(4.2)

= (∂α∂β̄hθη̄)fθη̄ + hθη̄ ∂α∂β̄(fθη̄)

= (∂α∂β̄hθη̄)fθη̄ + hθη̄ ∂θ∂η̄(fαβ̄).

The Kähler condition also implies that

(4.3) ∂θ∂η̄h
αγ̄ = Rη̄

γ̄
µ̄θ hαµ̄.
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Substituting (4.2) and (4.3) this into (4.1) yields

1
4
∆|fαβ̄|2 = hθη̄ hαµ̄ hτβ̄ Rη̄

γ̄
µ̄θ fαβ̄ fτ γ̄

(4.4)

+ hθη̄ hαγ̄ hτµ̄ Rη̄
β̄

µ̄θ fαβ̄ fτ γ̄ + 2|∂θfαβ̄|2

− hαγ̄ hτβ̄ hθδ̄ Rβ̄
η̄
δ̄α fθη̄ fτ γ̄ − hαγ̄ hτβ̄ hθδ̄ Rγ̄

η̄
δ̄τ fθη̄ fαβ̄

= 2hθη̄ hαµ̄ hτβ̄ Rη̄
γ̄
µ̄θfαβ̄ fτ γ̄ + 2|∂θfαβ̄|2

− 2hαγ̄ hτβ̄ hθδ̄ Rβ̄
η̄
δ̄α fθη̄ fτ γ̄ .

At a fixed point z ∈ M , let us choose normal coordinates so that

fαβ̄ = λα δαβ̄

and

hαβ̄ = δαβ̄ .

This implies that

2hθη̄ hαµ̄ hτβ̄ Rη̄
γ̄

µ̄θ fαβ̄ fτ γ̄ = 2Rη̄
ᾱ

ᾱη λ2
α

and
2hαγ̄ hτβ̄ hθδ̄ Rβ̄

η̄
δ̄α fθη̄ fτ γ̄ = 2Rτ̄

θ̄
θ̄τ λθ λτ .

Hence, the assumption on the bisectional curvature and two curvature
terms in (4.4) combine to become

2Rᾱ
β̄

β̄α λ2
β − 2Rᾱ

β̄
β̄α λα λβ = Rᾱ

β̄
β̄α (λα − λβ)2

≥ −ρ(λα − λβ)2.

However, f is harmonic implies that∑
α

λα = 0.

Hence,

2Rᾱ
β̄

β̄α λ2
β − 2Rᾱ

β̄
β̄α λα λβ ≥ −2mρ

∑
α

λ2
α − 2ρ

∑
α,β

λα λβ

= −2mρ |fαβ̄|2.
Substituting this estimate into (4.4), we conclude that

(4.5)
1
4
∆|fαβ̄|2 ≥ 2|∂θfαβ̄|2 − 2mρ |fαβ̄ |2.
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On the other hand, let us now consider the term
1
4
|∇|fαβ̄|2|2 = hθη̄ ∂θ|fαβ̄|2 ∂η̄|fτ γ̄ |2

= hθη̄(fᾱβ ∂θfαβ̄ + fαβ̄ ∂θfᾱβ)(fτ̄ γ ∂η̄fτ γ̄ + fτ γ̄ ∂η̄fτ̄γ).

At the point z ∈ M , this can be written as

|∇|fαβ̄|2|2 = 16hθη̄ (λα ∂θfαᾱ)(λγ ∂η̄fγγ̄)(4.6)

≤ 16|fαβ̄ |2 |∂θfαᾱ|2.
Also note that

|∂θfαβ̄|2 = |∂θfαᾱ|2 +
∑
β̄ �=ᾱ

|∂θfαβ̄|2(4.7)

≥ |∂θfαᾱ|2 +
∑
θ̄ �=ᾱ

|∂θfαθ̄|2

= |∂θfαᾱ|2 +
∑
θ̄ �=ᾱ

|∂αfθθ̄|2.

Using the fact that f is harmonic yields

(m − 1)
∑
θ̄ �=ᾱ

|∂αfθθ̄|2 ≥
∣∣∣∣∣∣
∑
θ̄ �=ᾱ

∂αfθθ̄

∣∣∣∣∣∣
2

(4.8)

= |∂αfαᾱ|2 ,

hence,
m
∑
θ̄ �=ᾱ

|∂αfθθ̄|2 ≥ |∂θfαᾱ|2.

Combining this with (4.7), we concude that

|∂θfαβ̄|2 ≥ m + 1
m

|∂θfαᾱ|2.
Substituting this estimate into (4.6) gives

|∇|fαβ̄|2|2 ≤ 16m
m + 1

|fαβ̄|2 |∂θfαβ̄|2.
The lemma follows by combining this with (4.5). q.e.d.

We now restrict our attention to the case m = 2.

Lemma 4.2. Let M be a complete Kähler manifold of complex di-
mension 2. Suppose the holomorphic bisectional curvature of M
is bounded from below by BKM ≥ −1 and the bottom of the spectrum of
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the Laplacian for functions is bounded by λ1(M) ≥ 4. If f is a harmonic
function on M whose complex Hessian satisfies the growth estimate∫

Bx(r)
|fαβ̄| ≤ o(r2)

as r → ∞, then f must either be pluriharmonic, or the function

g = |fαβ̄|
1
2

must be positive and satisfy the equation

∆g = −4g.

Proof. Let g = |fαβ̄|
1
2 . Lemma 4.1 asserts that

∆g ≥ −2mg − m − 2
m

g−1 |∇g|2.
When m = 2, this becomes

∆g ≥ −4g.

For a non-negative compactly supported function φ defined on M , ap-
plying the assumption on the spectrum, then

4
∫

M
(φ g)2 ≤

∫
M

|∇(φ g)|2(4.9)

=
∫

M
|∇φ|2 g2 −

∫
M

φ2 g ∆g.

So, we have

(4.10)
∫

M
φ2 g (∆g + 4g) ≤

∫
M

|∇φ|2 g2.

If we choose the function

φ(x) =




1 on Bp(R)

2R − r(x)
R

on Bp(2R) \ Bp(R)

0 on M \ Bp(2R),

then ∫
M

|∇φ|2 g2 ≤ R−2

∫
Bp(2R)\Bp(R)

g2.

Since the right-hand side tends to 0 as R → ∞ due to the growth
assumption on g, we conclude that all the inequalities used in the proof
and Lemma 4.1 must be equalities.
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If fαβ̄ is identitally 0, then this implies that f is pluriharmonic. Oth-

erwise, g = |fαβ̄|
1
2 must satisfy

(4.11) ∆g = −4g.

We now claim that g > 0. Indeed, if g = 0 at some point, then by
regularity of the equation (4.11), g must change sign. However, since
g ≥ 0, this is impossible.

Since inequality (4.8) becomes equality, we have

∂αfθθ̄ = ∂αfηη̄

for all θ, η �= α. In particular, this implies that

∂αfαᾱ = (m − 1)∂αfθθ̄

for all θ �= α. Also, the fact that inequality (4.7) becomes equality
implies that

∂θfαβ̄ = 0
for all θ �= β and β �= α. q.e.d.

Theorem 4.3. Let M2 be a complete Kähler manifold of complex
dimension 2. Suppose the holomorphic bisectional curvature of M is
bounded by BKM ≥ −1. If the bottom of the spectrum of the Laplacian,
λ1(M), is bounded from below by λ1(M) ≥ 4, then M must have at most
four ends. Moreover, exactly one of its ends must have infinite volume,
while the rest of the ends have finite volume.

Proof. As discussed earlier, the assumption λ1(M) ≥ 4 implies that
M must have exponential volume growth. In particular, one of the ends
of M must have infinite volume. Combining with Theorem 3.1, we see
that M has exactly one infinite volume end E1.

Let us now assume that M has at least three ends. By the above
discussion, other than E1, all the other ends must have finite volume.
For each finite volume end E2, following the construction in [9] and
[15], there exists a positive harmonic function f satisfying the following
properties:

(1) sup∂Bp(R)∩E2
f(x) → ∞ as R → ∞;

(2) inf∂Bp(R)∩E1
f(x) → 0 as R → ∞; and

(3) f is bounded on all other ends.
Moreover, it also follows that f has finite Dirichlet integral on E1. In
fact, we also derive the growth estimate in Corollary 2.4 that∫

Bp(R)
|fαβ̄| ≤ C R.
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Applying Lemma 4.2, we conclude that either f is pluriharmonic, or
that g = |fαβ̄|

1
2 is positive satisfying the equation

(4.12) ∆g = −4g.

If f is pluriharmonic, then using the argument in Theorem 5.1 of [11] or
Theorem 3.1, we conclude that this is impossible. Hence, g must satisfy
(4.12). Since there are more than one finite volume end, we can find at
least two linearly independent harmonic functions f and f̃ , constructed
using two small ends E2 and E3, such that

g = |fαβ̄|
1
2

and
g̃ = |f̃αβ̄|

1
2

both satisfy (4.12). If g is not a scalar multiple of g̃, then we can find a
linear combination G = ag+bg̃ such that G must change sign. Moreover,
G also satisfies

∆G = −4G.

The function |G| will then satisfy

∆|G| ≥ −4|G|
in the weak sense and must vanish somewhere. However, since g and g̃
have L2 norms satisfying the growth condition∫

Bp(R)
g2 ≤ C R

and ∫
Bp(R)

g̃2 ≤ C R,

the function |G| will also satisfy the growth condition∫
Bp(R)

|G|2 ≤ C R.

Applying the cut-off argument on |G| as in the proof of Lemma 4.2, we
conclude that

∆|G| = −4|G|.
The regularity argument of Lemma 4.2 implies that this is impossible.
Hence, g must be a scalar multiple of g̃. In particular, after a rescaling
of f̃ , we may assume that g = g̃.

Let us now choose a unitary frame {e1, e2, e1̄, e2̄} such that

(fαβ̄) =
(

µ 0
0 −µ

)
.
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Since

g4 = |fαβ̄|2
= 2µ2

is positive, the unitary frame is, in fact, globally defined. With respect
to this frame, the complex Hessian of f̃ can be written as

(f̃αβ̄) =
(

µ̃ ν
ν̄ −µ

)
.

Since

g4 = |f̃αβ̄|2
= 2µ̃2 + 2|ν|2

we conclude that

(4.13) µ2 = µ̃2 + |ν|2.
On the other hand, for any 0 ≤ t ≤ 1, the function

h = t f + (1 − t) f̃

is harmonic. Moreover, the above argument implies that there is a
constant α > 0, depending only on t, such that

|hαβ̄ |2 = αg2.

On the other hand, since

(hαβ̄) =
(

t µ + (1 − t) µ̃ (1 − t) ν
(1 − t) ν̄ −t µ − (1 − t) µ̃

)
we have

2αµ2 = 2(t µ + (1 − t) µ̃)2 + 2(1 − t)2|ν|2.
Using the identity (4.13), this implies that

(α − 1)µ = 2t(1 − t)µ̃.

However, since
α − 1

2t(t − 1)
is independent on the point in M and

µ̃

µ

is independent on t, we conclude that

µ̃ = β µ
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for some constant

β =
α − 1

2t(t − 1)
.

Using (4.13) again, we deduce that

(f̃αβ̄) =
(

β µ
√

1 − β2 µ eiθ√
1 − β2 µ e−iθ −β µ

)

for some constant 0 ≤ θ < 2π.
Note that if β = 1, −1, then either f − f̃ or f + f̃ will be a non-

constant pluriharmonic function and the argument in [11] will give a
contradiction. Hence, −1 < β < 1 because of (4.13). In the event if
β �= 0, then the linear combination

f̃ − βf√
1 − β2

will have complex Hessian of the form(
0 µ e−iθ

µ e−iθ 0

)
.

In any case, by possibly multiplying by −1, we may then assume

(f̃αβ̄) =
(

0 µ e−iθ

µ e−iθ 0

)
,

for some constant 0 ≤ θ < π.
Now, let us assume that M has at least 5 ends. Since exactly one end

has infinite volume, there must be at least 4 finite volume ends. Each of
the ends with finite volume will produce a positive harmonic function
as discussed above. Let us denote these functions by {fi}4

i=1. Using f1

to play the role of f and each fj playing the role of f̃ , we conclude that
their complex Hessians are of the form

((f1)αβ̄) =
(

µ 0
0 −µ

)
,

and

((fj)αβ̄) =
(

0 µ eiθj

µ e−iθj 0

)
for 2 ≤ j ≤ 4, where 0 ≤ θj < π. Obviously, by taking linear combi-
nations of {fj}4

j=2, we may arrange an f̃ in the subspace spanned by
the {fj} such that its complex Hessian is identically 0. Hence, f̃ is a
non-constant pluriharmonic function, which gives a contradiction. This
implies that M cannot have more than 4 ends. q.e.d.
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