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Introduction.

We consider the functional differential equations with deviating arguments

$(L_{n}^{+}, F, g)$ $L_{n}x(t)+F(t, x(g(t)))=0$ ,

$(L_{n}^{-}, F, g)$ $L_{n}x(t)-F(t, x(g(t)))=0$ ,

where $n\geqq 2$ and $L_{n}$ denotes the disconjugate differential operator

(1) $L_{n}=\frac{1}{p_{n}(t)}\frac{d}{dt}\frac{1}{p_{n-1}(t)}\frac{d}{dt}$ $\frac{d}{dt}\frac{1}{p_{1}(t)}\frac{d}{dt}\overline{p_{0}(t)}$

We always assume that:

(L-1) $p_{i},$ $ g:[a, \infty$) $\rightarrow R$ are continuous, $p_{i}(t)>0,0\leqq i\leqq n$ , and $ g(t)\rightarrow\infty$

as $ t\rightarrow\infty$ ;

(L-2) $ F:[a, \infty$ ) $\times R\rightarrow R$ is continuous, and $sgnF(t, x)=sgnx$ for each
$t\in[a, \infty)$ .

We introduce the notation:

$D^{0}(x;p_{0})(t)=\frac{x(t)}{p_{0}(t)}$ ,

(2)

$D^{i}(x;P_{0}, \cdots p_{i})(t)=\frac{1}{p_{i}(r)}\frac{d}{dt}D^{i-1}(x;p_{0}, \cdots p_{i-1})(t)$ , $1\leqq i\leqq n$ .

The operator $L_{n}$ can then be rewritten as

$L_{n}=D^{n}(\cdot ; p_{0}, \cdots p_{n})$ .

The domain $\mathcal{D}(L_{n})$ of $L_{n}$ is defined to be the set of all functions $ x:[T_{x}, \infty$ ) $\rightarrow R$

such that $D^{i}(x;p_{0}, \cdots , p_{i}),$ $0\leqq i\leqq n$ , exist and are continuous on $[T_{x}, \infty$). By a
proper solution of equation $(L_{n}^{+}, F, g)[(L_{n}^{-}, F, g)]$ is meant a function $x\in \mathcal{D}(L_{n})$

which satisfies $(L_{n}^{+}, F, g)[(L_{n}^{-}, F, g)]$ for all sufficiently large $t$ and sup { $|x(t)|$ :
$t\geqq T\}>0$ for every $T\geqq T_{x}$ . We make the standing hypothesis that equations
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$(L_{n}^{\pm}, F, g)$ do possess proper solutions. A proper solution of $(L_{n}^{+}, F, g)$ or
$(L_{n}^{-}, F, g)$ is called oscillatory if it has arbitrarily large zeros; otherwise it is
called nonoscillatory. Equation $(L_{n}^{+}, F, g)$ is said to be oscillatory if all of its
proper solutions are oscillatory.

We say that the operator $L_{n}$ is in canonical form if

(3) $\int_{a}^{\infty}p_{i}(t)dt=\infty$ for $1\leqq i\leqq n-1$ .

It is known that any differential operator of the form (1) can always be repre-

sented in canonical form in an essentially unique way (see Trench [30]).

Let $i_{k}\in\{1, \cdots , n-1\},$ $1\leqq k\leqq n-1$ , and $t,$ $ s\in[a, \infty$ ). We define

$I_{0}=1$ ,
(4)

$I_{k}(t, s;p_{i_{k}}, \cdots p_{i_{1}})=\int_{s}^{t}p_{i_{k}}(r)I_{k-1}(r, s;p_{i_{k-1}}, \cdots p_{i_{1}})dr$ .

In case (3) holds, the functions

$p_{0}(t)I_{k}(t, a;p_{1}, \cdots , p_{k})$ , $0\leqq k\leqq n-1$ ,

form a fundamental set of solutions of the differential equation $L_{n}x=0$ .
DEFINITION 1. Let $L_{n}$ be in canonical form. Equation $(L_{n}^{+}, F, g)$ is said to

have property (A) if
(i) for $n$ even, equation $(L_{n}^{+}, F, g)$ is oscillatory, and

(ii) for $n$ odd, every nonoscillatory solution $x(t)$ of $(L_{n}^{+}, F, g)$ is strongly

decreasing in the sense that

(5) $|\frac{x(t)}{p_{0}(t)}|\downarrow 0$ as $ t\uparrow\infty$ .

Equation $(L_{n}^{-}, F, g)$ is said to have property (B) if
(i) for $n$ odd, every nonoscillatory solution $x(t)$ of $(L_{n}^{-}, F, g)$ is strongly–

increasing in the sense that

(6) $|\frac{x(t)}{p_{0}(t)I_{n- 1}(t,a;p_{1},\cdots,p_{n- 1})}|\uparrow\infty$ as $ t\uparrow\infty$ ,

and
(ii) for $n$ even, every nonoscillatory solution is either strongly decreasing

or strongly increasing.

We are interested in comparing the oscillatory and asymptotic properties of

equations $(L_{n}^{+}, F, g),$ $(L_{n}^{-}, F, g)$ with those of the equations

$(M_{n}^{+}, G, h)$ $M_{n}y(t)+G(t, y(h(t)))=0$ ,
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$(M_{n}^{-}, G, h)$ $M_{n}y(t)-G(t, y(h(t)))=0$ ,

where

(7) $M_{n}=\frac{1}{q_{n}(t)}\frac{d}{dt}\frac{1}{q_{n- 1}(t)}\frac{d}{dt}$ $\frac{d}{dt}\frac{1}{q_{1}(t)}\frac{d}{dt}\overline{q_{0}(t)}$

and the following conditions are always assumed to hold:

(M-1) $q_{i},$ $ h:[a, \infty$ ) $\rightarrow R$ are continuous, $q_{i}(t)>0,0\leqq i\leqq n$ , and $ h(t)\rightarrow\infty$

as $ t\rightarrow\infty$ ;
(M–2) $ G:[a, \infty$ ) $\times R\rightarrow R$ is continuous, and sgn $G(t, y)=sgny$ for each

$t\in[a, \infty)$ .

The prototype of results we wish to establish is the following theorem
which is a consequence of Sturm’s classical comparison theorem.

THEOREM $0$ . Let $p_{i},$ $q_{i},$ $a,$ $ b:[a, \infty$ ) $\rightarrow(0, \infty)$ be continuous, $0\leqq i\leqq 2.$ SuPpose

that

(8) $P_{i}(t)\geqq q_{i}(t)$ , $0\leqq i\leqq 2$ , and $a(t)\geqq b(t)$ for $ t\in[a, \infty$ ).

If the equation $M_{2}y+b(t)y=0$ is oscillatory, then so is the equation $L_{2}x+a(t)x$

$=0$ .
An n-th order nonlinear analogue of this theorem has been given by \v{C}an-

turija [3], who has compared the ordinary differential equations $L_{n}x\pm F(t, x)=0$

with $M_{n}y\pm G(t, y)=0$ . The first purpose of this paper is to extend $\check{C}$anturija’s

results [3] to the functional differential equations $(L_{n}^{\pm}, F, g)$ and $(M_{n}^{\pm}, G, h)$ by

means of a variation of his comparison principle. We shall prove a theorem
(Theorem 1) to the effect that if equation $(M_{n}^{+}, G, h)[(M_{n}^{-}, G, h)]$ with $M_{n}$ in

canonical form has property (A) $[(B)]$ , then so does equation $(L_{n}^{+}, F, g)[(L_{n}^{-}, F, g)]$

which majorizes the former in a sense similar to (8). An attempt (Theorem 3)

will also be made to compare equations whose differential operators are not in

canonical form.

In a recent paper [24] Mahfoud has presented a useful comparison principle

which enables us to deduce the oscillation of a delay differential equation of the

form $x^{(n)}(t)+F(t, x(g(t)))=0$ from that of an ordinary differential equation of
the form $y^{(n)}+G(t, y)=0$ . Our second purpose is to generalize Mahfoud’s result

to differential equations involving general canonical disconjugate operators (see

Theorems 4 and 5). Several examples illustrating the main theorems will also
be provided.

For other related comparison results regarding the oscillatory and asymptotic

behavior of differential equations with or without functional arguments the reader

is referred to the papers [1, 2, 4-10, 13, 14, 17, 19-23, 25-29].
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1. Preliminaries.

We begin by formulating several preparatory results which are basic to the

discussions developed in later sections. See also [12].

First note that the following formulas hold for the functions $I_{k}(t,$ $s;P_{i_{k}}$

, $p_{i_{1}}$), $1\leqq k\leqq n-1$ , defined by (4):

\langle 9) $I_{k}(t, s;p_{i_{k}}, \cdots p_{t_{1}})=(-1)^{k}I_{k}(s, t;p_{i_{1}}, \cdots p_{i_{k}})$ ,

\langle 10) $I_{k}(t, s;p_{i_{k}}, \cdots p_{i_{1}})=\int_{s}^{t}p_{i_{1}}(r)I_{k-1}(t, r;p_{i_{k}}, \cdots p_{i_{2}})dr$ .

LEMMA 1. If $x\in \mathcal{D}(L_{n})$ , then for $t,$ $ s\in[T_{x}, \infty$ ) and $0\leqq i\leqq k\leqq n-1$

$D^{i}(x;p_{0}, \cdots p_{i})(t)$

\langle 11) $=\sum_{j=i}^{k}(-1)^{j- i}D^{j}(x;p_{0}, \cdots p_{j})(s)I_{j-i}(s, t;p_{j}, \cdots p_{i+1})$

$+(-1)^{k-i+1}\int_{t}^{s}I_{k- i}(r, t;p_{k}, \cdots p_{i+1})p_{k+1}(r)D^{k+1}(x;p_{0}, \cdots p_{k+1})(r)dr$ .

This is a generalization of Taylor’s formula with remainder encountered in
calculus. The proof is straightforward.

LEMMA 2. Let (3) hold and suppose $x\in \mathcal{D}(L_{n})$ satisfies

$x(t)L_{n}x(t)<0$ $[x(t)L_{n}x(t)>0]$ on $[t_{0}, \infty$).

Then there exist a $ t_{1}\in[t_{0}, \infty$ ) and an integer $1\in\{0,1, \cdots , n\}$ such that $l\not\equiv n$

$(mod 2)[l\equiv n(mod 2)]$ and

$x(t)D^{i}(x;p_{0}, \cdots , p_{i})(t)>0$ on $[t_{1}, \infty$ ), $1\leqq i\leqq l$ ,
(12)

$(-1)^{i- l}x(t)D^{i}(x;p_{0}, \cdots p_{i})(t)>0$ on $[t_{1}, \infty$ ), $l+1\leqq i\leqq n$ .

This lemma generalizes a well-known lemma of Kiguradze [11] and can be

proved similarly.

In the next three lemmas, which extend Lemmas 2, 3, 4 of $\check{C}$anturija [3],

we let $t_{0}$ and $T$ be such that $T\geqq t_{0}$ and $g(i)\geqq t_{0}$ for $t\geqq T$, and assume that
$u:[t_{0}, \infty)\rightarrow(0, \infty)$ , $ w:[T, \infty$ ) $\rightarrow(0, \infty)$ , $ H:[T, \infty$) $\times[0, \infty$) $\rightarrow[0, \infty$ ) and $\Phi$ ,
$\Psi:\Delta\rightarrow[0, \infty)$ are continuous, where $\Delta=\{(t, s):t\geqq s\geqq T\}$ , and $H$ is nondecreasing

in the second variable.
LEMMA 3. SuPpose that the functions $g,$ $u,$ $w,$ $H,$ $\Phi,$ $\Psi$ satisfy

$\int_{T}^{\infty}\Psi^{*}(t)H(t, u(g(t)))dt<\infty$ ,
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(13) $u(t)\geqq w(t)+\int_{T}^{t}\Phi(t, s)\int_{s}^{\infty}\Psi(r, s)H(r, u(g(r)))drds$ for $t\geqq T$,

whe $re\Psi^{*}(t)=\max\{\Psi(t, s):s\in[T, t]\}$ . Then the integral equation

(14) $v(t)=w(t)+\int_{T}^{t}\Phi(t, s)\int_{s}^{\infty}\Psi(r, s)H(r, v(g(r)))drds$

has a solution $v\in C([t_{0}, \infty),$ $(0, \infty))$ satisfying

(15) $w(t)\leqq v(t)\leqq u(t)$ for $t\geqq T$ .

LEMMA 4. If in Lemma 3 condition (13) is replaced by

$u(t)\geqq w(t)+\int_{t}^{\infty}\Psi(s, t)H(s, u(g(s)))ds$ for $t\geqq T$ ,

then the integral equation

$v(t)=w(t)+\int_{t}^{\infty}\Psi(s, t)H(s, v(g(s)))ds$

has a solution $v\in C([t_{0}, \infty),$ $(0, \infty))$ satisfying (15).

LEMMA 5. SuppOse that the functions $g,$ $u,$ $w,$ $H,$ $\Phi$ satisfy

$u(t)\geqq w(t)+\int_{T}^{t}\Phi(t, s)H(s, u(g(s)))ds$ for $f\geqq T$ .

Then the integral equation

$v(t)=w(t)+\int_{T}^{t}\Phi(t, s)H(s, v(g(s)))ds$

has a solution $v\in C([t_{0}, \infty),$ $(0, \infty))$ satisfying (15).

We give an outline of the proof of Lemma 3. Let $C$ be the vector space

of all continuous functions $ x:[t_{0}, \infty$) $\rightarrow R$ with the topology of uniform conver-
gence on compact subintervals of $[t_{0}, \infty$ ). Denote by $X$ the set of functions
$v\in C$ satisfying the inequality $0\leqq v(t)\leqq u(t)$ on $[t_{0}, \infty$ ) and let $S;X\rightarrow C$ be the

operator defined by

$(Sv)(t)=w(t)+\int_{T}^{l}\Phi(t, s)\int_{s}^{\infty}\Psi(r, s)H(r, v(g(r)))drds$ , $t\geqq T$ ,

$(Sv)(t)=\frac{w(T)}{u(T)}u(t)$ , $t_{0}\leqq t\leqq T$ .

It is easy to verify that $S$ maps $X$ into itself, $S$ is continuous and $\overline{SX}$ is com-
pact. Since $X$ is convex and closed, from the Schauder-Tychonoff fixed-point



514 T. KUSANO and M. NAITO

theorem it follows that the operator $S$ has a fixed point $v$ in $X$, which $provides\sim$

a solution of (14) satisfying (15). Lemmas 4 and 5 are proved similarly.

2. Equations with operators in canonical form.

In this section we compare equations $(L_{n}^{+}, F, g)$ and $(L_{n}^{-}, F, g)$ with equations
$(M_{n}^{+}, G, h)$ and $(M_{n}^{-}, G, h)$ , respectively, under the assumption that the differ-
ential operators $L_{n}$ and $M_{n}$ are in canonical form. The main result (Theorem

1) asserts that if equation $(M_{n}^{+}, G, h)[(M_{n}^{-}, G, h)]$ has property (A) $[(B)]$ , then

so does equation $(L_{n}^{+}, F, g)[(L_{n}^{-}, F, g)]$ which majorizes the former in a certain
sense.

THEOREM 1. SuPpose that the following conditions are satisfied:

(16) $g(t)\geqq h(t)$ for $ t\in[a, \infty$);

(17) $p_{0}(g(t))\geqq q_{0}(h(t))$ for $ t\in[a, \infty$);

(18) $p_{i}(t)\geqq q_{i}(t)$ for $ t\in[a, \infty$ ), $1\leqq i\leqq n-1$ ;

(19) $\int_{a}^{\infty}q_{i}(t)dt=\infty$ , $1\leqq i\leqq n-1$ ;

(20) $p_{n}(t)F(t, x)sgnx\geqq q_{n}(t)G(t, x)sgnx$ for $(t, x)\in[a, \infty)\times R$ ;

(21) $G(t, x)$ is nondecreasing in $x$ for each $ t\in[a, \infty$ ).

(i) Equation $(L_{n}^{+}, F, g)$ has pr0perty (A) if equation $(M_{n}^{+}, G, h)$ has prop-
erty (A).

(ii) Equation $(L_{n}^{-}, F, g)$ has pr0pe rty (B) if equation $(M_{n}^{-}, G, h)$ has prop-
erty (B).

This theorem is equivalent to the following.

THEOREM 1’. Supp0se that conditions (16) $-(21)$ are satisfied.
(i) If equation $(L_{n}^{+}, F, g)$ has a nonoscillatory solution $x(t)$ satisfying

(22) $\lim_{t\rightarrow}\inf_{\infty}|D^{0}(x;p_{0})(t)|>0$ ,

then equation $(M_{n}^{+}, G, h)$ has a nonoscillatory solution $y(t)$ satisfying

(23) $\lim_{t\rightarrow}\inf_{\infty}|D^{0}(y;q_{0})(t)|>0$ .

(ii) If equation $(L_{n}^{-}, F, g)$ has a nonoscillatory solution $x(t)$ satisfying (22)

and

(24) $\lim_{t\rightarrow}\sup_{\infty}|D^{n-1}(x;p_{0}, \cdots , p_{n-1})(t)|<\infty$ ,
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then equation $(M_{\overline{n}}, G, h)$ has a nonoscillaiory solution $y(t)$ satisfying (23) and

(25) $\lim_{t\rightarrow}\sup|D^{n- 1}(y;q_{0}, \cdots , q_{n-1})(t)|<\infty$ .

As a matter of fact we are able to prove a more general comparison theo-

rem as stated below.

THEOREM 2. SuPpose that conditions (16) $-(21)$ are satisfied.
(i) If there exists a nonoscillatory function $x\in \mathcal{D}(L_{n})$ satisfying $\lim_{t\rightarrow}\inf_{\infty}$

$|D^{0}(x;p_{0})(t)|>0$ and the inequality

(26) $\{L_{n}x(t)+F(t, x(g(t)))\}$ sgn $x(t)\leqq 0$

for all sufficiently large $t$, then equation $(M_{n}^{+}, G, h)$ has a nonoscillatory solution
$y(t)$ satisfying $\lim_{t\rightarrow}\inf|D^{0}(y;q_{0})(t)|>0$ .

(ii) If there exists a nonoscillatory function $x\in \mathcal{D}(L_{n})$ satisfying

(27) $\lim_{t\rightarrow}\inf_{\infty}|D^{0}(x;p_{0})(t)|>0$ , $\lim_{t\rightarrow}\sup_{\infty}|D^{n- 1}(x;P_{0}, \cdots p_{n-1})(t)|<\infty$ ,

and the inequality

(28) $\{L_{n}x(t)-F(t, x(g(t)))\}$ sgn $x(t)\geqq 0$

for all sufficiently large $t$ , then equation $(M_{n}^{-}, G, h)$ has a nonoscillatory solution
$y(t)$ satisfying

(29) $\lim_{t\rightarrow}\inf_{\infty}|D^{0}(y;q_{0})(t)|>0$ , $\lim_{t\rightarrow}\sup_{\infty}|D^{n- 1}(y;q_{0}, \cdots q_{n- 1})(t)|<\infty$ .

PROOF OF THEOREM 2. (i) Let $x\in \mathcal{D}(L_{n})$ be a function satisfying (26) and

$\lim_{t\rightarrow}\inf_{\infty}|D^{0}(x;P_{0})(t)|>0$ . Without loss of generality we may suppose $x(t)$ is

eventually positive. According to Lemma 2 there exist a $t_{1}$ and an integer
$1\in\{0,1, \cdots n-1\}$ such that $l\not\equiv n$ (mod2) and inequalities (12) hold.

Let $1\in\{1, \cdots , n-1\}$ . Then, applying Lemma 1 to $x(t)$ with $i=0,$ $k=l-1$ ,

$s=t_{1},$ $t\geqq s$ , and using (9), we have

$D^{0}(x;P_{0})(t)=\sum_{J=0}^{l-1}D^{j}(x;P_{0}, \cdots , p_{j})(t_{1})I_{j}(t, t_{1} ; P_{1}, \cdots p_{j})$

$+\int_{t_{1}}^{t}I_{l-1}(t, s;p_{1}, \cdots p_{l-1})p_{l}(s)D^{l}(x;p_{0}, \cdots p_{l})(s)ds$ ,

which, in view of (12), implies

(30) $D^{0}(x;p_{0})(t)\geqq c+\int_{t_{1}}^{t}I_{l-1}(t, s;p_{1}, \cdots p_{l-1})p_{l}(s)D^{l}(x;p_{0}, ’ p_{l})(s)ds$
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for $ t\in[t_{1}, \infty$ ), where $c=D^{0}(x;P_{0})(t_{1})$ .
$s\geqq t\geqq t_{1})$ we obtain

(31) $D^{l}(x;p_{0}, ’ p_{l})(t)$

Again, from Lemma 1 $(i=l,$ $k=n-1$ ,

$\geqq-\int_{t}^{\infty}I_{n-l-1}(r, t;p_{n- 1}, \cdots p_{l+1})p_{n}(r)D^{n}(x;p_{0}, \cdots p_{n})(r)dr$

for $ t\in[t_{1}, \infty$). Combining (30) with (31) and noting that $D^{n}(x;p_{0}, \cdots , p_{n})(r)$

$\leqq-F(r, x(g(r)))$ , we get

$D^{0}(x;p_{0})(t)\geqq c+\int_{\iota_{1}}^{t}I_{l-1}(t, s;p_{1}, \cdots p_{l-1})p_{l}(s)$ .
(32)

. $\int_{s}^{\infty}I_{n-l-1}(r, s;p_{n-1}, \cdots p_{l+1})p_{n}(r)F(r, p_{0}(g(r))D^{0}(x;p_{0})(g(r)))drds$

for $ t\in[t_{1}, \infty$ ). On the other hand, since $1\geqq 1,$ $D^{0}(x;p_{0})(t)$ is increasing, and so
$D^{0}(x;p_{0})(g(t))\geqq D^{0}(x;p_{0})(h(t))$ by (16). Taking this fact into account and using

(17), (18), (20), (21) we obtain from (32) that

$D^{0}(x;p_{0})(t)\geqq c+\int_{t_{1}}^{t}I_{l-1}(t, s;q_{1}, \cdots q_{l- 1})q_{l}(s)$ .

$\int_{s}^{\infty}I_{n- l-1}(r, s;q_{n-1}, \cdots , q_{l+1})q_{n}(r)G(r, q_{0}(h(r))D^{0}(x;p_{0})(h(r)))drds$

for $ t\in[t_{1}, \infty$ ). Applying Lemma 3 with $u(t)=D^{0}(x;p_{0})(t)$ we see that the

integral equation

$z(t)=c+\int_{c_{1}}^{t}I_{l-1}(t, s;q_{1}, ,.. , q_{l-1})q_{l}(s)$ .

$\int_{s}^{\infty}I_{n-l-1}(r, s;q_{n-1}, \cdots , q_{l+1})q_{n}(r)G(r, q_{0}(h(r))z(h(r)))drds$

has a solution $z(t)$ satisfying

$c\leqq z(t)\leqq D^{0}(x;p_{0})(t)$ for $ t\in[t_{1}, \infty$ ).

Put $y(t)=q_{0}(t)z(t)$ . Then it is easy to verify that $y(t)$ is a solution of equation
$(M_{n}^{+}, G, h)$ such that $\lim_{t\rightarrow}\inf_{\infty}D^{0}(y;q_{0})(t)\geqq c>0$ .

Next let $1=0$ . Note that this is possible only when $n$ is odd. From (12)

with $l=0$ it follows that $D^{0}(x;P_{0})(t)$ is decreasing on $[t_{1}, \infty$ ), so that the limit

$\varliminf_{t\infty}D^{0}(x;p_{0})(t)=c_{0}$ exists. The hypothesis of the theorem asserts that $c_{0}>0$,

and so there exists $t_{2}\geqq t_{1}$ such that
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(33) $c_{0}\leqq D^{0}(x;p_{0})(t)\leqq\frac{3}{2}c_{0}$ for $ t\in[t_{2}, \infty$ ).

From Lemma 1 $(i=0, k=n-1)$ we have

$D^{0}(x;P_{0})(t)\geqq c_{0}$

$+\int_{t}^{\infty}I_{n-1}(s, t;p_{n-1}, \cdots p_{1})p_{n}(s)F(s, p_{0}(g(\alpha))D^{0}(x;p_{0})(g(s)))ds$ ,

which, in view of (17), (18), (20), (21) and (33), implies

$\frac{3}{2}c_{0}\geqq c_{0}+\int_{t}^{\infty}I_{n-1}(s, t;q_{n- 1}, \cdots q_{1})q_{n}(s)G(s, c_{0}q_{0}(h(s)))ds$

for $ t\in[t_{2}, \infty$ ). Consequently,

(34) $c_{0}\geqq\frac{c_{0}}{2}+\int_{t}^{\infty}I_{n-1}(s, t;q_{n-1}, \cdots q_{1})q_{n}(s)G(s, c_{0}q_{0}(h(s)))ds$

for $ t\in[t_{2}, \infty$ ). Applying Lemma 4 to (34), we conclude that the integral equa-

tion

$z(t)=\frac{c_{0}}{2}+\int_{t}^{\infty}I_{n-1}(s, t;q_{n- 1}, \cdots q_{1})q_{n}(s)G(s, q_{0}(h(s))z(h(s)))ds$

has a solution $z(t)$ satisfying

$\frac{c_{0}}{2}\leqq z(t)\leqq c_{0}$ for $ t\in[t_{2}, \infty$ ).

If we put $y(t)=q_{0}(t)z(i)$ , then $y(t)$ is clearly a nonoscillatory solution of equation
$(M_{n}^{+}, G, h)$ with the property that $\lim_{t\rightarrow}\inf_{\infty}D^{0}(y, q_{0})(t)\geqq c_{0}/2>0$ . This completes

the proof in the case $1=0$ .
(ii) Let $x\in \mathcal{D}(L_{n})$ be a function satisfying (27) and (28). We may suppose

$x(t)$ is eventually positive. By Lemma 2 we can find a $t_{1}$ and an integer

$l\in\{0,1, \cdots n\}$ such that $l\equiv n(mod 2)$ and (12) holds. If $1\in\{1, \cdots n-2\}$ or if
$n$ is even and $1=0$, then exactly as in Case (i) it can be shown that equation
$(M_{n}^{-}, G, h)$ has a solution $y(t)$ such that $\lim_{t\rightarrow}\inf_{\infty}D^{0}(y;q_{0})(t)>0$ . Since $l\leqq n-2$ ,

it is obvious that $\lim_{t\rightarrow}\sup_{\infty}|D^{n-1}(y;q_{0}, \cdots q_{n-1})(t)|<\infty$ .

Suppose $l=n$ . An application of Lemma 1 $(i=0, k=n-1, t\geqq s=t_{1})$ then
shows that

$D^{0}(xjp_{0})(t)=\sum_{f=0}^{n- 1}D^{j}(x;p_{0}, p_{j})(t_{1})I_{j}(t, t_{1} ; p_{1}, p_{j})$

$+\int_{t_{1}}^{t}I_{n- 1}(t, s;p_{1}, \cdots p_{n-1})p_{n}(s)F(s, p_{0}(g(s))D^{0}(x;p_{0})(g(s)))ds$
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for $ t\in[t_{1}, \infty$ ). Proceeding as above, we get

$D^{0}(x;p_{0})(t)\geqq\sum_{j=0}^{n-1}D^{j}(x;p_{0}, \cdots p_{j})(t_{1})I_{j}(t, t_{1} ; q_{1}, \cdots q_{j})$

$+\int_{\iota_{1}}^{t}I_{n-1}(t, s;q_{1}, \cdots q_{n-1})q_{n}(s)G(s, q_{0}(h(s))D^{0}(x;P_{0})(h(s)))ds$

for $ t\in[t_{1}, \infty$ ). Hence from Lemma 5 it follows that there exists a solution
$z(t)$ of the integral equation

$z(t)=\sum_{j=0}^{n-1}D^{j}(x;p_{0}, \cdots p_{j})(t_{1})I_{j}(t, t_{1} ; q_{1}, \cdots q_{j})$

(35)

$+\int_{t_{1}}^{t}I_{n- 1}(t, s;q_{1}, \cdots q_{n- 1})q_{n}(s)G(s, q_{0}(h(s))z(h(s)))ds$

satisfying

$D^{0}(x;p_{0})(t_{1})\leqq z(t)\leqq D^{0}(x;p_{0})(t)$ for $ t\in[t_{1}, \infty$ ).

Put $y(t)=q_{0}(t)z(t)$ . Then from (35) we see that $y(t)$ is a solution of equation

(Mfi, $G,$ $h$ ) satisfying $\lim_{t\rightarrow}\inf_{\infty}D^{0}(y;q_{0})(t)>0$ . On the other hand, since

$|D^{n- 1}$ $(x;p_{0}, \cdots , p_{n-1})(t)|$ is bounded, integrating the inequality $ L_{n}x(t)\geqq$

$F(t, x(g(t)))$ , we have

$\int^{\infty}p_{n}(t)F(t, x(g(t)))dt<\infty$ .

This implies

(36) $\int^{\infty}q_{n}(t)G(t, y(h(t)))dt<\infty$ ,

since

$y(h(t))\leqq q_{0}(h(t))z(g(t))\leqq q_{0}(h(t))\frac{x(g(t))}{p_{0}(g(t))}\leqq x(g(t))$

for $ t\in[t_{1}, \infty$ ). An integration of $(M_{n}^{-}, G, h)$ yields

$D^{n-1}(y;q_{0}, \cdots q_{n-1})(t)-D^{n-1}(y;q_{0}, \cdots q_{n-1})(t_{1})=\int_{c_{1}}^{t}q_{n}(s)G(s, y(h(s)))ds$ ,

which, with the aid of (36), implies that $|D^{n-1}(y;q_{0}, \cdots q_{n-1})(t)|$ is bounded.

Thus the solution $y(t)$ obeys condition (29). The proof of Theorem 2 is complete.

In the particular case where $p_{i}=q_{i},$ $0\leqq i\leqq n,$ $g=h$ and $F=G$ we have the
following

COROLLARY 1. Suppose $L_{n}$ is in canonical form.
(i) Equation $(L_{n}^{+}, F, g)$ has a solution $x(t)$ such that $\lim_{t\rightarrow}\inf_{\infty}|D^{0}(x;p_{0})(t)|$
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$>0$ if and only if there exists a function $y(t)$ satisfying the inequality

$\{L_{n}y(t)+F(t, y(g(t)))\}$ sgn $y(t)\leqq 0$

and lim $inf|D^{0}(y;p_{0})(t)|>0$ .
$\iota-$

(ii) Equation $(L_{\overline{n}}, F, g)$ has a solution $x(t)$ such that

$\lim_{t\rightarrow}\inf_{\infty}|D^{0}(x;p_{0})(t)|>0$ and $\lim_{t\rightarrow}\sup_{\infty}|D^{n- 1}(x;p_{0}, \cdots p_{n-1})(t)|<\infty$

if and only if there exists a function $y(t)$ satisfying the inequality

$\{L_{n}y(t)-F(t, y(g(t)))\}$ sgn $y(t)\geqq 0$ ,

$\lim_{t\rightarrow}\inf_{\infty}|D^{0}(y;P_{0})(t)|>0$ and $\lim_{t\rightarrow}\sup_{\infty}|D^{n-1}(y;p_{0}, \cdots p_{n- 1})(t)|<\infty$ .

EXAMPLE 1. Consider the even order equations

(37) $(t^{\alpha+m}x^{(m)}(t))^{(m)}+t^{\beta- m}F(x(g(t)))=0$ , $t\geqq 1$ ,

(38) $(t^{\gamma+m}y^{(m)}(t))^{(m)}+t^{\gamma- m}G(y(t))=0$ , $t\geqq 1$ ,

where $\alpha,$ $\beta,$ $\gamma$ are constants such that $\gamma\leqq-m+1,$ $\alpha\leqq\gamma\leqq \mathcal{B}$ , and $F,$ $G:R\rightarrow R$ are
continuous functions such that $F(x)sgnx\geqq G(x)sgnx$ , sgn $G(x)=sgnx,$ $G(x)$ is
nondecreasing, and

$\lim_{|x|\rightarrow\infty}\frac{|G(x)|}{|x|}=\infty$ .

According to a result of Kreith, Kusano and Naito [14] equation (38) is oscilla-
tory, and so from Theorem 1 it follows that equation (37) is oscillatory if
$g(t)\geqq t$ .

3. Equations with non-canonical operators.

We now turn to equations whose differential operators are not in canonical

form. According to the general theory of Trench [30], every non-canonical $L_{n}$

of the form (1) can be represented in canonical form in an essentially unique

way. However, actual computation leading to canonical form is in generaI not
easy, so it is desirable to obtain comparison principles for general equations

without knowing the canonical representation of the operators involved.

The following example shows that we can not expect much for results in

this direction.

EXAMPLE 2. Consider the equations

(39) $(t^{3}x^{\prime}(t))^{\prime}+t^{3}x^{3}(t)=0$ , $t\geqq 1$ ,
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(40) $(t^{3}y^{\prime}(t))^{\prime}+t^{3}y^{3}(t^{1/3})=0$ , $t\geqq 1$ .

Putting $z(t)=t^{2}y(t)$ , equation (40) is transformed into

(41) $(t^{-1}z^{\prime}(t))^{\prime}+t^{-1}z^{3}(t^{1/3})=0$ , $t\geqq 1$ .

It is not hard to see that equation (41) is oscillatory (see, for example, [15]).

Hence the delay equation (40) is oscillatory. However, the ordinary equation
(39) is not oscillatory, since it has a nonoscillatory solution $x(t)=t^{-1}$ . Thus,

for equations with non-canonical differential operators, Theorem 1 is false even
if $L_{n}=M_{n}$ and $F=G$ .

To modify the definitions of properties (A) and (B) we need the concept of
a principal system for the operator $L_{n}$ . By a principal system for $L_{n}$ we mean
a set of $n$ solutions $X_{1}(t),$ $\cdots$ $X_{n}(t)$ of the equation $L_{n}x=0$ which are eventually

positive and satisfy the relation

(42) $\lim_{t\rightarrow\infty}\frac{X_{i}(t)}{X_{j}(t)}=0$ for $1\leqq i<j\leqq n$ .

For example, if $L_{n}$ is in canonical form, then the set of functions

$\{p_{0}(r), p_{0}(t)I_{1}(t), \cdots p_{0}(t)I_{n-1}(t)\}$ ,

where $I_{i}(t)=I_{i}(t, a;p_{1}, \cdots p_{i}),$ $1\leqq i\leqq n-1$ , is a principal system for $L_{n}$ . A

principal system for non-canonical $L_{n}$ can easily be obtained by direct integration

of the equation $L_{n}x=0$ . A basic property of principal systems is that if both
$\{X_{1}(t), \cdots , X_{n}(t)\}$ and $\{\tilde{X}_{1}(t), \cdots,\tilde{X}_{n}(t)\}$ are principal systems for $L_{n}$ , then for
each $i,$ $1\leqq i\leqq n,$ $X_{i}(t)$ and $\tilde{X}_{i}(t)$ have the same order of growth (or decay) as
$ t\rightarrow\infty$ , that is, the limits

(43) $\lim_{t\rightarrow\infty}\frac{\tilde{X}_{i}(t)}{X_{i}(t)}>0$ , $1\leqq i\leqq n$ ,

exist and are finite.

DEFINITION 2. Let $\{X_{1}(t), \cdots , X_{n}(t)\}$ be a principal system for $L_{n}$ . Equa-

tion $(L_{n}^{+}, F, g)$ is said to have property (A) if
(i) for $n$ even, it is oscillatory, and
(ii) for $n$ odd, every nonoscillatory solution $x(t)$ of $(L_{n}^{+}, F, g)$ satisfies

(44) $\lim_{t\rightarrow\infty}\frac{x(t)}{X_{1}(t)}=0$ .

Equation $(L_{n}^{-}, F, g)$ is said to have property (B) if

(i) for $n$ odd, every nonoscillatory solution $x(t)$ of $(L_{\overline{n}}, F, g)$ satisfies
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(45) $\lim_{t\rightarrow\infty}\frac{|x(t)|}{X_{n}(t)}=\infty$ ,

and

(ii) for $n$ even, every nonoscillatory solution satisfies either (44) or (45).

The main result of this section is the following

THEOREM 3. Suppose that $F(t, x)sgnx\geqq G(t, x)sgnx$ and $G(t, x)$ is non-
decreasing in $x$.

(i) If equation $(L_{n}^{+}, G, g)$ has ProPerty (A), then so does equation $(L_{n}^{+}, F, g)$ .
(ii) If equation $(L_{n}^{-}, G, g)$ has property(B), then so does equation $(L_{\overline{n}}, F, g)$ .
Tbis theorem is restated as follows.
THEOREM 3’. SuPpose that $F(t, x)sgnx\geqq G(t, x)sgnx$ and $G(t, x)$ is non-

decreasing in $x$ . Let $\{X_{1}(t), \cdots X_{n}(t)\}$ be a principal system for $L_{n}$ .
(i) If equation $(L_{n}^{+}, F, g)$ has a nonoscillatory solution $x(t)$ satisfying

(46) $\lim_{t\rightarrow}\inf_{\infty}\frac{|x(t)|}{X_{1}(t)}>0$ ,

then equation $(L_{n}^{+}, G, g)$ has a nonoscillatory solution $y(t)$ satisfying

(47) $\lim_{t\rightarrow}\inf_{\infty}\frac{|y(t)|}{X_{1}(t)}>0$ .

(ii) If equation $(L_{n}^{-}, F, g)$ has a nonoscillatory solution $x(t)$ satisfying

(48) $\lim_{t\rightarrow}\inf_{\infty}\frac{|x(t)|}{X_{1}(t)}>0$ and $\lim_{t\rightarrow}\sup_{\infty}\frac{|x(t)|}{X_{n}(t)}<\infty$ ,

then equation $(L_{n}^{-}, G, g)$ has a nonoscillatory solution $y(t)$ satisfying

(49) $\lim_{t\rightarrow}\inf_{\infty}\frac{|y(t)|}{X_{1}(t)}>0$ and $\lim_{t\rightarrow}\sup_{\infty}\frac{|y(t)|}{X_{n}(t)}<\infty$ .

We shall prove statement (ii) of Theorem 3’. Suppose $L_{n}$ is not in canonical

form. Let

$L_{n}=\frac{1}{\tilde{p}_{n}(t)}\frac{d}{dt}\frac{1}{\tilde{p}_{n- 1}(t)}\frac{d}{dt}$ $\frac{d}{dt}\frac{1}{\tilde{p}_{1}(t)}\frac{d}{dt}\overline{\tilde{p}_{0}(t)}$

be the canonical representation of $L_{n}$ , so that

$\int_{a}^{\infty}p_{i}(t)dt=\infty$ for $1\leqq i\leqq n-1$ .

Applying Theorem 1’ to equations $(L_{n}^{-}, F, g)$ and $(L_{\overline{n}}, G, g)$ with $L_{n}$ thus
transformed, we see that if equation $(L_{\overline{n}}, F, g)$ has a nonoscillatory solution
$x(t)$ satisfying
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(50) $\lim_{t\rightarrow}\inf_{\infty}|D^{0}(x;\tilde{p}_{0})(t)|>0$ and $\lim_{t\rightarrow}\sup_{\infty}|D^{n- 1}(x;\tilde{p}_{0}, \cdots p_{n- 1})(t)|<\infty$ ,

then equation (Lfi, $G,$ $g$) has a nonoscillatory solution $y(t)$ satisfying (50) with
$x$ replaced by $y$ . We note that

$\{\tilde{p}_{0}(t),\tilde{p}_{0}(t)1_{1}(t), \cdots , \tilde{p}_{0}(t)1_{n-1}(t)\}$ ,

where $1_{t}(t)=I_{i}(t, a;\tilde{P}_{1}\ldots \tilde{p}_{i}),$ $1\leqq i\leqq n-1$ , forms a principal system for $L_{n}$ ,

and that (50) is equivalent to

(51) $\lim_{t\rightarrow}\inf_{\infty}\frac{|x(t)|}{p_{0}(t)}>0$ and $\lim_{t\rightarrow}\sup_{\infty}\frac{|x(t)|}{\tilde{p}_{0}(t)\tilde{I}_{n-1}(t)}<\infty$ .
In view of (43) $\tilde{p}_{0}(t)$ and $X_{1}(t)$ has the same order of growth (or decay) as
$ t\rightarrow\infty$ , and the same is true of $\tilde{p}_{0}(t)\tilde{I}_{n-1}(t)$ and $X_{n}(t)$ . Therefore (50) [resp. (50)

with $x$ replaced by $y$] is equivalent to (48) [resp. (49)].

Statement (i) of Theorem 3’ can be proved similarly.

EXAMPLE 3. Consider the fourth order elliptic equation

(52) $\Delta^{2}u+c(|\xi|)u=0$

in an exterior domain $E$ of Euclidean N-space $R^{N}$ of points $\xi=(\xi_{1}, \cdots \xi_{N})$ ,

where $\Delta=\sum_{i=1}^{N}\partial^{2}/\partial\xi_{i}^{2},$ $|\xi|$ denotes the Euclidean length of $\xi$, and $c(|\xi|)$ is con-
tinuous and positive in $E$ . Equation (52) is called oscillatory if every nontrivial
solution $u\in C^{4}(E)$ of (52) has arbitrarily large zeros in $E$, that is, the set
$\{\xi\in E:u(\xi)=0\}$ is unbounded.

Recently Kusano and Yoshida [18] have shown that equation (52) is oscil-
latory in $E$ if and only if the ordinary differential equation

$\frac{d}{dt}t^{N- 1}\frac{d}{dt}t^{1-N}\frac{d}{dt}t^{N-1}\frac{d}{dt}w+t^{N-1}c(t)w=0$ , $t\geqq 1$ ,

is oscillatory. From this fact and Theorem 3 we see that if equation (52) is
oscillatory in $E$, then so is the equation

$\Delta^{2}v+C(|\xi|)v=0$ with $C(t)\geqq c(t)$ .

4. More on comparison theory.

In Section 2 we have established comparison theorems to the effect that if

a differential equation with deviating argument $h(t)$ has property (A) or (B),

then so does another related equation with larger deviating argument $g(t)$ .
We are interested in comparison results in the opposite direction, that is,

we wish to derive property (A) or (B) of an equation with deviating argument
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$h(t)$ from the corresponding property of another equation with larger deviating

argument $g(t)$ . Efforts in this direction have been undertaken by several
authors; see, for example, Erbe $[5, 6]$ and Mahfoud [24] in which delay equations

are compared with ordinary equations (without delay). The main purpose of
this section is to extend Mahfoud’s theory [24] to much more general situations.

THEOREM 4. Let $L_{n}$ be in canonical form. SuPpose that $F(t, x)$ is non-
decreasing in $x$ and that $g(t)$ and $h(t)$ are subject to the conditions

(53) $g,$
$h\in C^{1}$ , $g^{\prime}(t)>0$ , $h^{\prime}(t)>0$ , $h(t)\leqq g(t)$ , $\lim_{t\rightarrow\infty}h(t)=\infty$ .

SuppOse that the differential equation

$\langle L_{n}^{+}, F, g, h\rangle$ $L_{n}z(t)+\frac{g^{\prime}(t)p_{n}(h^{-1}(g(t)))}{h’(h^{-1}(g(t)))p_{n}(t)}F(h^{-1}(g(t)), z(g(t)))=0$

has property(A). Then equation $(L_{n}^{+}, F, h)$ has Property (A).

PROOF. Let $x(t)$ be a nonoscillatory solution of equation $(L_{n}^{+}, F, h)$ such that

$\lim_{t\rightarrow}\inf_{\infty}|D^{0}(x;p_{0})(t)|>0$ . We may suppose that $x(t)$ is eventually positive. Let

$t_{1}$ and $1\in\{0,1, \cdots n-1\}$ be the numbers associated with $x(t)$ (see Lemma 2).

If $l\in\{1, \cdots , n-1\}$ , then proceeding as in the proof of the first part of

Theorem 2, we obtain the inequality

$D^{0}(x;p_{0})(t)\geqq c+\int_{\iota_{1}}^{t}I_{l- 1}(t, s;p_{1}, \cdots p_{l- 1})p_{l}(s)$ .

(54)

. $\int_{s}^{\infty}I_{n- l- 1}(r, s;p_{n- 1}, \cdots p_{l+1})p_{n}(r)F(r, p_{0}(h(r))D^{0}(x;p_{0})(h(r)))drds$

for $ t\in[t_{1}, \infty$ ), where $c>0$ is a constant. By the change of variables $r=h^{-1}(g(\rho))$

we find

$\int_{s}^{\infty}I_{n- l- 1}(r, s;p_{n- 1}, \cdots p_{l+1})p_{n}(r)F(r, p_{0}(h(r))D^{0}(x;p_{0})(h(r)))dr$

$=\int_{g-1_{(h(s))}}^{\infty}I_{n- l- 1}(h^{-1}(g(\rho)), s;p_{n- 1}, \cdots p_{l+1})$ .

. $\frac{g^{\prime}(\rho)p_{n}(h^{-1}(g(\rho)))}{h’(h^{-1}(g(\rho)))}F(h^{-1}(g(\rho)), p_{0}(g(\rho))D^{0}(x;p_{0})(g(\rho)))d\rho$

$\geqq\int_{s}^{\infty}I_{n- l- 1}(\rho, s;p_{n- 1}, \cdots p_{l+1})$ .

. $\frac{g^{\prime}(\rho)p_{n}(h^{-1}(g(\rho)))}{h’(h^{-1}(g(\rho)))}F(h^{-1}(g(\rho)), p_{0}(g(\rho))D^{0}(x;p_{0})(g(\rho)))d\rho$ ,

where we have used the fact that $g^{-1}(h(s))\leqq s\leqq h^{-1}(g(s))$ which follows from
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(53). Combining the above inequality with (54), we have for $ t\in[t_{1}, \infty$ )

$D^{0}(x;p_{0})(t)\geqq c+\int_{t_{1}}^{l}I_{l-1}(t, s;p_{1}, \cdots p_{l-1})p_{l}(s)\int_{s}^{\infty}I_{n- l-1}(r, s;p_{n-1}, \cdots p_{l+1})$ .
(55)

. $\frac{g^{\prime}(r)p_{n}(h^{-1}(g(r)))}{h’(h^{-1}(g(r)))}F(h^{-1}(g(r)), p_{0}(g(r))D^{0}(x;p_{0})(g(r)))drds$ .

By lemma 3 applied to (55) there exists a positive solution $y(t)$ of the integral

equation

$y(t)=c+\int_{t_{1}}^{t}I_{l- 1}(t, s;p_{1}, \cdots p_{l- 1})p_{l}(s)\int_{s}^{\infty}I_{n-l- 1}(r, s;p_{n-1z}\ldots p_{l+1})$ .

. $\frac{g^{\prime}(r)p_{n}(h^{-1}(g(r)))}{h’(h^{-1}(g(r)))}F(h^{-1}(g(r)), P_{0}(g(r))y(g(r)))drds$ .

Then the function $z(t)=p_{0}(i)y(t)$ is a solution of equation $\langle L_{n}^{+}, F, g, h\rangle$ satisfy-

ing $\lim_{t\rightarrow}\inf_{\infty}D^{0}(z;p_{0})(t)>0$ . This contradicts the hypothesis.

If $l=0$ (which is possible only when $n$ is odd), then arguing as in the proof

of the second part of Theorem 2, we see that there exist constants $c_{0}>0$ and
$t_{2}>f_{1}$ such that

(56) $c_{0}\geqq\frac{c_{0}}{2}+\int_{l}^{\infty}I_{n- 1}(s, t;p_{n-1}, \cdots p_{1})p_{n}(s)F(s, c_{0}p_{0}(h(s)))ds$

for $ t\in[t_{2}, \infty$ ). Noting that

$\int_{t}^{\infty}I_{n-1}(s, t;p_{n-1}, \cdots p_{1})p_{n}(s)F(s, c_{0}p_{0}(h(s)))ds$

$=\int_{g-1_{(h(t))}}^{\infty}I_{n- 1}(h^{-1}(g(\sigma)), t ; p_{n- 1}, \cdots p_{1})$ .

. $\frac{g^{\prime}(\sigma)p_{n}(h^{-1}(g(\sigma)))}{h’(h^{-1}(g(\sigma)))}F(h^{-1}(g(\sigma)), c_{0}p_{0}(g(\sigma)))d\sigma$

$\geqq\int_{l}^{\infty}I_{n- 1}(\sigma, t ; p_{n- 1}, \cdots p_{1})\frac{g^{\prime}(\sigma)p_{n}(h^{-1}(g(\sigma)))}{h’(h^{-1}(g(\sigma)))}F(h^{-1}(g(\sigma)), c_{0}p_{0}(g(\sigma)))d\sigma$ ,

from (56) we have

$c_{0}\geqq\frac{c_{0}}{2}+\int_{t}^{\infty}I_{n- 1}(\sigma, t ; p_{n- 1}, \cdots p_{1})\frac{g^{\prime}(\sigma)p_{n}(h^{-1}(g(\sigma)))}{h’(h^{-1}(g(\sigma)))}$ .
(57)

. $ F(h^{-1}(g(\sigma)), c_{0}p_{0}(g(\sigma)))d\sigma$

for $ t\in[t_{2}, \infty$ ). Lemma 4 applied to (57) guarantees the existence of a positive

solution $y(t)$ of the integral equation
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$y(t)=\frac{c_{0}}{2}+\int_{t}^{\infty}I_{n- 1}(\sigma, t ; p_{n- 1}, \cdots p_{1})\frac{g^{\prime}(\sigma)p_{n}(h^{-1}(g(\sigma)))}{h’(h^{-1}(g(\sigma)))}$ .

. $ F(h^{-1}(g(\sigma)), p_{0}(g(\sigma))y(g(\sigma)))d\sigma$ .

The function $z(t)=p_{0}(t)y(t)$ then gives a solution of equation $\langle L_{n}^{+}, F, g, h\rangle$

satisfying $\lim_{\vec{t}}\inf_{\infty}D^{0}(z;p_{0})(t)>0$ , which again contradicts the hypothesis. This

completes the proof.

The following example shows that Theorem 4 fails to hold if $L_{n}$ is not in
canonical form.

EXAMPLE 4. The equation

$(t^{3}z^{\prime}(t))^{\prime}+3t^{3}z^{3}(t^{1/3})=0$ , $t\geqq 1$ ,

is oscillatory (see Example 2). However, the equation

$(t^{3}x^{\prime}(t))^{\prime}+t^{1/3}x^{3}(t^{1/9})=0$ , $t\geqq 1$ ,

has a nonoscillatory solution $x(t)$ such that $\lim_{t\rightarrow\infty}x(t)=const\neq 0$ . This follows

from Theorem 1 of Kusano and Naito [16].

Of particular interest is the case where $g(t)=t$ , that is, the comparison

equation $\langle L_{n}^{+}, F, g, h\rangle$ is an ordinary differential equation

$\langle L_{n}^{+}, F, h\rangle$ $L_{n}z+\frac{p_{n}(h^{-1}(t))}{h’(h^{-1}(t))p_{n}(t)}F(h^{-1}(t), z)=0$ .

A specialization of Theorem 4 to this case yields the following corollary which

is a generalization of a result of Mahfoud [24, Theorem 1].

COROLLARY 2. Let $L_{n}$ be in canonical form. SuPpose that $F(t, x)$ is non-
decreasing in $x$ and that $h(t)$ satisfies

(58) $h\in C^{1}$ , $h^{\prime}(t)>0$ , $h(t)\leqq t$ , $\lim_{t\rightarrow\infty}h(t)=\infty$ .

If the ordinary differential equation $\langle L_{n}^{+}, F, h\rangle$ has pr0perty (A), then so does

the delay equation $(L_{n}^{+}, F, h)$ .
EXAMPLE 5. Consider the linear delay equation

(59) $D^{n}(x;1, p, \cdots p, 1)(t)+q(t)x(h(t))=0$ ,

where $n\geqq 2,$ $p,$ $ q;[a, \infty$ ) $\rightarrow(0, \infty)$ are continuous, and $ h:[a, \infty$ ) $\rightarrow R$ satisfies con-
dition (58). We wish to compare (59) with the ordinary differential equation

(60) $D^{n}(z;1, p, \cdots p, 1)(t)+\frac{q(h^{-1}(t))}{h’(h^{-1}(t))}z(t)=0$ .
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Suppose that $\int_{a}^{\infty}p(t)dt=\infty$ and put $P(t)=\int_{a}^{l}p(s)ds$ . According to the linear

oscillation theory developed in [17] and [29] equation (60) has property (A) if

either (i)

(61) $\int^{\infty}[P(s)]^{n- 2}\frac{q(h^{-1}(s))}{h’(h^{-1}(s))}ds=\infty$ ,

or (ii) (61) fails and

(62) $\lim_{t\rightarrow}\inf_{\infty}P(t)\int_{t}^{\infty}[P(s)-P(t)]^{n- 2}\frac{q(h^{-1}(s))}{h’(h^{-1}(s))}ds>\frac{(n-2)!}{4}$ .

If we let $\tau=h^{-1}(s)$ , then (61) and (62) reduce respectively to

(63) $\int^{\infty}[P(h(s))]^{n-2}q(s)ds=\infty$

and

(64) $\lim_{t\rightarrow}\inf_{\infty}P(h(t))\int_{t}^{\infty}[P(h(s))-P(h(t))]^{n- 2}q(s)ds>\frac{(n-2)!}{4}$ .

Applying now Corollary 2 to equations (59) and (60), we conclude that the delay

equation (59) has property (A) if either (63) or (64) holds.

Next, we compare equation $(L_{n}^{-}, F, h)$ with

$\langle L_{n}^{-}, F, g, h\rangle$ $L_{n}z(t)-\frac{g^{\prime}(t)p_{n}(h^{-1}(g(t)))}{h’(h^{-1}(g(t)))p_{n}(t)}F(h^{-1}(g(t)), z(g(t)))=0$ .

THEOREM 5. Let $L_{n}$ be in canonical form. SuPpose that $F(t, x)$ is non-
decreasing in $x$ and that $g(t)$ and $h(t)$ satisfy (53). If equation $\langle L_{n}^{-}, F, g, h\rangle$

has Property (B), then equation $(L_{n}^{-}, F, h)$ has Property (B).

PROOF. Suppose that equation $(L_{n}^{-}, F, h)$ does not possess property (B). Let
$x(t)$ be a nonoscillatory solution of $(L_{n}^{-}, F, h)$ . Then, we have

(65) $\lim_{l\rightarrow\infty}\inf|D^{0}(x;p_{0})(t)|>0$ and $\lim_{l\rightarrow}\sup_{\infty}|D^{n- 1}(x;p_{0}, \cdots p_{n-1})(t)|<\infty$ .

If $l<n$ , where 1 is the integer associated with $x(t)$ by Lemma 2, then it
can be shown as in the proof of Theorem 4 that equation $\langle L_{n}^{-}, F, g, h\rangle$ has a
nonoscillatory solution $z(t)$ satisfying

$\lim_{t\rightarrow}\inf_{\infty}|D^{0}(z;p_{0})(t)|>0$ and $\lim_{t\rightarrow}\sup_{\infty}|D^{n- 1}(z;P_{0}, \cdots p_{n-1})(t)|<\infty$ ,

which contradicts the assumption that $\langle L_{n}^{-}, F, g, h\rangle$ has property (B).

If $l=n$ , then since $D^{n-1}(x;p_{0}, \cdots , p_{n-1})(t)$ is monotone,
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(66) $\lim_{t\infty}|D^{n-1}(x;P_{0}\ldots , p_{n-1})(t)|=const\neq 0$ .

According to an analogue of Theorem 1 of Kitamura and Kusano [12], (66)

implies that

(67) $\int^{\infty}p_{n}(t)|F(t, cp_{0}(h(t))I_{n- 1}(h(t)))|dt<\infty$ for some $c\neq 0$,

where $I_{n-1}(t)=I_{n-1}(t, a;P_{1}\ldots p_{n-1})$ . If we put $t=h^{-1}(g(s))$ , then (67) is

transformed into

(68) $\int^{\infty}p_{n}(h^{-1}(g(s)))|F(h^{-1}(g(s)), cp_{0}(g(s))I_{n- 1}(g(s)))|\frac{g^{\prime}(s)}{h^{\prime}(h^{-1}(g(s)))}ds<\infty$ .

Again an analogue of Theorem 1 of [12] shows that (68) is sufficient for equa-

tion $\langle L_{n}^{-}, F, g, h\rangle$ to have a nonoscillatory solution $z(i)$ satisfying

$\lim_{t^{r}}|D^{n-1}(z;P_{0}, \cdots p_{n-1})(t)|=const\neq 0$ .

This is a contradiction, and the proof is complete.

COROLLARY 3. Let $L_{n},$ $F$ and $h$ be as in Corollary 2. If the ordinary

differential equation

$\langle L_{n}^{-}, F, h\rangle$ $L_{n}z-\frac{p_{n}(h^{-1}(t))}{h’(h^{-1}(t))p_{n}(t)}F(h^{-1}(t), z)=0$

has proPerty (B), then so does the delay equation $(L_{n}^{-}, F, h)$ .
THEOREM 6. Let $L_{n}$ be in canonical form. SuPpose that $F(t, x)$ is non-

decreasing in $x$ and that $g(t)$ and $h(t)$ satisfy condition (53). Put $\tau(t)=h(g^{-1}(t))$

and define

(69) $\mathcal{L}_{n}=\frac{1}{p_{n}(t)}\frac{d}{dt}\frac{1}{p_{n-1}(\tau(t))\tau^{\prime}(t)}\frac{d}{dt}$ $\frac{d}{dt}\frac{1}{p_{1}(\tau(t))\tau^{\prime}(t)}\frac{d}{dt}\overline{p_{0}(\tau(t))}$

If the equation

(70) $\mathcal{L}_{n}y(t)+F(t, y(g(t)))=0$

has ProPerty (A), then so does equation $(L_{n}^{+}, F, h)$ .
PROOF. Let $x(t)$ be a solution of equation $(L_{n}^{+}, F, h)$ satisfying

$\lim_{t\rightarrow}\inf_{\infty}|D^{0}(x;P_{0})(t)|>0$ .

We may suPpose that $x(t)$ is eventually positive. Let 1 be the integer associated
with $x(t)$ by Lemma 2. Integrating $(L_{n}^{+}, F, h)$ and noting that $\tau(t)\leqq t$ , we have
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(71) $D^{n- 1}(x;p_{0}, \cdots p_{n-1})(\tau(t))\geqq\int_{t}^{\infty}p_{n}(s)F(s, x(h(s)))ds$

for $t\geqq T$ , provided $T$ is sufficiently large. Multiplying both sides of (71) by

$p_{n-1}(\tau(t))\tau^{\prime}(t)$ and integrating the resulting inequality, we get

$D^{n- 2}(x;p_{0}, \cdots p_{n-2})(\tau(t))\geqq\int_{t}^{\infty}p_{n-1}(\tau(s_{n-1}))\tau^{\prime}(s_{n-1})$ .

$\int_{s_{n- 1}}^{\infty}p_{n}(s)F(s, x(h(s)))dsds_{n- 1}$ , $t\geqq T$ .

Repeating this procedure, we arrive at

$D^{l}(x;p_{0}, \cdots p_{l})(\tau(t))\geqq c_{l}+\int_{t}^{\infty}p_{l+1}(\tau(s_{l+1}))\tau^{\prime}(s_{l+1})$ .
(72)

$\int_{s_{l+1}}^{\infty}\cdots\int_{s_{n- 1}}^{\infty}p_{n}(s)F(s, x(h(s)))dsds_{n- 1}\cdots ds_{l+1}$ , $t\geqq T$ ,

where $c_{l}=\lim_{t\rightarrow\infty}D^{l}(x;p_{0}, \cdots , p_{l})(t)\geqq 0$ . Note that $c_{0}>0$ by hypothesis.

Suppose $1\geqq 1$ . We multiply (72) by $p_{l}(\tau(t))\tau^{\prime}(t)$ and integrate over $[T, t]$ ,

obtaining

$D^{\iota-1}(x;p_{0}, \cdots p_{l-1})(\tau(t))\geqq\int_{T}^{t}p_{l}(\tau(s_{l}))\tau^{\prime}(s_{t})\int_{s_{l}}^{\infty}p_{l+1}(\tau(s_{l+1}))\tau^{\prime}(s_{l+1})$ .

. $\int_{s_{l+1}}^{\infty}\cdots\int_{s_{n- 1}}^{\infty}p_{n}(s)F(s, x(h(s)))dsds_{n- 1}\cdots ds_{l}$

for $t\geqq T$ . Continuing in this manner, we have for $t\geqq T$

$D^{0}(x, p_{0})(\tau(t))\geqq c+\int_{T}^{t}p_{1}(\tau(s_{1}))\tau^{\prime}(s_{1})\int_{T}^{s_{1}}\cdots\int_{T}^{s_{l-1}}p_{l}(\tau(s_{l}))\tau^{\prime}(s_{l})$ .
(73)

. $\int_{s_{l}}^{\infty}p_{l+1}(\tau(s_{l+1}))\tau^{\prime}(s_{l+1})\int_{s_{l+1}}^{\infty}\cdots\int_{s_{n- 1}}^{\infty}p_{n}(s)F(s, x(h(s)))dsds_{n- 1}\cdots ds_{1}$ ,

where $c=D^{0}(x;P_{0})(\tau(T))>0$ . Denote the right hand side of (73) by $z(t)$ and

define $\zeta(t)=P_{0}(\tau(t))z(t)$ . Repeated differentiation of $\zeta(t)$ shows that

(74) $\mathcal{L}_{n}\zeta(t)+F(t, x(h(t)))=0$ , $t\geqq T$ .

Since $x(\tau(t))\geqq p_{0}(\tau(t))z(t)$ by (73) and since $\tau(g(t))=h(t)$ , we see that

$x(h(t))=x(\tau(g(t)))\geqq p_{0}(\tau(g(t)))z(g(t))=\zeta(g(t))$ .

Combining this fact with (74), we have

(75) $X_{n}\zeta(t)+F(t, \zeta(g(t)))\leqq 0$ , $t\geqq T$ ,
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and $\lim_{\vec{t}}\inf_{\infty}D^{0}(\zeta;p_{0}\circ\tau)(t)>0$ . It follows from Corollary 1 that equation (70) has

a positive solution $y(t)$ such that $\lim_{t\rightarrow}\inf_{\infty}D^{0}(y;P_{0}\circ\tau)(t)>0$ . This contradicts the

hypothesis that (70) has property (A).

Next suppose $l=0$ . From (72) we find

$D^{0}(x;p_{0})(\tau(t))\geqq c_{0}+\int_{t}^{\infty}p_{1}(\tau(s_{1}))\tau^{\prime}(s_{1})\int_{s_{1}}^{\infty}p_{2}(\tau(s_{2}))\tau^{\prime}(s_{2})$ .

(76)

. $\int_{s_{2}}^{\infty}\cdots\int_{s_{n-1}}^{\infty}p_{n}(s)F(s, x(h(s)))dsds_{n-1}\cdots ds_{1}$

for $t\geqq T$ . Denote the right hand side of (76) by $z(t)$ and put $\zeta(t)=p_{0}(\tau(t))z(t)$ .
Then, exactly as above, $\zeta(t)$ satisfies (75) and $\lim_{t\rightarrow}\inf_{\infty}D^{0}(\zeta;p_{0}\circ\tau)(t)>0$ . This

implies the existence of a solution $y(t)$ of equation (70) with the property

$\lim_{t\rightarrow}\inf_{\infty}D^{0}(y;p_{0}\circ\tau)(t)>0$ , again contradicting the hypothesis. Thus the proof is

complete.

EXAMPLE 6. We show that Theorem 6 is not true for equations with non-

canonical operators. Let $L_{2}=\frac{d}{dt}t^{3}\frac{d}{dt},$ $F(t, x)=t^{1/3}x^{3},$ $g(t)=t^{1/3}$ and $h(t)=t^{1/9}$

for $t\geqq 1$ . Then, equations $(L_{n}^{+}, F, h)$ and (70) are

(77) $(t^{3}x^{\prime}(t))^{\prime}+t^{1/3}x^{3}(t^{1/9})=0$

and

(78) $(t^{5/3}y^{\prime}(t))^{\prime}+\frac{1}{3}t^{1/3}y^{3}(t^{1/3})=0$ ,

respectively. Equation (78) is oscillatory, since, by the change of variables $z(t)$

$=t^{2/3}y(t)$ , it is reduced to

$(t^{1/3}z^{\prime}(t))^{\prime}+\frac{1}{3}t^{-1}z^{3}(t^{1/3})=0$ ,

which is oscillatory. However, equation (77) has nonoscillatory solutions (see

Example 4).

THEOREM 7. Under the same assumptions as in Theorem 6 equation $(L_{n}^{-}, F, h)$

has proPerty (B) if the equation

(79) $\mathcal{L}_{n}y(t)-F(t, y(g(t)))=0$

has Property (B).

PROOF. Suppose that equation $(L_{n}^{-}, F, h)$ has a nonoscillatory solution $x(t)$

satisfying (65). Let $l$ be the integer associated with $x(t)$ by Lemma 2. If $l<n$ ,

then the same argument as in the proof of Theorem 6 leads us to a contradic-
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tion. If $l=n$ , then there exists a constant $c\neq 0$ such that (67) holds. On the
other hand, from a variant of Theorem 1 of [12] we see that equation (79) has
a nonoscillatory solution $y(t)$ such that

(80) $\lim_{l\rightarrow\infty}|D^{n- 1}(y;P_{0}\circ\tau, (p_{1}\circ\tau)\tau^{\prime},$
$\cdots$ $(p_{n-1}\circ\tau)\tau^{\prime})(t)|=const\neq 0$

if and only if

(81) $\int^{\infty}p_{n}(t)|F(t, cp_{0}(\tau(g(t)))I_{n-1}(g(t), a;(p_{1}\circ\tau)\tau^{\prime},$ $\cdots$ $(p_{n-1}\circ\tau)\tau^{\prime})|dt<\infty$

for some $c\neq 0$ . Since $\tau(g(t))=h(t)$ and

$I_{n- 1}(t, a;(p_{1^{O}}\tau)\tau^{\prime},$ $\cdots$ $(p_{n- 1}\circ\tau)\tau^{\prime})=I_{n-1}(\tau(t), \tau(a);p_{1},$ $\cdots$ $p_{n-1}$),

(81) coincides with (67). Therefore, if $l=n$ , then equation (79) has a nonoscil-
latory solution $y(t)$ satisfying (80). This again is a contradiction.

REMARK 1. It is easy to see that in case $g(h(t))=h(g(t))$ Theorem 6 and

Theorem 7 are equivalent to Theorem 4 and Theorem 5, respectively.

In view of recent results of Brands [1] and Foster and Grimmer [7] we
have the following conjecture.

CONJECTURE. Let $L_{n}$ be in canonical form and let $F(t, x)$ be nondecreasing

in $x$ . Let $g_{1},$ $g_{2}$ : $[a, \infty$ ) $\rightarrow R$ be continuous functions such that $\lim_{t\rightarrow\infty}g_{i}(t)=\infty$ ,

$i=1,2$ , and $|g_{1}(t)-g_{2}(t)|$ is bounded.
(i) Equation $(L_{n}^{+}, F, g_{1})$ has Property (A) if and only if equation $(L_{n}^{+}, F, g_{2})$

has Property (A).

(ii) Equation $(L_{n}^{-}, F, g_{1})$ has Property (B) if and only if equation $(L_{n}^{-}, F, g_{2})$

has property(B).

Below we give a partial answer to this conjecture.

LEMMA 6. Let $L_{n}$ be in canonical form. Suppose that the functions $p_{i}(t)$ ,

$0\leqq i\leqq n-1$ , are nonincreasing for $ t\in[a, \infty$ ). Let $ g:[a, \infty$ ) $\rightarrow R$ be a $C^{1}$ function
satisfying $g^{\prime}(t)>0$ and $\lim_{l\rightarrow\infty}g(t)=\infty$ . Then, for any constant $M\geqq 0$ equation

$(L_{n}^{+}, F, g)[(L_{n}^{-}, F, g)]$ has Property (A) $[(B)]$ if and only if equation $(L_{n}^{+}, F, g-M)$

$[(L_{n}^{-}, F, g-M)]$ has Property (A) $[(B)]$ .
PROOF. Since $g(t)\geqq g(t)-M$, the “ if” part of the lemma follows from

Theorem 1. So, suppose that equation $(L_{n}^{+}, F, g)[(L_{n}^{-}, F, g)]$ has property (A)

$[(B)]$ . Put $h(t)=g(t)-M$ and $\tau(t)=h(g^{-1}(t))$ . Then, clearly, $\tau(t)=t-M,$ $\tau^{\prime}(i)$

$=1$ , and $p_{i}(\tau(t))\geqq p_{i}(t)$ for $0\leqq i\leqq n-1$ . Therefore, by Theorem 1, equation
$(\mathcal{L}_{n}^{+}, F, g)[(\mathcal{L}_{n}^{-}, F, g)]$ , where $X_{n}$ is defined by (69), has property (A) $[(B)]$ .
Applying now Theorem 6 [Theorem 7], we conclude that equation $(L_{n}^{+}, F, h)=$

$(L_{n}^{+}, F, g-M)[(L_{n}^{-}, F, h)=(L_{n}^{-}, F, g-M)]$ has property (A) $[(B)]$ , proving the
“ only if “ part of the lemma.
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THEOREM 8. Let $L_{n}$ and $g$ be as in Lemma 6. Let $g_{1},$ $g_{2}$ : $[a, \infty$ ) $\rightarrow R$ be
continuous functions such that $\lim_{t\rightarrow\infty}g_{i}(t)=\infty,$ $i=1,2$ , and $|g_{1}(t)-g(t)|$ and $|g_{2}(t)$

$-g(t)|$ are bounded. Then, equation $(L_{n}^{+}, F, g_{1})[(L_{n}^{-}, F, g_{1})]$ has Property (A)

$[(B)]$ if and only if equation $(L_{n}^{+}, F, g_{2})[(L_{n}^{-}, F, g_{2})]$ has Property (A) $[(B)]$ .
PROOF. There exists a constant $M>0$ such that $|g_{1}(t)-g(t)|\leqq M$, that is,

$g(t)-M\leqq g_{1}(t)\leqq g(t)+M$ for $ t\in[a, \infty$).

Theorem 1 implies that if equation $(L_{n}^{+}, F, g_{1})[(L_{n}^{-}, F, g_{1})]$ has property (A)

$[(B)]$ , then so does equation $(L_{n}^{+}, F, g+M)[(L_{n}^{-}, F, g+M)]$ . Hence equation
$(L_{n}^{+}, F, g)[(L_{n}^{-}, F, g)]$ has property (A) $[(B)]$ by Lemma 6. Conversely, if
equation $(L_{n}^{+}, F, g)[(L_{n}^{-}, F, g)]$ has property (A) $[(B)]$ , then, by Lemma 6
equation $(L_{n}^{+}, F, g-M)[(L_{n}^{-}, F, g-M)]$ has the same property. From Theorem
1 it follows that equation $(L_{n}^{+}, F, g_{1})[(L_{n}^{-}, F, g_{1})]$ has property (A) $[(B)]$ .
Likewise, equation $(L_{n}^{+}, F, g_{2})[(L_{n}^{-}, F, g_{2})]$ has property (A) $[(B)]$ if and only

if $(L_{n}^{+}, F, g)[(L_{n}^{-}, F, g)]$ has property (A) $[(B)]$ . This completes the proof.
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