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COMPARISONS OF STOP RULE AND SUPREMUM EXPECTATIONS

OF U.D. RANDOM VARIABLES

By T. P, HILL
I

AND ROBERT P. KERTZ

Georgia Institute of Technology

Implicitly defined (and easily approximated) universal constants 1.1 < an

< 1.6, n = 2, 3, ... , are found so that if XI, X 2 , ••• are i.i.d. non-negative

random variables and if Tn is the set of stop rules for Xl, "', Xn, then

E(max{Xl , ••• ,Xn}) ~ an sup {EX, : tE Tn}, and the bound an is best possible.

Similar universal constants 0 < bn < Y. are found so that if the {Xi} are i.i.d.

random variables taking values only in [a, b), then E (max {XI , .. , , Xn }) ~

sup {EXt: t E Tn} + bn(b - a), where again the bound bn is best possible. In

both situations, extremal distributions for which equality is attained (or nearly

attained) are given in implicit form.

1. Introduction. Let Tn denote the set of stop rules for random variables Xl,
X n • If the {X;} are independent and non-negative, then it has been shown [4] that

(1) E(max{X., ... ,Xn}) S 2 sup {EX, : t E Tn}

and that 2 is the best possible bound, and [2] that in fact strict inequality holds in all but

trivial cases. If the {X;} are independent and take values only in [a, b], then

(2) E(max{X., ... ,Xn}) S sup {EXt : t E Tn} + ('!4)(b - a),

and 1/4 is the best possible bound [3]. Probabilistic interpretations have been given for

these results: (1) says that the optimal return of a gambler (player using non-anticipating

stop rules) is at least half that of the expected return of a prophet (player with complete

foresight) playing the same game; and (2) says that a side payment of 'h the game limits,

paid by the prophet to the gambler, makes the game at least favorable for the gambler.

If the random variables in question are not only independent, but also identically

distributed, then it turns out that the gambler's situation improves, and the constants "2"

and "'14" in (1) and (2) respectively can be improved (lowered). The purpose of this paper

is to determine these improvements. Probabilistically, the main results give the minimal

odds and side payments, respectively, needed to achieve fairness for a gambler matched

against a prophet playing the same game (in which the random variables are independent

and identically distributed (i.i.d.».

Implicitly defined (and easily approximated) universal constants 1.1 < an < 1.6, n = 2,

3, "', are found (e.g., a2 :;;; 1.171, alOO :;;; 1.337, alO,OOO :;;; 1.341) satisfying the first main

result, Theorem A.

THEOREM A. If n > 1 and XI, X 2 , ";, X n are Li.d. non-negative random variables,

then E (max{XI , "', Xn}) san sup{EXt : t E Tn}. Moreover, an is the best possible bound

and is not attained except in the trivial cases where XI is almost surely 0 or has infinite

expectation.

Similar universal constants 0 < bn < '!4 are found (e.g., b~ = .0625, blOo :;;; .110, blO,ooo :;;;

.111) satisfying the second main result, Theorem B.

THEOREM B. If XI, "', Xn are.i.i.d. random variables taking values only in [a, b],

thim E(max{X., "', Xn}) s sup{EXt:t E Tn} + bn(b - a), (equivalently, E(min{X.,
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... , X n}) ~  inf{EXt:t E Tn} - bn(b - a» and bn is the best possible bound and is 

attained. 

In Proposition 4.4 actual distributions are given implicitly (but again, in easily approx­

imated form) for which equality in Theorem A nearly holds; Proposition 5.3 likewise gives 

extremal distributions for which equality in Theorem B holds. 

2. Preliminaries. For random variables X and Y, X V Y denotes the maximum of 

X and Y, X+ = X V 0, and EX denotes the expectation of X. For n = 1, 2, ... , En (X) = 
E(XI V··· V X n), and Vn(X) = sup{EXt:t E Tn}, where XI, ... , X n are i.i.d. random 

variables each with distribution that of X. Throughout the remainder of this paper, all 

random variables will be assumed to have finite expectation. 

The fIrst lemma, a special case of [1, page 50], is included for ease of reference. 

LEMMA 2.1. (i) Vn(X) = E(X V Vn-I(X» for all n > 1; and (ii) ift* E Tn is the stop 

rule defined for} = 0, ... , n - 1 by t* =} ~  {t* >} - 1 and X j ~  Vn-j(X)}, then EXt * 

= Vn(X). 

Lemmas 2.4 and 2.5 are probabilistic results which will be used in the proofs of 

Theorems A and B to restrict attention to simple random variables of special form. In 

setting up this reduction, a definition and a special case of a result (Lemma 2.2) from [3] 

are useful. 

DEFINITION 2.2. For random variable Y and constants °:::; a < b < 00, let y ~  denote 

a random variable with y ~  = Y if Ye [a, b], = a with probability (b - a)-I f YE[a,b] (b ­

Y), and = b otherwise. 

LEMMA 2.3. Let Y be any random variable and °:::; a < b < 00. Then EY = EY~,  and 

ifX is any random variable independent of both Y and y ~ ,  then E (X V Y) :::; E (X V y~).  

It may be seen that Y ~  is the distribution with maximum variance which both coincides 

with Y off [a, b] and has expectation EY. 

LEMMA 2.4. Let n > 1 and X be any random variable taking values in [0, 1]. Then 

there exists a simple random variable Y, taking on only the values 0, VI(X), V2(X), ... , 

Vn-I(X), and 1, and satisfying both Vj(Y) = Vj(X) for} = 1,2, ... , n, and En(Y) ~  

En (X). 

PROOF. If X is constant, the conclusion is trivial with Y = X. Otherwise, P (X < VI (X» 

> 0, P(X > Vn-I(X» > 0, and °< VI(X) < · · · < Vn-I(X) < 1. 
Let XI = xril(X) be as in Definition 2 . 2 ~  and independent of X. By Lemma 2.3, VI(XI) = 

EXI = EX = V(X), and thus by Lemma 2.1 and induction, Vj(XI) = E(XI V Vj-I(XI» = 
E(XV Vj-I(X» = Vj(X) for} = 1, ... , n. By Lemma 2.3, E 2(X):::; E(XV XI):::; E 2(XI), and 

similarly En (X) :::; En (XI). 

Next define X 2, ... , X n- I inductively by X k = (Xk-d ~ : ~ ~ ~ )  and X n by X n = 
(Xn-I)\;n_l(X), and conclude as for XI that V,(Xk) = Vj(Xk- l ) = ... = Vj(XI) = Vj(X) for 1 

:::;}, k :::; n, and that En (X) :::; En (XI) :::; · · · :::; En (Xn). Letting Y = X n completes the proof. 

D 

LEMMA 2.5. For n > 1, let X be a simple random variable taking values °< VI (X) 

< ... < Vn-I (X) < 1 with probabilities Po, PI, ... , Pn respectively, and let SJ = po + . 
+ pj and S-I = 1. Then: (i) Vj (X) = VI (X) [1 + So + SOSI + ... + SOSI ••• Sj-2],} = 2, , 

n; (ii) VI(X) = (1 - sn-I)/[(1 - sn-I)(1 + So + SOSI + ... + SOSI ••• Sn-3) + SOSI ••• Sn-2]; 

and (iii) En (X) = VI (X)[(1 + So + SOSI + ... + SOSI ••• Sn-3) + SOSI ••• sn-2(1 + Sn-I + · 
.. + s~=D  - (so + SOS1 + ... + So • • • Sn-3S~-2)].  
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PROOF. For (i), observe that by Lemma 2.1, V}(X) = V}(X)pj + V}+I(X)Pj+I + ... + 
Vn-I(X)Pn-I + I·Pn + Sj-I V}-I(X). Since V}(X)pj + ... + Vn-1(X)Pn-l + I·Pn = V1(X) ­

[VI(X)PI + ... + V}-I(X)Pj-I], the desired conclusion follows easily by induction on}. 

Conclusion (ii) follows since VI(X) = VI(X)(SI - so) + ... + Vn-I(X)(Sn-I - Sn-2) + 
(1 - Sn-I) by solving the equations in (i) for VI in terms of so, SI, ... , Sn-I. 

For (iii), note that En (X) = Lj~l  V}(X)(s] - S}-I) + (s~  - S~-l),  and apply (i) and (ii). 

D 

For the proof of Theorem A the following complements to Definition 2.2. and Lemmas 

2.3 and 2.4 are given. 

DEFINITION 2.6. For random variable Yand constants a > a ~  °satisfying a·P(Y ~  

a) ~  f Y2:a Y, let Ya,a denote a random variable with Ya,a = Y if Y e [a, 00], = a with 

probability (a - a)-I fY2:a(a - Y), and =a otherwise. 

LEMMA 2.7 Let Y be any integrable random variable and °:::: a < 00. Then EY = 

EYa,a, and for all a sufficiently large, if X is any random variable independent of both 

Yand Ya,a, then E(X V Y) :s E(X V Ya,a). This last inequality is strict if and only if 

P(X> a).P(Y> a) > 0. 

PROOF. That EY = EYa,a is immediate. For the remainder assume P ( Y ~  a) > °and 

fIX any X independent of both Yand {Ya,a}. From the defmition of Ya,a, the convexity of 

the function \fJ (y) = E (X rV y), and the independence of X and Y, it follows that E (X V 

Ya,a) is a non-decreasing function of a and lima_ooE(X V Ya,a) = f Y<a X V Y + E(X V 

a)P(Y ~  a) + E(Y - a)+, with the limit being attained if P(X > a) ·P(Y > a) = 0. The 

conclusion follows from these results and the dichotomy that f Y<a X V Y + E (X V a)P(Y 

~  a) + E(Y - a)+ > E(XV Y) ifP(X> a).P(Y> a) > 0, and =E(XV Y) if P(X> a). 

P (Y > a) = 0. The strict inequality in this dichotomy follows since for P (X > a) ·P (Y > 
a) > 0, 

J J(X - a + Y - a) - [(X - a) V (Y - a)] 

X",a,Y",a X"'a,Y"'a = [(X - a) /\ (Y - a)] > O. DJ 
X2:a,Y,=:a 

If P(Y > a) > 0, then {Ya,a} are random variables which coincide with Y off [a, (0), 

have expectation EY, and have variances which increase to infinity. 

LEMMA 2.8. Let n > 1 and X be any non-negative unbounded (ess sup X = +(0) 

random variable. Then there exists a non-negative bounded random variable Y satisfying 

both V}(Y) = V}(X) for} = 1,2, ... , n, and En(Y) > En (X). 

PROOF. Define Y through Definition 2.6 by Y =XV,,-I(X),a. Then the conclusion follows 

from Lemmas 2.1 and 2.7 for a sufficiently large. D 

3. Definition of the constants {an} and {bn }. The purpose of this section, which 

is purely analytical (non-probabilistic) in nature, is to define. the constants {an} and {bn} 

appearing in Theorems A and B, respectively, and to concurrently develop results useful 

in the proofs of these theorems. 

DEFINITION 3.1. For n > 1 and w, x E [0, (0), let epn(W, x) = (n/(n - 1»w(n-I)/n + 
x/(n - 1). For a E [0, (0), define inductively the functions T/j,n,} = 0,1, ... , n, by T/o,n(a) 

= <Pn (0, a), and T/j,n (a) = <Pn (T/j-I,n (a), a). 

LEMMA 3.2. T/j,n is continuous, non-negative, strictly increasing and concave for all 

n > 1, and all} = 0,1, ... , n. 
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PROOF. Fix n > 1; proof will be by induction on}. First observe that T/o,n is continuous, 

and for a > 0, T/o,n (a) > 0, T/o,n (a) > 0, and T / ~ n  (a) = °(where ( )' denotes differentiation 

with respect to a). Assume T/j-I,n is continuous and, for a > 0, that T/j-I,n (a) > 0, T/J-I,n(a) 

> 0, and T/i'-I,n (a) =s 0. Then it is clear that T/j,n is continuous, and for a > 0, 

T/j,n (a) > 0, and 

DEFINITION 3.3. Let Gn : [0, (0) ~  !R be the function Gn(a) = T/n-I,n (a). 

PROPOSITION 3.4. (a) For all a E [0,1], Gn(a) =s a[(n/(n - 1»n - 1] + [1 - «n - 1)/ 

n)n-I]; and (b) there is a unique number an > °for which Gn(an) = 1. Moreover, an < 1, 

and for a E [0, an], a[(n/(n - 1»n - 1] S Gn(a). 

PROOF. Let \[In(W, x) = (n/(n - 1»w + x/(n - 1) for w, x E [0, (0). For (a), define 

inductively the functions (Jj,n (a), °s) S n - 1, a E [0, 1], by (JO,n(a) = \[In (0, a) and (Jj,n (a) 

= \[In((Jj-I,n(a) + Cn, a), where Cn = n-I«n - 1)/n)n-I. It will be shown that T/j,n(a) S 

(Jj,n (a) for all a E [0, 1]. First observe that T/o,n (a) = a/(n - 1), and assume T/j-I,n (a) S 

(Jj-I,n (a). Since x(n-l)/n =s x + Cn, it follows that 

1li,n(a) = (n/(n - 1» (1li-I,n (a»(n-I)/n + a/(n - 1) 

S (n/(n - 1» «(Jj_I,n(a»(n-I)/n + a/(n - 1) 

S (n/(n - 1»«(Jj-I,n(a) + Cn) + a/(n - 1) = (Jj,n(a). 

For j = n - 1, this yields 

T/n-I,n(a) = Gn (a) S (In-I,n(a) = a[(n/(n - 1»n - 1] + [1 - «n - 1)/n)n-I], 

completing the proof of (a). 

For (b), define inductively the functions Ilj,n(a), °sj S n - 1, a E [0,1], by JLo,n(a) = 
l/Jn(O, a) and Ilj,n(a) = l/J(llj-I,n(a), a). It shall fIrst be shown that 

(3) Ill,n(a)ST/j,n(a), for Os}sn-l andall aE[O,I] with Gn(a)=S1. 

Given a E [0,1] with Gn(a) S 1, observe thatllo,n(a) = T/o,n(a) = a/(n - 1), and assume 

that Ill-I,n (a). S T/j-I,n (a). Since °S T/o,n (a) S T/I,n (a) S ... S T/n-I,n (a) = Gn (a) S 1 and 
x S x(n-I)/n for x E [0, 1], it follows that 

Ilj,n(a) = (n/(n - 1»llj-I,n(a) + a/(n - 1) =s (n/(n - 1»T/j-I,n(a) + a/(n - 1) 

S (n/(n - 1» (T/j-I,n (a»(n-I)/n + a/(n - 1) = T/j,n(a), 

completing the proof of (3). 

If Gn(a) =s 1 for all a E [0, 1], then it would follow from (3) that Gn(1) = T/n-I,n (1) ~  

Iln-I,n (1) = (n/ (n - 1» n - 1 > e - 1 > 1, a contradiction. Thus there exists an E (0, 1) with 

Gn(an) = 1; the uniqueness of an follows from the strict monotonicity of T/n-I,n proved in 

Lemma 3.2. D 

EXAMPLE 3.5. (a) For n = 2, ep2(W, x) = 2 J;; + x, G2 (d) = 2 J":x + a, and a2 = 3 ­

2 J2 ~  .171. 

(b) a3 ~  0.221, a4 ~  0.248, as =:; 0.264~  alO =:; 0.301, alOO =:; 0.337, and alO,OOO =:; 0.341. 

Although the authors believe that the an's are strictly monotone increasing with limit 
Ie- , they have established only the general quantitative information about them given in 

the following proposition. 

PROPOSITION 3.6. For all n > 1, (a) «n - 1)/n)n-I[(n/(n - 1»n - 1]-1 S an S 

[(n/(n - l»n - 1]-1; and (b) (3e)-1 S an S (e - I)-I. 
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PROOF. Part (a) follows from Proposition 3.4 with a = an. Part (b) follows from (a) 

since (n/(n - 1»n ~  e, and (n/(n - 1»n-1 "If e imply that ((n - 1)/n)n-I[(n/(n - 1»n ­

1]-1 ~  e-I (22 
- 1)-1 = (3e)-1 and that [(n/(n - 1»n - 1]-1 "If (e - I)-I. D 

DEFINITION 3.7. Let Hn : [0, 1] ~  !R be the function Hn(f3) = (n - 1). [l1n,n (f3) ­

lln-I,n (f3)]. 

PROPOSITION 3.8. For each n > 1 there is a unique number f3n E [0, 1] such that 

Hn(f3n) = 1. Moreover, °< f3n < 1. 

PROOF. Let {(x) = (n/(n - 1»x(n-l)/n - x, let g(f3) = {(l1n-I,n(f3», and let u be the 

linear function u (f3) = (1 - f3)/(n - 1). Then Hn(f3) = 1 if and only if 

(4)  g(f3) = u (f3). 

Let an be as in Proposition 3.4(b). By Lemma 3.2, lln-I,n is strictly increasing from °to 

1 on [0, an]. Since {is strictly increasing on [0, 1], it follows that g is strictly increasing on 

[0, an], and since g(O) = °and g(an) = 1/(n - 1), it follows that (4) has a unique solution 

in [0, an]. It remains only to show that (4) has no solution on [an, 1]. This will be 

accomplished by exhibiting a function t which lies between g and u on [an, 1], and which 

has no points in common with u. 
Let kn = (n/(n - 1»n - 1, let dn = 1 - ((n - 1)/n)n-l, and let t(f3) = {(knf3 + dn) for 

f3 E [0, 1]. Since {is decreasing on [1, 00], in order to show that g (fJ) = {(lln -I,n(f3» ~  {(knf3 

+ dn) = t (f3) on [an, 1], it suffices to show that 

(5)  1 :::; lln-I,n (f3) :::; f3kn + dn for f3 E [an, 1]. 

The fIrst inequality in (5) follows since lln-I,n is strictly increasing (Lemma 3.2) and 

since lln-I,n (an) = 1; and the second by Proposition 3.4(a). 

In order to show that t > u on (an, 1], it is enough to show that t > u on [bn, 1], where 

bn = k;;I(1 - dn), since bn :::; an by Proposition 3.6(a). Since 1 < e - e- I n/(n - 1) < 
k n + dn < (n/(n - l»n and {is decreasing on [1, (0), it follows that t(l) = {(kn + dn) > 
{((n/(n - 1»n) = °= u(I). But since u(bn) < (n - 1)-1 = t(bn), and t is concave, it then 

follows that t > u on [bn , 1], completing the proof. D 

EXAMPLE 3.9. (a) For n = 2, H2(f3) = 2(2 Jfi + f3)1/2 - 2f31/2, and f32 =}J'i6. 

(b) f33 ~  .077, f34 ~  .085, f35 ~  .090, f310 ~  .100, f3loo ~  .110, f3lO,OOO ~  .111. 

DEFINITION 3.10. For n > 1, let an = 1 + an, and bn = f3n. 

4. Proof of Theorem A and its extremal distributions. 

DEFINITION 4.1. For a random variable X with Vn(X) > 0, let R n(X) = En (X) / Vn(X), 

n = 1,2, .... 

Probabilistically, R n (X) is the odds which must be given a gambler playing against a 

prophet (faced with the same n i.i.d. random variables each with distribution that of X) in 

order to make the game fair for the gambler. (In terms ~ f  R n , Theorem A simply states 

that Rn(X) < an for all distributions X, and that the bound an is the best possible.) 

PROOF OF THEOREM A. Fix n > 1. The case where X has infinite expectation is trivial, 

so assume EX < 00. First, it shall be shown that it suffices to consider random variables 

taking values in [0, 1] by proving that 

(6)  for any random variable X, there exists a random variable Y taking values in [0, 1] 

for which R n (X) :::; R n (Y). 
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For random variable X, from Lemma 2.8 there exists a bounded random variable Z such 

that R n (X) :::; R n (Z). Define Y = Z/(supremum of Z); then Y is a random variable taking 

its values in [0, 1] and R n(X) :::; R n (Z) = R n(Y). This establishes (6). 

By Lemma 2.4, attention may be further restricted to simple random variables X taking 

on the values 0, V 1(X), ... , Vn- 1(X), and 1 (with probabilitiespo,pr, .. ·,Pn respectively). 

Let Sj = po + ... + pj for} = 0, ... , n - 1 and let S-1 = 1. Now, if Sn-1 = 0 or 1, then X is 

constant and Rn(X) = 1; if 0 < Sn-1 < 1, then 0 < V1(X) < ... < Vn- 1(X) < 1 and from 

Lemma 2.5 Rn(X) = Rn(so, ••• , Sn-1) where Rn(so, ••• , Sn-1) is the function defined for Sj 

~  O,} = 0, ... , n - 1, by 

(7)  Rn(so, SI, ••• , Sn-1) = 1 . 
CLj~1  Sh-1)SOSI ••• Sn-2 - So - sos1 - ••• - So .. · Sn-3S~-2  

+ .
1 + So + SOSI + ... + SOSI ••• Sn-2 

The conclusion of Theorem A follows once it is shown that 

(8)  there exists a unique point (so, , Sn-1) with 0 < So < < Sn-2 < Sn-1 = 1 for 

which R n (so, ... , Sn-1) < R n (so, , Sn-1) = an for all (so, , Sn-1) with 0 :::; So :::; 

• •• :::; Sn-2 :::; Sn-1 < 1, 

where an was given in Definition 3.10. 

For each (so, ... , Sn-1) with 0 = sJ:::; •• • :::; Sn-1 < 1, R n (so, ... , Sn-1) = 1, and for each 

(so, ... , Sn-1) with 0 < So :::; SI :::; ... :::; Sn-1 < 1, R n(so, , Sn-1) < R n (so, ... , Sn-2, 1). If 

the function rn(so, ... , Sn-2) is defined for Sj ~  O,} = 0, , n - 2, by rn(so, ... , Sn-2) = 
R n (so, ... , Sn-2, 1), then the proof of (8) follows from showing that 

(9)  there is a unique point (so, ... , Sn-2) with 0 < So < < Sn-2 < 1 for which 

max{rn(so, ... , Sn-2); 0 :::; So:::; · .. :::; Sn-2 < I} = rn (so, , Sn-2) = an. 

First, verify that the following four statements are equivalent for (so, ... , Sn-2) with Sj 

> 0 for} = 0, ... , n - 2: 

n
(lOa) :r (so, ... , Sn-2) = 0 for } = 0, .. .-, n - 2;

uSj 

(lOb)  nSj+1 ••• Sn-2 - nsJ-1 + [(1 - SJ+1) + sj+1(1 - SJ+2) + · ~  ..+ Sj+1 ••• sn-3(1 ­

S~-2)]  - rn(so, ••• , sn-2)(1 + Sj+1 + Sj+1Sj+2 + + Sj+1 ••• Sn-2) = 0 for 0:::; 

}:::; n - 4, nSn-2 - ns~=~+  (1 - S~-2)  - rn (so, , Sn-2)· (1 + Sn-2) = 0, and 

n - ns~=~  - rn(so, · · ., Sn-2) = 0; 

(10c)  (n - l)sJ+1 = nsJ-1 + (n - l)s8 for O:::;}:::; n - 3, and n - 1 = ns~=~  

+ (n - l)s8, and at (so,···, Sn-2) satisfying these n - 2 equations, rn (so, ... , 

Sn-2) = 1 + (n - l)s8; and 

(10d)  letting a = (n - l)s8, T/j,n (a) = sJ for O:::;}:::; n - 2, 1 = T/n-1,n (a) = 
Gn (a), and at (so,···, Sn-2) satisfying these equations, rn(so, ••• , Sn-2) = 1 + 
(n - l)so = 1 + a. 

Let B C /Rn-1 be the region B = {(so, · · ., Sn-2); Sj ~  0 for} = 0, · · ., n - 2}. By (lOa-d) 

and Proposition 3.4 there is a unique point ( . ~ o ,  · · ., Sn-2) in the interior of B at which arn/ 

aSj = 0 for} = 0, · · ., n - 2, and at this point rn (so, · · ., Sn-2) ~  1 + (n - l)s8 > 1. Thus the 

maxima and minima for rn in B, if they exist, occur at (so, · · ., Sn-2) or on the boundary of 

B. Jfowever, if Sj = 0 for some} = 0, -. · ., n - 2, or if Sj ~  00 for some or all} = 0, · · ., n ­

2, then rn(so, ... , Sn-2) :::; 1. Thus the maximum for rn in B is at (so, ... , Sn-2). Since 0 < 
So < · · · < Sn-2 < 1 from (10d), Definition 3.1, and Lemma 3.2, and since {(so, · · ., Sn-2); 0 

:::; So:::; · · · :::; Sn-2 < I} C B, it follows that (10d), Proposition 3.4, and Definition 3.10 imply 

that (9) holds. 

That the bound an is sharp is clear from the above reasoning (see also Proposition 4.4.). 

D 
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EXAMPLE 4.2. Let Xl, X 2 , ••• be non-negative i.i.d. random variables (with positive 

finite expectations). Calculations of {an} indicate that E(XI V X?) < 1.172 sup{EXt:t E 

T2}; E(XI V··· V X lOo) < 1.338 sup{EXt : t E T lOO}; and E(XI V··· V XlO,ooo) < 1.342 

sup{EXt : t E TlO,ooo}. 

COROLLARY 4.3. Let XI, X 2, be i.i.d. non-negative random variables and let T 

denote the stop rules for XI, X 2, Then E(sup Xi) :::; (1 +(e - 1)-1) sup{EXt : t E T}. 

PROOF. Apply Proposition 3.6(b) to Theorem A. D 

It is perhaps of some interest to identify distributions for which equality in Theorem A 

is nearly attained. For this purpose the following parameters are collected here. Fix n > 1. 

Let an E (0, 1) be the unique solution of Gn(an) = 1 from Proposition 3.4. For j = 0, ... , 

n - 2, Si is given by Si = (T/i,n(an))1/n and Pi by po = So,Pi = Si - Si-I for j = 1, · .. , n - 2, and 

Pn-I = 1 - Sn-2. 

PROPOSITION 4.4. For each n > 1 and e > 0 there exists a simple random variable X 

= X(n, e) with P(X = 0) = po, P(X = Vj(X)) = Pi for j = 0, ... , n - 2, P(X = Vn-I(X)) 

E (Pn-I - e, Pn-I) and P(X = 1) < e satisfying Rn(X) > an - e and hence Rn(X) > Rn(X) 

- e for every non-negative random variable X. 

PROOF. For e > 0 sufficiently small consider the random variables X = X(n, e) taking 

values 0 < VI(X) < ... < Vn-I(X) < 1 with probabilities po, ... , Pn-2, Pn-I - e, e 

respectively; the values Vj(X),j = 0, ... , n - 1, can be computed from Lemma 2.5 (i, ii). 

From the proof of Theorem A it is clear that Rn(X(n, e)) ~  an as e ~  O. D 

EXAMPLE 4.5. (a) For n = 2, (Po, PI) ~  (0.414, 0.586). Calculations indicate that the 

random variable X taking values 0,2.41421 X 10-5
, and 1 with probabilities 0.41421,0.58578, 

and 10-5 respectively satisfies R 2(X) > R 2(X) - 10-4 for every non-negative random 

variable X. (b) For n = 10, (Po, ... ,pg) ~  (0.711925,0.070190,0.047863,0.037426,0.030936, 

0.026304, 0.022730, 0.019837, 0.017423, 0.015367). For e > 0 small consider the random 

variables X = X(n, e) taking values 0, e· VI, · · · , e· Vg, and 1 with probabilities po, · · · ,PS,Pg 

- e, and e respectively, where (VI, ... , Vg) ~  (3.32872, 5.69852, 7.55198, 9.09031, 10.4247, 

11.6234, 12.7317, 13.7818, 14.7974). For e > 0 sufficiently small RlO(X) > RlO(X) - 10-3 for 

every random variable X. 

The assumption of non-negativity in Theorem A is essential, as the following example 

shows. 

EXAMPLE 4.6. Let X be uniformly distributed on [0, 1] (so En(X) > Vn(X) for all n > 
1). For e > 0, let Y e = X - Vn(X) + e. Then En( Y e ) = En(X) - Vn(X) + e, and Vn( Y e ) = 
e, so 1 + (En(X) - Vn(X))/e = Rn( Y e )? 00 as e ~  o. 

5. Proof of Theorem B and its extremal distributions. 

DEFINITION 5.1. For a random variable X taking values in [0, 1], let Dn(X) = En(X) 

- Vn(X), n = 1, 2, .... 

Probabilistically, Dn(X) is twice the side payment which must be paid to a gambler 

. playing against a prophet (faced'with the same n independent random variables each with 

distribution that of X) in order to make the game fair for the gambler. In terms of Dn , the 

conclusion of T h ~ o r e m  B is that Dn(X) :::; bn for all n, and that the bound bn is the best 

possible and is attained. 

PROOF OF THEOREM B. Without loss of generality (add, or multiply by, suitable 

constants) a = 0 and b = 1. By Lemma 2.4, it may be assumed that X is a simple random 
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variable taking on the values 0, V 1(X), · · ., Vn- 1(X), and 1 with probabilities po, PI, • • • ,pn 

respectively. Let Sj = po + PI + ... + pj for 0 ~j  ~  n + 1, and let S-1 = 1. By Lemma 2.5, 

for 0 < Sn-1 < 1 (otherwise X is constant and Dn(X) = 0), Dn(X) = Dn(so, S1, ••• , Sn-1) 

where Dn(so, ••• , sn-d is the continuous function defined on {(so, ... , Sn-1); 0 ~  So ~  · · · 

~  Sn-1 ~  I} U {(so, ... , Sn-1); 0 < Sn-1 < 1 and Sj > 0 for j = 0, ... , n - 2} by 

(11) Dn(so, S1, ••• , sn-d = 0 if 0 = So = ... = Si ~  ••• ~  Sn-1 = 1, 

and 

(1 - sn-d {(L.t:l s~~dSOS1  ... Sn-2 - So - Sos? - ••• - SOSI ••• S n - 3 S ~ - 2 }  
otherwise. 

(1 - sn-1)(1 + So + SOSI + ... + SoSI ••• Sn-3) + SoSI ••• Sn-2 

It remains only to show that 

(12) max{Dn(so, SI, ••• , sn-d; 0 ~  So ~  SI ~  ... ~  Sn-1 ~  I} = bn . 

First observe that the following representations hold for (so, ... , Sn-1) with Sj > 0 for 

j = 0, ... , n - 2 and 0 < Sn-1 < 1: 

aDn = (fl.1/ so)[Dn - (n - l)so]; 
aso 

aDn  aDn n-1 n
Sj+1 -- - Sj - = fl.ISO · .. Sj[Dn + nSj - (n - l)sj+1] for 0 ~  j ~  n - 3;

aSj+1 aSj 

aDn aDn [n-1) n] d(13) Sn-1 (1 - Sn-1) -- - Sn-2 -- = fl.1S0 • • • Sn-2 D n + nSn-2 - (n - 1 Sn-1; an 
aSn- 1 aSn- 2 

where fl.l = V 1(so, ••• , sn-d, the expression in Lemma 2.5(ii). From (13) it can be deduced 

that the following three statements are equivalent for (so, ... , Sn-1) with Sj > 0 for j = 0, 

• • • , n - 2 and 0 < Sn-1 < 1. 

aDn  .
(14a) -a- (so, ... , sn-d = 0 for J = 0, ... , n - 1;

Sj 

(14b)  -nsJ-
1 - (n - l)so + (n - l)s7+1 = 0 for j = 0, ... , n - 2,-ns~=l  - (n - l)so 

+ (n - l)s~-1  + 1 = 0, and at (so, ... , Sn-l) satisfying these n equations, Dn(so, 

• • • , sn-d = (n - 1) so; and 

(14c)  letting f3 = (n - l)so, then ru,n(f3) = sJ for 0 ~j  ~  n - 1, 1 = (n - 1)(TJn,n(f3) -

TJn­1,n(f3»  = H n(f3),  and at (so, · · · , Sn­l)  satisfying these n  equations, Dn(so,  ••• , 

Sn­1)  = (n - 1) So = f3. 

Let C be the region C = {(so, • · ., Sn­1);  0 ~  So ~  • · · ~  Sn­1  ~  I}. Over this region C, Dn 

~  1, as can be seen by considering Dn as the difference of En(so,  • • ., Sn­1)  and Vn(so,  ••• , 

Sn­1),  the expressions in Lemma 2.5 (iii) and (i) respectively. Hence, for (so, ••• , Sn­1)  in C 

satisfying (14c), 0 ~  Dn(so,  • • • , Sn­1)  = f3  ~  1, and only solutions of H n(f3)  = 1 in [0, 1] are 

of interest. From this fact, Proposition 3.8, and (14a-c), there is a unique point (so, ... , 
Sn­1)  in the interior of C at which aDn/asj = 0 for j = 0, · · · , n  - 1, and at this point Dn(so, 

• • • , Sn­1)  = (n - 1) s3 > O. Thus the maxima and minima for Dn in C occur at (so, · · · , Sn­1) 

or on the boundary of C. 

Consider the behavior of Dn at and near the boundary of C. If So = 0 or Sn­1  = 1 (or 

both), then Dn(so,  ••• , sn­d  = O. Let (so, ... , sn­d  be a boundary point of C satisfying 0 

< So ~  ... < Sj  = ... = Sk  < ... ~  Sn­l  < 1 for some 0 ~  j < k ~  n  - 1. It can be shown 

from (13) that one of the following three conditions must hold at (so, ... , Sn­1): 
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(I) Dn(so, ... , sn-d :5 0; 

aDn aDn)(II) k:5n-2 and (-1,1). -,-- >0 for m = j, ... , k - 1,( aSm aSm+1 

aDn aDn)so that (-1,1)--,-- >0; or( as] aSk 

aDn aDn)  .(III) k=n-I and (-1,1)· --,-- >0 for form=j, ·.·,n-3,( aSm aSm+1 

aDn aDn )  (aDn aDn)and(-I,I-sn-d· --,-- >O,sothat(-I,I-sn-d· --,-- >0.( aSn- 2 aSn- 1  as} aSn- 1 

From these observations one can find a point (so, · · · , sn-d in the interior of C with Dn(so, 

· · · , Sn-d > Dn(so, ... , sn-d. Thus the maximum for Dn in C is at (so, ... , sn-d, and (12) 

follows. 

That the bound bn is best possible is clear from the above reasoning (see also Proposition 

5.3). 0 

EXAMPLE 5.2. Let XI, X 2 , ••• be i.i.d. random variables taking values in [0, 1]. 

Calculations of {bn } indicate that 

E (Xl V X 2)-sup{EXt :t E T2 } :5 0.0625; 

E (Xl V·· · V XlOo)-sup{EXt :t E T lOo } :5 0.1101; and 

E(XI V··· V XlO,ooo)-sup{EXt :t E TlO,ooo} :5 0.113. 

In the present (additive comparison) case, unique extremal distributions (for which 

equality in Theorem B holds) can be given explicitly. For this purpose the following 

parameters are collected here. Fix n > 1. Let!3n E (0, 1) satisfy Hn(!3n) = 1 as in Proposition 

3.8. For j = 0, ... , n - 1,8; is given by 8; = (11.i,n(!3n))l/n andp) by po = SO,p} = 8; - 8;-1 for 

j = 1, ... , n - 1, and Pn = 1 - Sn-l. 

PROPOSITION 5.3. For each n > 1, let Y= Y(n) be the simple random variable taking 

values 0, V I ( Y), ... , Vn- l( Y), and 1 with probabilities po, ... , Pn respectively. Then 

Dn ( Y) = bn • 

Note that the values V I ( Yd, · · ., Vn - l ( Y) can be computed from Lemma 2.5 (i, ii) through 

So, ... , Sn-l. 

EXAMPLE 5.4. (a) Y(2) = 0, Y2, and 1 with probabilities Vi, Y2, and 14 respectively, and 

D2 ( Y(2)) = b2 = V16. 

(b) Y(IO) ~  0, .166, .272, .347, .404, .449, .486, .517, .545, .570, 1 with probabilities ~  .638, 

.067, .048, .039, .033, .029, .026, .023, .021, .019, .054 respectively and D lO( Y(IO)) = blO ~  

.100. 

6. REMARKS. It is easy to see that for any fixed distribution X, Rn(X) ~  1 and Dn(X) 

~  0 as n ~  00, that is, limn_ooE (Xl V·· · V Xn) = limn_~sup{EXt:  t E Tn} where Xl, X 2, 

· · · are independent random variables each with distribution that of X. 

The parenthetical conclusion in Theorem B that E (min{Xl, ... , X n}) ~  inf {EXt: t E 

~   Tn} - bn(b - a) is immediate'by symmetry. In contrast, no corresponding universal 

constant exists for ratio comparisons of E(min{XI , ••• , Xn}) and inf{EXt : t E Tn}. See 

example 4.1 in [3]. 

Although the authors believe that the constants {an} and {bn} are monotonically 

increasing, and hence convergent, they have not been able to demonstrate this nor identify 

the limits. 
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