
ISSN 1672-9145                                        Acta Biochimica et Biophysica Sinica 2006, 38(6): 379–384                                CN 31-1940/Q

©Institute of Biochemistry and Cell Biology, SIBS, CAS

Comparisons of Graph-structure Clustering Methods for Gene Expression Data
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Abstract         Although many numerical clustering algorithms have been applied to gene expression data
analysis, the essential step is still biological interpretation by manual inspection. The correlation between
genetic co-regulation and affiliation to a common biological process is what biologists expect. Here, we
introduce some clustering algorithms that are based on graph structure constituted by biological knowledge.
After applying a widely used dataset, we compared the result clusters of two of these algorithms in terms of
the homogeneity of clusters and coherence of annotation and matching ratio. The results show that the
clusters of knowledge-guided analysis are the kernel parts of the clusters of Gene Ontology (GO)-Cluster
software, which contains the genes that are most expression correlative and most consistent with biological
functions. Moreover, knowledge-guided analysis seems much more applicable than GO-Cluster in a larger
dataset.
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Expression profiling and large-scale proteomics have
revolutionized biology by generating a vast amount of data.
Many mathematical clustering algorithms have been
adapted or directly applied to gene expression data ana-
lysis [1−12]. However, all of these algorithms only pay
attention to the mathematical similarity of genes and
conditions. The essential step in the analysis of those
experiments is biological interpretation by manual inspection
[13].

The main challenge to the biologist is contained in the
next step of the analysis, which consists of identifying the
biologically relevant expression changes. The universal
grounds behind expression clustering are that genes with
similar expression patterns are possibly involved in similar

biological process. However, it has been observed that
genes with similar expression profiles sometimes do not
share similar biological functions [14,15], and genes in-
volved in the same biological process are not always per-
fectly correlated [16]. Thus, incorporating prior knowl-
edge in the clustering process became necessary as it helps
to generate more refined and biologically relevant clusters.

Generally, the prior biological knowledge is the evidence,
which provides connections among differently expressed
genes. This evidence includes the function correlation of
genes, such as a shared annotation, joint participation in
some physiological process and physical interaction at the
protein level [17]. All the evidence can be represented as a
graph, for example, a Gene Ontology (GO) network graph,
a metabolic and signaling pathway graph or a protein in-
teraction map. After mapping relevant genes on the graph,
the clustering procedure can be processed based on the
graph structure. The results of these clustering methods
can identify most biological processes and regulatory
mechanisms [17,18] and show more advantages than con-
ventional clustering methods [19].

In this paper, we introduce some current clustering
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algorithms, based on graph structure constituted by bio-
logical knowledge, then compare the results in terms of
homogeneity of clusters, coherence of annotation and
matching ratios.

Materials and Methods

Biological annotation evidence

The biological knowledge can be obtained from scien-
tific literature or public databases, such as GO [20], meta-
bolic networks [21] and Medline [22].

GO is a cross-species, controlled vocabulary describ-
ing three domains of molecular biology [20]: molecular
function, cellular component and biological process. It is
currently the most popular source for biological terminol-
ogy and used often in interpretion or validation of
microarray results [15]. GO has a hierarchical classifica-
tion scheme structured as a direct acyclic graph, with each
node designating a biological term and each edge repre-
senting the relationship of “is a” or “part of”, meaning that
a child term is either a part of the parent or a more specific
example of the parent term. To facilitate calculation, the
original digraph of GO will be transformed into an ordered
tree, that is to say, a directed tree with an order defined
for the children of every node of the tree. Because the
same GO term might occur in different levels of the
ontology, each appearance of a GO term is considered
distinct when an ordered tree is built. This may be justi-
fied from a biological viewpoint that in the gene ontology,
what counts is not a GO term itself but which path the
GO term takes from the root. Each appearance of a GO
term is considered distinct if a distinct path leads to it
from the root.

The complete metabolic network in cells can be repre-
sented as a bipartite undirected graph [23], called a meta-
bolic graph. In the metabolic graph, metabolites as well as
enzymes are represented as nodes, and interactions be-
tween them are represented as edges. Thus, a metabolic
node is connected to all of the enzyme nodes that catalyze
reactions involving the particular metabolite, and an en-
zyme node is connected to all of the metabolites that take
part in the corresponding reaction.

Graph-structure clustering methods

Here we introduce three graph-structure clustering
methods, which depend on GO or the metabolic network.

GO-Cluster is an executable program for Microsoft
Windows 98/2000/NT/XP [13]. This software uses the

tree structure of the GO database as a framework for nu-
merical clustering, thus allowing a simple visualization of
gene expression data at various levels of the ontology tree
[13]. Compared with other known visualization tools, such
as MAPPFinder [24] or GoMiner [25], GO-Cluster does
not judge statistically the regulation of a GO term, but
carries out hierarchical average-distance clustering by ap-
plying Pearson’s correlation coefficient to the genes that
are allocated to the corresponding term. The advantage of
this clustering is that no “rules” have to be predefined and
all of the available datasets are informative. In the GO-
Cluster, every node of the GO can be selected for cluster
analysis, the corresponding tree can be calculated in real
time and simultaneously displayed as a left-to-right tree
structure.

In the knowledge-guided analysis of microarray data
[19], GO information is introduced to guide the clustering
process. Both expression pattern and biological function
similarities are considered. The steps of the algorithm are
as follows [19]. Subsequently, in the construction of the
GO tree, genes in the expression dataset are mapped to
this tree through a species-related database, and unmapped
nodes (terms) in the GO tree are excluded. Thereafter,
every node in this GO tree is checked from top to bottom.
Genes mapped to a node as well as its descendant nodes
form an initial cluster, and the expression similarity of this
cluster is calculated. If high expression similarity is
obtained, the cluster is output. The node and its descen-
dant nodes are excluded from the GO tree. Otherwise, no
action is taken. Once the whole GO tree is checked, the
output clusters are refined by average trend constraint fil-
tering to obtain clusters with both high expression simi-
larities and high function similarities (Fig. 1).

The recently published work by Breitling et al. [17] pro-
vided a statistical method, known as graph-based iterative
group analysis (GIGA), to identify active subgraphs in the
biological knowledge graph, which might contain high
connection genes with expression correlation. Genes shar-
ing an annotation are connected to build the graph. In addi-
tion to the graph, a complete list of genes sorted by differ-
ential expression is provided and each node is ranked ac-
cording to the allocated gene. Then local minima are iden-
tified in the graph, in which the nodes have a lower rank
than all their direct neighbors. Next, subgraphs are itera-
tively extended from each of those local minima by in-
cluding the neighboring node with the next highest rank
(m) and, if present, all adjacent nodes of ranks equal or
smaller than m. For each extension, a P-value will be
calculated. The extension process continues until all nodes
reachable from the local minimum are included or the sub-
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graph reaches an arbitrary maximum size. After sorting
by increasing P-value, the subgraphs at the top positions
will be considered as ideal relevant regions of the biologi-
cal graph.

Additionally, Ideker et al. [18] introduced an approach
based on simulated annealing to searching active subnet-
works in a molecular interaction network. Segal et al. [26]
also described an approach for identifying “pathways” from
gene expression and protein interaction data by the Ex-
pectation Maximization algorithm. As with GIGA, the
guideline for finding gene clusters is the degree of expres-
sion activity, but not expression similarity. Therefore, we
only compared the clustering results of GO-Cluster and
knowledge-guided analysis, outlined below.

Data preparation

The well-known dataset by Eisen et al. [1] was applied
to these algorithms. Gene expression in the budding yeast
Saccharomyces cerevisiae was studied during the diauxic
shift, the mitotic cell division cycle, sporulation, and tem-
perature and reducing shocks using microarrays. Each cell

in the expression matrix represented the measured Cy5/
Cy3 fluorescence ratio at the corresponding target element.
All ratio values were log transformed (base 2 for simplicity).
Using the hierarchical clustering methods, Eisen et al. suc-
cessfully clustered the gene expression profiles [1]. We
investigated the genes reported previously [1], which can
be accessed from http://genome-www.stanford.edu/
clustering/. There are 2467 genes and 79 conditions, which
relate with certain experiments. As the maximal number
of experiments which can be dealt with by GO-Cluster is
16, we divided the whole expression matrix into several
parts according to different types of conditions. The ex-
pression data of Elutriation (14 conditions), Sporulation
(11 conditions) and Diauxic Shift (7 conditions) were
studied. The Saccharomyces Genome Database downloaded
from http://www.geneontology.org/ was used to extract
GO terms and generate annotation reference space [27].

Cluster validation

To validate and compare the clustering results, some
criteria were used for various aspects.

The homogeneity of a cluster is used to measure the
similarity degree of the gene expressions within one clus-
ter [28], which is a basal guideline for assessing the qual-
ity and reliability of the cluster. For example, if the gene
set of a cluster is C, G represents the gene in C. The
definition of the homogeneity of the cluster is defined in
Equation 1 as:
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where dist(Gi,Gj) means the Euclidean distance between
two expression vectors in C and ||C|| means the norm of
expression matrix corresponding to C. Here the Frobenius
norm is used. This definition represents the homogeneity
of cluster C by the average pairwise object similarity within
C, and a small H value represents a good cluster.

To assess the reliability of the clusters, a function WR is
defined to evaluate the coherence of annotation [19]. For
a cluster C whose annotation space is A, we suppose that
a is the most frequently occurring annotation in A (Equation
2):

_1
_

cor numWR
whl num

= − 2

where cor_num is the number of genes annotated by a
and whl_num is the total number of genes in C. Obviously,
WR can measure the inconsistency of annotations in a
cluster. Smaller WR value implies stronger coherence.

We defined matching ratio to examine the consistency

Fig. 1       Flow chart of knowledge guided analysis
The clustering starts at the first level of the GO tree. For each level, the algorithm
first picks up the leftmost node of this level (G9 node in level 2, since only nodes
mapped with genes will be considered in our process). All the descendant nodes of
this target gene will be found (G4 and G5). Thereafter, we calculate the expression
similarity (msrs) of the initial cluster, which is formed by the genes mapped to the
target node and its descendant nodes (G9, G4 and G5). If the msrs value is below a
predefined threshold δ, this cluster will be output. Simultaneously, the genes in
the cluster will be marked with ‘clustered’, which means these genes will be
excluded from next analysis. Otherwise, no action will be taken and the algorithm
goes to the next node of current GO tree level. In this example, the node corre-
sponding to G9 is the only marked node of level 2. Thus we go to the nodes in
level 3. This process repeats for all nodes in the level and then goes to the next
level. The iteration terminates when every level of the GO tree has been visited.
The arrows represent the move direction of clustering, that are, from up to down as
well as from left to right.
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of the clustering results of different methods. For a cer-
tain GO term, C1 and C2 are the clusters annotated by this
term of two different algorithms. Suppose C1_num is the
gene number of C1 and C2_num is the gene number of C2,
and ins_num is the gene number of the intersection of C1

and C2. The matching ratio from C1 to C2 is shown in
Equation 3:

( )1 2
1

_,
_

ins numMR C C
C num

= 3

Analogously, the matching ratio from C2 to C1 is as fol-
lows (Equation 4):

( )2 1
2

_,
_

ins numMR C C
C num

= 4

Results

We compared the clustering results from GO-Cluster
and knowledge-guided analysis from the three aspects
outlined in previous sections, using the expression dataset
of Elutriation, Sporulation and Diauxic Shift. For each level
from 4 to 8 of the GO tree, we selected three clusters
randomly as the indication of this level and calculated the
average values of the three criteria. The Saccharomyces
Genome Database was used as the annotation space for
WR calculation.

Elutriation

There are 14 conditions for Elutriation. Using knowl-
edge-guided analysis, we found 94 significative clusters
when the threshold was set as 0.15. Three clusters were
selected for each level and corresponding clusters with
the same GO terms were found from the results of GO-
Cluster. After that, all the parameters were calculated for

the clusters of the two methods. For each level, we took
the average of the three clusters. The results are shown in
Fig. 2. From Fig. 2(A,B), we can see that the result clus-
ters of knowledge-guided analysis have advantages both
in the similarity of expression pattern and convergence of
annotation reference. From Fig. 2(C), we can see that the
value of MR(knowledge, GO-Cluster) is close to 1 whereas
MR(GO-Cluster,knowledge) is obviously low, which
means that the clusters from knowledge-guided analysis
are almost subsets of clusters from GO-Cluster.

Sporulation

There are 11 conditions for Sporulation. When the
threshold was set as 0.15, 73 clusters were found. As
with Elutriation, three clusters were selected from the
results of both the knowledge-guided analysis and GO-
Cluster for each GO tree level. All the parameters for
validation were calculated and averaged for every level.
Fig. 3 shows the results. From Fig. 3(A,B), we can see
that the result clusters of knowledge-guided analysis have
advantages both in the similarity of expression pattern and
convergence of annotation reference. From Fig. 3(C), we
can see that MR(knowledge,GO-Cluster) is close to 1
whereas MR(GO-Cluster,knowledge) is obviously low. It
means that the clusters from knowledge-guided analysis
are almost subsets of clusters from GO-Cluster.

Diauxic Shift

There are seven conditions for Diauxic Shift. We ob-
tained 82 significative clusters using knowledge-guided
analysis, when the threshold was set as 0.15. Three clus-
ters were selected for each level from the results of the
two methods and all the parameters were calculated for
each cluster. The comparisons of each level, after
averaging, are shown in Fig. 4. As with Elutriation and
Sporulation, the result clusters of knowledge-guided analy-

Fig. 2       Comparisons for Elutriation
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sis have advantages both in the similarity of expression
pattern and convergence of annotation reference. From
Fig. 4(C), we can also draw a conclusion that the clusters
from knowledge-guided analysis are almost subsets of
clusters from GO-Cluster.

Discussion

So far we have discussed some graph-structure
clustering methods for microarray data analysis. These
algorithms can find gene clusters with expression pattern
and biological function similarities through the modified
structure of biological annotation evidence. The results
showed not only that the genes were clustered according
to their expression profiles, but also the clusters were
annotated automatically. This makes it more convenient
to combine the external profiles with essential functions.

These methods have their innovations as well as
limitations. GO-Cluster is convenient for rapid visualization
and can evaluate the gene expression profiles in every node
of a GO tree. However, it applies hierarchical average
distance clustering to the genes that are allocated to only a
certain GO term, which will lead to the incompleteness of
clustering results because the genes corresponding to the

children term of a GO term also belong to the category of
this GO term. Furthermore, the Pearson’s correlation
coefficient used in GO-Cluster has been proven not to be
robust with respect to outliers [3]. The knowledge-guided
analysis is based on a similarity measure that depends on
both expression profiles and biological functions, which
are equally essential for gene clusters. Nevertheless, the
analysis depends strongly on the accurateness and
completeness of the GO hierarchy, for example, it can not
deal with the genes corresponding to a very high level of a
GO tree because the expression similarity of these genes
can not satisfy the threshold. The simulated annealing
approach combines a rigorous statistical measure for
scoring with a search algorithm for  identifying
subnetworks, but it requires relatively complex parameter
estimation and can not guarantee to find the optimally
scoring subnetworks. The GIGA algorithm brings a simple
and fast method to screening significant subgraphs, but it
can only address one condition at a time, making it
inadequate for expression data analysis.

We have also compared the results of two of the above
methods from three different aspects: expression
homogeneity, annotation coherence and matching ratio.
For the expression homogeneity and annotation coherence,
the results of knowledge-guided analysis were much bet-

Fig. 3       Comparisons for Sporulation

Fig. 4       Comparisons for Diauxic Shift
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Edited by
Shigeto SENO

ter than the results of GO-Cluster. It was shown in Figs.
2−4 that the differences of the two criteria between the
results of knowledge-guided analysis and GO-Cluster were
much smaller in Sporulation and Diauxic Shift than in
Elutriation. This might be attributed to the data magnitude.
In other words, knowledge-guided analysis is much more
applicable than GO-Cluster in a larger dataset.

The comparison of matching ratios shows that the clus-
ters of knowledge-guided analysis are almost subsets of
the clusters of GO-Cluster. Hence, we can see that the
results of knowledge-guided analysis are the kernel parts
of the results of GO-Cluster, containing the genes that are
most expression correlative and most consistent to a cer-
tain biological function. These results are possibly more
acceptable to biologists because they involve more pre-
cise and detailed information.
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