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Abstract

The gyrokinetic and gyrofluid models show the most promise for large scale simula-

tions of tokamak microturbulence. This paper discusses detailed comparisons of these two

complementary approaches. Past comparisons with linear theory have been fairly good,

therefore the emphasis here is on nonlinear comparisons. Simulations include simple two

dimensional slab test cases, turbulent three dimensional slab cases, and toroidal cases, each

modeling the nonlinear evolution of the ion temperature gradient instability. There is good

agreement in both turbulent and coherent nonlinear slab comparisons in terms of the ion

heat flux, both in magnitude and scaling with magnetic shear. However, the nonlinear

saturation level for 1¢1 in the slab comparisons show differences of approximately 40%.

Preliminary toroidal comparisons show agreement within 50%, in terms of ion heat flux and

saturation level.



I. Introduction

Successful work over the past decade on the formulation of gyrokinetic equations 1-3

and the more recent development of the gyrofluid equations 4-6 provide two practical and

complementary approaches for simulating low frequency gradient driven microturbulence

in tokamak plasmas. The development of these model equations along with the astound-

ing advances being made in high performance computing now make large scale numerical

simulations an important tool for the improved unders anding of anomalous transport.

These advances have motivated a collaborative effort witnin the magnetic fusion commu-

nity termed the "Numerical Toka.mak Project" (NTP) utilizing these new computational

tools. 7 Though still in its early stages, the NTP has generated interesting physics results,

including the observation that the turbulent spectrum peaks at significantly longer wave-

lengths than the linearly most unstable modes s-:° along with results showing very similar

spectral features as recent experimental core fluctuation measurements, s':l'x2 In addition,

important self-generated poloidal shear flows have been observed in core Ion Temperature

Gradient (iTG) mode simulations, 9'1°':3'14 which is similar to earlier work that recognized

the importance of self-generated sheared flows in edge turbulence. 15-17 An important aspect

of the NTP is checking the validity of the variety of models used, along with benchmarking

codes during the development phase. Of equal importantance are comparisons between

gyrofluid and gyrokinetic approaches that can help improve our understanding of plasma

turbulence since much of the existing insights are based on fluid type models and analogies

with Navier-Stokes turbulence. Detailed comparisons of the linearized gyrofluid equations

in the sheared-slab 5 and toroidal 6'9,18 systems show good agreement with linear gyrokinetic



theory and there have been some preliminary nonlinear slab comparisons as well. 13 Here,

more complete and systematic nonlinear comparisons are made.

The ITG instability is used throughout this study. We will take the electrostatic limit

and assume the electrons are adiabatic. The ITG mode has long been considered a plausible

candidate for explaining the anomalous ion heat diffusivity in the core of tokamak plasmas,

which is far above neoclassical predictions. 19 We will begin by comparing a simp!e two

dimensional (2D) shearless slab model where analytic comparisons can be made. We will

then discuss fully turbulent three dimensional (3D) sheared slab comparisons, 2° and finally

3D toroidal comparisons.

A. Overview of Codes

In this study five different codes will be compared: two gyrokinetic /Sf particle codes

(slab and toroidal), two gyrofluid codes (slab and toroidal), and a gyrokinetic Vlasov code

(toroidal). A brief description of each of the codes follows, mentioning only the features

used in the comparison study. More complete descriptions of the available options in the

various codes can be found in the references.

The 3D gyrokinetic slab particle code 21'22 is periodic in y and z, and "bounded" in x

(¢ = 0 at the boundaries). Both gyrokinetic codes use the partially linearized 8f scheme _3

in this comparison. The equilibrium density and temperature gradients and the magnetic

shear are constant in time and vary in the x direction. The 3D toroidal gyrokinetic code

is similar to the slab code, but uses field-line-following coordinates ls'24 to simulate a flux

tube volume element. This code uses flux coordinate Hamiltonian guiding center equations



of motion. 25 Periodicity is assumed in all 3 directions in the field-line coordinates.

To facilitate detailed comparisons, the 3D slab gyrofluid code 2° employs the same phys-

ical model as the 3D gyrokinetic slab code. The code solves three to eight fluid moments

using pseudo-spectral methods. The 3D toroidal gyrofluid code 9'is is similar to the slab

code, but uses a field-line-following representation, includes toroidal drift resonances, and

evolves four to six fluid moments. Toroidal and poloidal periodicity constraints are em-

ployed and the system is assumed periodic in the radial direction. Waltz and Kerbel [10]

have made similar usage of field-line-following coordinates in a gyrofluid code.

The Vlasov code 26,27 integrates the gyrokinetic equation 1 in the 5-dimensional phase

space. The distribution function is represented on a #,vii grid in velocity space, and a

grid (coordinate along the field line) with discrete 0o's and k0's in ballooning space.

B. Gyrofluid and Gyrokinetic Slab Equations

For completeness, we write the electrostatic slab gyrokinetic equation for the perturbed

ion distribution function 8f(x, vii, t) integrated over v±, taking (kxPi) 2 _ 0 (the drift-kinetic

limit), neglecting the parallel nonlinearity and assuming a Maxwellian background

OtiS/+ vE "VS f + vIIVH8f = -[1 + rli/2(v_ - 1)]Ov'_fo - v)lVil'_fo, (1)

using what we will term "gyrofluid units" with x± = x±/pl, xll = xll/Ln, v = v/vti,

t = tvti/Ln, _ = ee_/T(L,,/pi), rli = L,_/LT, and /Sf = 8fLn/pi. The quantity Pi is the

ion gyro-radius, vti is the ion thermal velocity, L,_ is the density gradient scale length, LT

is the temperature gradient scale length, and VE = b × VO. (See Ref. 28 for details.) The



corresponding slab ion gyrofluid equations, s in the (k.Lp_)2 = 0 "Landau-fluid" limit are

0¢

Otn+ rE. Vn + Vllu+ 7yy = 0, (2)

Otu + rE" Vu + VII [T + n + (I)]= 0, (3)

where u(x,t) = f vH_ffdav/(novti), T(x,t)= TII = f(Vll- Ull)2 _ffd3v/(nov2ti) - n, n(x,t) =

f tJfd3v/no, and no is the equilibrium density. We have taken Ti = Te throughout this

comparison study since allowing Ti # T, is straightforward. See Refs. 5,28 for further

details. For simplicity of comparison, we will set the ky = O,kz = 0 component of 0 to zero

in all of the 2-D and 3-D slab simulations (though not in the toroidal simulations, see Sec.

4), thus ignoring sheared poloidal flows which might be generated by the turbulence. Then

the adiabatic electron response can be written as n, = (I), and in the k±ps = 0 limit the

quasineutrality condition is just

(s)

For the gyrokinetic system the density is obtained using n = f 5fd3v/no. We will begin by

comparing the gyrofluid system [Eqs. (2)-(5)] and the gyrokinetic system [Eqs. (1) and (5)]

in the 2D slab model discussed below. More complicated comparisons then iollow including

finite gyroradius effects, higher moments and toroidal effects. All the 3D cases will include

full finite gyroradius effects. Details on the more general equations can be found in Refs.

1-3,5,6,9.



II. 2D Shear!ess Slab Comparisons

The first comparison will be With a simple "bounded 2D slab" model 28 that greatly

simplifies the comparison of the two simulations and allows for straightforward comparison

with analytic theory. The system is taken as bounded in x (i.e., ¢(x = 0) = 0, O(x = Lx) =

0), periodic in y and uniform in z. The magnetic field is uniform and has a small tilt in the

y-direction, b = _ + _9, providing a finite (and constant) kll = 9ky. In the gyrofluid units,

kll = (SLn/pi)ky. To further simplify the nonlinear comparison, we neglect terms of order

(kxpi) 2 as in Sec. I.B. Due to the boundary conditions in x and y, O (as well as all the

other field quantities) can be written as

¢(x, y) = _ _k sin (kxx)e _k_'y (6)
k

wherek=(kx ky)=(_l 2_,_' Lx' Ly ) for I = +1, +2,... and m = 0, :t=l, +2,..., with the following

symmetry conditions satisfied: ¢-t,rn = --Or,m, Ol,-m = O7,m" To allow comparison with

the analytic prediction of the saturation level we further simplify the problem by keeping

only the following (l,m) modes: (+1,:]=1),(:t:2,0). Starting with arbitrarily small initial

conditions, the saturation of an isolated mode gives an indication of the initial saturation

mechanism, neglecting the effect of self-generated poloidal shear flow. We emphasize that

this is a simplified coherent nonlinear test problem, and the turbulent 3D simulations are

qualititatively quite different, with many modes excited. Fully turbulent 3D cases will be

discussed in Section III and IV.

The details of the time evolution are not shown here but can be found in Ref. 19, and

are very similar to the results found in Ref. 28, for a somewhat different set of parameters



and assumptions.

A. 2D Shearless Slab Simulation Comparison

The physical parameters for this first comparison are k_pl = kypi = 0.1, r/i = 10,

Te/Ti = 1, and varying kllL,_. The quantity 8L,_/pi was varied from 0.25 to 3.15 to check

the validity of the results over a range of kll. The box size used for both simulations was

L_ = 31.4pi and Ly = 62.8p_ with a 32x32 grid. The gyrokinetic code used 16,384 particles.

Both codes used a timestep of At = 0.bLn/vt_. The simulations were well converged using

these parameters. Figure 1 shows the linear real frequency and growth rate vs. 8Ln/pi.

There is excellent agreement between the two codes. The linear growth rate and real

frequency is also shown from the kinetic plasma dispersion relation. 2° Figure 2 shows the

nonlinear saturation level for the two simulations, with reasonable agreement at small kii.

The gyrofluid calculation, however, overestimates the saturation level at large kll, e.g. 2.6

times too large at kll = O(L,_/pi)ky = 0.24. In both codes only the _(:t:1,:t=1), (I)(:t=2,0)

modes were kept. However, all modes were kept in the other field quantities associated with

_ff. This was done because of difficulties with zeroing various Fourier modes of 6f in the

gyrokinetic simulations. The comparisons with the two analytic results also shown in Fig.

2 will be discussed below.

For this comparison, we use the following definition of the ion thermal diffusivity Xi, 2° in

gyrofluid units, X_ (Q) / rl_ ( f 0y(I)1= = -i(Vll+V2)_ffd3v )/r/i. Figure 3 shows the ion thermal

diffusivity at the peak level in both simulations. In this model the flux grows exponentially

in the linear phase, nonlinearly saturates, then drops to a small value. 20'28 It is interesting



that there is good agreement in Xi, even in the large kll regime when the saturation levels

are quite different.

B. Comparison with Gyrofluid Theory

Next, we calculate the nonlinear saturation of the gyrofluid system. Following Lee and

Tang, 2s saturation occurs when the (+1, :t:1) unstable mode couples to the (=!=2,0) temper-

ature perturbation which results in a flattening of the equilibrium temperature profile. The

present calculation is similar to Ref. 28, but with the Landau term, 4 finite r/i. From Eq. 6,

the E x 13 nonlinearity becomes

vE.Vu= \"x'vy "'y"x] _k'Uk '''
k=k'+k"

Since we are taking the zero k±pi limit, n = ¢. It follows from Eq. (2) that ¢(2,0) = 0;

hence there is no poloidal shear flow in this test problem. Using Eqs. (2)-(4) we obtain the

following evolution equations for the (1, 1) mode (denoted by the subscript "1"):

0¢1

O'---t"+ ikllul + iky¢l = O, (7)

Oul

O-'T+ ikll[T' + 2¢,] + ik_luo = O, (8)

O-----t+ 2ikllu_ + _?iikyOl + kllT_ + ik2O_To = O; (9)

and the (2,0) mode (denoted by the subscript "0"):

Ou----2°= 2k[Im(O_ul), (10)
Ot

OTo = 2k].im(OlT1) ' (11)
Ot

9



where ka. = 2k_ky (note the uncommon definition of k±). In Eqs. (7)-(11) and the rest of

this section k_, ky, k.L and kll are evaluated for the (1, 1) mode. This set of equations, Eq:..

(9)-(11), has been solved numerically by an independent code providing a useful nonlinear

benchmark for the much more complex slab gyrofluid simulation.

Using Eqs. (7)-(9) and dropping the nonlinear terms, the linear dispersion relation may

be obtained:

_ll+i 2-_ kl I k, _ + (rl,- 2)_ = 0. (12)

An anMytic estimate of the saturation level and nonlinear frequency shift can be obtained

by assuming nx, ul and T1 have e -iwtt+_'tt time dependence, where wt + iTt is the complex

linear frequency. It then follows that u0 and To have e_'_t time dependence.

Eqs. (7)-(11)then yield the following "quasi-linear dispersion relation" involving the

real part of the linear frequency (wl) and the nonlinear (w,_l) frequency

\ kll+i 2- _ \ klI k,, klI - 2)_

k_ kl_

At the time of nonlinear saturation the imaginary part of the nonlinear frequency must

vanish. Thus, the coefficient in square brackets on the right-hand side must be identically

zero, giving the following expression for the saturation level:

k_k_[_,..,,.L ky ]I¢_1_= _,11( )-2 . (14)kll k,,

The nonlinear frequency wnz can be obtained from substituting Eq. (14) back into Eq. (13)

to obtain a simple quadratic equation. The result of solving for the saturation level is shown

10



in Fig. 2 labeled "TMC Theory" (for Three Mode Coupling). There is a 20% difference, but

the right scaling with kll is observed. Best agreement (within 5%) is found if the gyrofiuid

code keeps only the (+1,:i:.]) and (+2,0) modes for the n, u and T moments (as stated

above all the Fourier rnode,,_were kept for the moments 1o mimic the gyrokinetic simulation).

To compare with conventional fluid theory, one simply drops the the ix/Sx/_ term in the

dispersion relations, Eqs. (12) and (13). [In the strong instability regime of rh >> 1 and

¢O, Ti _>:> k[ivti , this reduces to Eq. 40 in the earlier work of Ref. 28.] This term comes

directly from the Landau damping model 4 and is important for the good agreement with

gyrokinetic linear theory. We also note that without the Landau-damping term in Eqs.

(7)-(11), the mode amplitude time histories are quite different exhibiting strong regular

nonlinear oscillations when numerically integrated.

C. Comparison with Gyrokinetic Theory

Following Lee et al.29 for drift waves, an analogus nonlinear calculation starting with

Eqs. (1) and (5) can be carried out assuming a warm ion responce (wl/kll << vti) along

with 7t/wt << 1 and r/i >> 1. Although the most unstable ITG modes usually have the

property of w/kll __ vti, this analysis can give us some important insight with regard to

the scaling for nonlinear saturation. It involves the interaction of three Fourier modes, i.e.,

lff(1,+l) modes, which are complex conjugates of each other and are linearly unstable,

and the nonlinearly-generated 8f(2,0) mode. For simplicity, we only consider ¢(1,+1)

potential perturbations. It can then be shown that the saturation takes place when/5f(2, 0)

11



nonlinearly interferes with the growths of _ff(1, +l) at an amplitude of

I¢1 =Tz/k_. (15)

For clarity, we write Eq. (15)in the dimensional form e1¢----!= "/l 1 This might appear
Ti W,T 2LTkr"

to differ from the result found in Ref. 28, that I¢1 _ Iwt+ iTll/k_, but that result was only

intended to apply to a regime far from marginal stability where r/i >> 2, W,T >> kllvti, and

2 2 1/3
wl + i'll ,_ (w,Tkllvti) . Thus, in the regime where it is applicable, Iwl + iTll differs from

71 only by ,,- 15%. Since Eq. (15) is the same as for the drift wave case, 29 the physical

mecha.nism for the saturation can be understood through wave-particle trapping. 3° The

particle Hamiltonian in the wave frame takes the form 31

H = kxk_¢ + (kllVll- w)k_z, (16)

where ¢ is the electrostatic potential and w is the wave frequency. The resonant particles

with kllvll __ w, which are stationary relative to the wave, can become E × B trapped as

the amplitude of ¢ grows in time. As a result, the resonant particles start to move along

the contours of the constant ¢ and thereby shut off the growth. When this happens, the

average E × B trapping frequency, wt,. "_ 2kxky¢, becomes comparable to the linear growth

rate, 71, and the growth stops. We then recover the saturation criterion in Eq. (15). As

shown in Fig. 2, there is good agreement especially in terms of scaling with kll. This

scaling of the saturation amplitude was observed by Dorland 2° and has been confirmed

numerically using a gyrokinetic Vlasov code, 32 which solves the same set of equations in

the Fourier-transform q-space for the velocities. 33 While the particle simulations agree well

with theory for all kli , the gyrofluid results overestimate the saturation level at large kll ,

12



where marginal stability is approached. This is reminiscent of the difficulties the gyrofluid

eqs. have in the deeply-resonant weak-turbulence (near-marginal-stability) cases. 34 One

possible explanation for the discrepancy is that the effect of the E x B trapping is reduced

in the gyrofluid model. Near marginal stability, the distribution function develops a sharp

resonant structure in velocity space as expected theoretically and confirmed using Vlasov

simulations. If only a few fluid moments are kept, the gyrofluid equations are only able

to model this coherent resonant behavior in a very rough way (¢ does drop to zero as

marginal stability is approached, but not in the same way as the particle simulation). A

more accurate result could be obtained if many fluid moments were kept [equivalent to

keeping many terms in a Hermite polynomial expansion of f(v)33]. However, this sharp

resonant structure is quite sensitive to collisions which smooth out fine-scale structure in

velocity space via the vv202f/i)v 2 term, in a similar fashion as for drift waves. 32 Specifically,

collisions can diminish and eventually nullify the trapping and as a result, increase the

saturation level. The implications for the more realistic turbulent 3D system is not clear.

It might be expected that the effects of coherent trapping would be reduced for a many

mode system due to stochastic E × B motion and resonance broadening, along with finite

collisionMity. This may lead to better agreement between the two approaches in the more

realistic turbulent systems.

III. Turbulent 3D Slab Comparisons

In this section we will compare the codes using a turbulent 3D sheared slab test problem.

The system is bounded in x and periodic in y and z. The magnetic field direction b = _. _-:__)

I

13



has constant shear, with x = 0 being in the center of the the box. The bounded box avoids

complications of handling the shift in the direction in/_ at the ends of the box (x = +L_./2).

The radial boundary conditions were chosen to simplify the code comparison, but not on

physical grounds. The system is large enough, however, making the transport time scale

long enough to allow for a reasonable quasi-steady state.

The local physical parameters are shown in Table 1 and were taken from a TFTR L-

mode shot (termed the the "NTP test case parameters"). 35 The ky = 0, kz = 0 modes

were suppressed for this comparison. The gyrokinetic results shown used a system size of

Lx = 51.2pi, Ly = 51.2pi, Lz = 25.6Ln, a 128 × 128 × 64 grid, and 8 particles per grid

cell. Modes up to kxp_ = 1.5, kypi = 2, kzL,_ = 2 were well resolved, and the timestep

was Atvti/Ln = 0.125. These runs are extremely well resolved with similar results being

obtained using 4 particles per grid cell on a 128 x 64 × 64 grid resolving up to k_pl = 1.5,

kypi = 1, and kzLn = 2. The gyrofluid simulation used the same box size (so spacing

between rational surfaces was the same in both simulations) with a 128 × 32 × 32 grid

resolving up to kzpi = 1.5, kypi = 1, and kzLr, = 2, and an average timestep of 0.04.

Figure 4 shows the ky wavelength spectrum from the two simulations. The ky spectrum

is summed over all kx and kz and time averaged. They both peak in the same range

kypi = 0.2 and show tittle activity for kypi _ 0.8. However, there is a 30-40% difference

in the overall saturation level of ¢. Figure 5 shows the ion heat diffusivity as a function

of magnetic shear. The ion diffusivity is time averaged and measured after a quasi-steady

state is reached. Details of the time histories can be found in Ref. 20. The overall level,

as well as the scaling with magnetic shear, seem quite good. The results shown in Fig. 5

14



do not include self-generated shear flow which is an important effect for weaker magnetic

shear cases when using a simple adiabatic electron model.. 2°

A. Field Line Following Simulations in the Slab Limit

Next, we compare the field line following coordinate simulations in the slab limit. The

coordinate system used is given in Ref. 24 (z t = x, y_ = y - xz/Ls, z' = z). The system is

taken to be periodic in the primed coordinates. The results are tabulated using the NTP

test-case parameters in Table 2, where the rms ¢ is defined by (rms ¢)2 = (¢2) = _ i¢kl2.
k

The linear agreement is very good between all the codes with the peak growth rate found

at kypi = 0.49. The field-line-following coordinate codes are designated by "FLF." The

gyrokinetic code used a box size in primed coordinates of L_ = 51.2pi, L_ = 51.2pi, and

L_z= 160L,_, with a 64x32x64 grid, 4 particles per grid cell, Atvti/Ln = 0.025, and a Fourier

filter of exp( _4 ^4 t4 _4_-k_ t'i - ky t'i J. When only kll = 0, ky = 0 modes are set to zero, the particle

code did not achieve a saturated steady state. This is noted in the Table 2 as "n.s." for no

saturation. The code reaches a steady-state in a similar fashion as the gyrokinetic slab code

when all the zero Fourier modes (for any k_, k_, k_z) are set to zero and this result is shown

in the parenthesis. The reason for the lack of a steady-state when these other zero modes

are kept needs to be investigated further. The gyrofluid code also used a 64x32x64 grid,

accurately resolving all modes up to _kxpi = kypi = 1, and a timestep of Atvti/L,_ = 0.05.

When run in the slab limit, the toroidal gyrofluid code is in reasonable agreement with the

slab gyrokinetic and gyrofluid codes (see Table 2). For this case, the klf = 0, ky = 0 modes

were set to zero to compare with the slab code results, although radial periodic boundary

15



conditions were used. This code was also run with all the zero Fourier modes set to zero

to compare to the toroidal gyrokinetic code in the slab limit with these results shown in

parentheses. We caution the reader that differences between the field-line-following and slab

codes should be expected due to the difference in the radial boundary conditions (periodic

vs. bounded with the profile flattening).

IV. 3D Toroidal Comparisons

Finally we make linear and nonlinear comparisons including the toroidal drifts and

magnetic mirroring. The gyrofluid, gyrokinetic _ff particle and gyrokinetic Vlasov codes

simulate a small fraction of the tokamak plasma volume with the simulation domain being

a flux tube. The field line following coordinates used in these simulations are 24'1s

x'= r- r0, y'= r°(q(r)O-¢), z'= nq(r)8 (17)
q0

where r is the minor radius, _ is the poloidal angle, ¢ is the toroidal ailgle, q is the safety

factor, q0 = q(r0), and R is the major radius. The width of the box in the radial direc-

tion is assumed small compared to r0, dq/dr is assumed constant, and a zero _ unshifted

circular magnetic equilibrium and small ro/R are also assumed. The domain is rectilinear

in the field-line-following coordinates. Figure 6 shows a linear comparison of the toroidal

simulations, using the NTP parameters shown in Table 1. There is reasonable agreement

between the three different calculations. Possible improvements in the agreement between

the Vlasov and particle _f codes may be found by increased resolution in z_ and/or imple-

mentation of proper toroidal periodicity in the particle code. These discrepancies will be

16



investigated in the future. Dropping the #VB mirror force in the calculation changes these

linear results very little (less than 10%) for these L-mode type parameters.

For the nonlinear toroidal comparisons, the m = 0, n = 0 mode was kept using

_n_(m = 0, n = 0) = 0, i.e. using the electron response n_ = ¢ - (¢/. 5'9'13'18 FLIt ef-

fects in the Poisson Eq., particularly the ion polarization density, 2 are very important for

determining this component of _. Including this mode and the associated poloidal shear

flows is important for achieving a saturated steady-state in the toroidal gyrofluid is and

gyrokinetic field-line-following codes with adiabatic electrons. The parameters are the same

as in the slab comparison (Sec. III.A) except now with L_z = 2rR. The gyrokinetic code

uses a timestep of Atvt_/Ln = 0.025 and sets the the m = 0, n _ 0 modes to zero. The

gyrofluid code also uses a timestep of Atvt_/L,_ = 0.01. The rms _ and ion diffusivity are

shown in Table 3. Similar results (within a factor of two) have been reported by Waltz

using a simpler gyrofluid model. 36

Both simulations exhibit a dominant m = 0, n = 0 mode. However, this mode is

more pronounced in the gyrokinetic simulation, which is, in part, responsible for the higher

gyrokinetic saturation level. In the future, the mechanisms for reducing the m = 0, n = 0

J mode, i.e. drift-orbit averaging, will be compared between the two models. Also, the effects

of improved resolution, proper toroidal periodicity, and including the m = 0, n _ 0 modes

in the gyrokinetic simulation need to be explored further. This preliminary comparison

shows agreement within a factor of two between the gyrofluid and gyrokinetic toroidal

results, which is encouraging. However, we caution that this is only one test case (one set

of physical parameters) and is not yet conclusive.

17



V. Summary

A lot of attention to the details is necessary to get the agreement between gyrofluid

and gyrokinetic simulations that was reported here. One must be careful to use the same

boundary conditions (which affect whether the turbulence is maintained or eventually de-

cays due to flattening of background gradients), similar resolution, rational surface spacing

(which can affect local flattening around particular rational surfaces if they are too widely

spaced), and the same treatment of the ko = kll - 0 component of q, which corresponds

to turbulence-generated sheared flows. One must also make sure that the two codes are

consistent with each other, e.g. are using the same factors of 2, 7r,etc. in all definitions.

The results reported here (with the slab results explained in more detail in Ref. 20),

provide the first nonlinear tests of the gyrofluid models in fully turbulent 3-D systems.

The results are generally encouraging, and indicate that models of phase-mixing, Landau-

damping, and FLR effects in the gyrofluid equations 5 may continue to work fairly well even

in nonlinear turbulent systems. The slab codes have found excellent numerical agreement in

the scaling of the turbulent heat diffusivity Xi with magnetic shear (Fig. 5). However, there

are some puzzling areas where more work can still be done. There are ~ 40% differences in

the rms. _ between the gyrofluid and gyrokinetic simulations, though similar qualitative

scalings have been demonstrated. The gyrofluid saturation level was found to be higher

than the gyrokinetic result in the coherent 2D slab test problem, where as, it was lower

in the turbulent 3D slab case. In toroidal geometry, the field-line-following gyrofluid and

gyrokinetic codes are within _ 50% of each other in the turbulent Xi and rms _, though

there is more work which can be done to investigate sensitivity to small differences in

18



filtering and boundary conditions.

Perhaps most importantly, both approaches confirm important physics results: 1) the

observation s-l° that the turbulent spectrum peaks at significantly longer wavelengths than

the linearly most-unstable modes, along with producing spectra with a shape similar to

TFTR measurementsS'11'12; and 2) the importance of turbulent-generated sheared flows

even in core ITG simulations. 9'1°,13,14 This is similar to earlier work that recognized the

importance of self-generated sheared flows in edge turbulence. 15-17 More work needs to

done on the effects of these flows, in particular to insure that all of the important damping

and driving mechanisms for the flows are being properly modeled. Future work with larger

simulation volumes needs to be done to find what controls the scaling of the long-wavelength

features in the spectra, to explore puzzling experimental results such as Bohm-like scaling 37

and the minor radius dependence of Xi, 3s and to extend the codes to include trapped-

electrons, electromagnetic perturbations, and other mechanisms needed for a realistic model

of tokamak turbulence.
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Figures

Figure 1: Linear growth rate and real frequency vs. OLn/pi - kllLn/(k_pi) for the

2D shearless slab comparison. Results from the gyrofluid simulation, gyrokinetic

simulation and the kinetic and conventional fluid linear dispersion relations.

Figure 2: Saturation level of the electrostatic potential vs. OLn/pi = kllLn/(kypi)

for 2D shearless slab comparison. Gyrofluid and gyrokinetic simulation results and

theoretical predictions.

Figure 3: Ion thermal diffusivity measured at the peak level for 2D shearless slab

comparison.

Figure 4: Comparison of ky wavelength spectrum for the turbulent 3D sheared test

case.

Figure 5: Comparison of ion thermal diffusivity for the turbulent 3D sheared slab test

case.

Figure 6: Comparison of toroidal linear growth rate and real frequency vs. kopi.

Results from gyrofluid, Vlasov and _f particle codes.
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Slab Parameters: r/i = LT/Ln = 4 Ls/L,_ = 4 T,/Ti = 1
.........

Toroidal Parameters: r/R = 0.205 Ln/R = 0.4 q = 2.4 ,i = rqS/q = 1.5

Table 1: Local physical NTP test case parameters.

_ Codes Linear w rms eO/T(L,,/pi) xiL,_/(p2vti)

GK Slab -0.20 + 0.060i 1.2 0.12
..... ,,,

GF Slab -0.20 + 0.054i 0.83 0.13
....

GK FLF -0.20 + 0.060i n.s. (1.0) n.s. (0.13)
..........

GF FLF -0.20 + 0.054i 1.3 (0.55) 0.13 (0.063)
_

....

"Vlasov" FLF -0.19 + 0.070i - -

Table 2: Comparison of the codes in the 3D sheared slab limit using the NTP parameters.

The linear w was taken at the most unstable mode which was kopi = 0.49 for all the codes.

More details are given in the text.

#
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Codes Linear w rms e_/T(Ln/Pi) xiLn 2/(PiVvti)
,,,

GK FLF -0.75 + 0.19i 16. 2.9

GF FLF -13.67 + 0.18i 10. 4.0

"Vlasov" FLF -0.61 + 0.18i - -
,,,

Table 3: Toroidal code comparison using the NTP parameters. Linear w measured at

kepi = 0.49.

I
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