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COMPARTMENTAL MODELING AND SECOND-MOMENT ANALYSIS
OF STATE SPACE SYSTEMS*

DENNIS S. BERNSTEINf AND DAVID C. HYLAND:I:

Abstract. Compartmental models involve nonnegative state variables that exchange mass, energy, or other
quantities in accordance with conservation laws. Such models are widespread in biology and economics. In this
paper a connection is made between arbitrary (not necessarily nonnegative) state space systems and compartmental
models. Specifically, for an arbitrary state space model with additive white noise, the nonnegative-definite
second-moment matrix is characterized by a Lyapunov differential equation. Kronecker and Hadamard (Schur)
matrix algebra is then used to derive an equation that characterizes the dynamics of the diagonal elements of
the second-moment matrix. Since these diagonal elements are nonnegative, they can be viewed, in certain cases,
as the state variables of a compartmental model. This paper examines weak coupling conditions under which
the steady-state values of the diagonal elements actually satisfy a steady-state compartmental model.
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1. Introduction. Analysis and design methodologies based upon worst-case behavior
can be unduly pessimistic for applications in which system behavior includes highly
improbable events. It is thus our goal to undertake a probabilistic approach to account
for (or, more aptly, to ignore) unlikely behavior to achieve higher performance and more
realistic predictions. Accordingly, we consider an H2/white noise (as opposed to an
H/L2) system and signal model as a starting point. Now, however, we seek system
models that ignore detailed microscopic modeling data while focussing on the most likely
macroscopic phenomena. Our paradigm is heat flow in which molecular motion is highly
uncertain, whereas energy flows, with virtual certainty, from hot objects to cold objects.

Most probable motion in dynamical systems is the traditional province of statistical
mechanics, which normally deals with very large (say, 10 23 interacting components.
Our challenge in the field of modeling for robust control is to develop a useful theory of
"statistical mechanics of moderate-sized systems." Such a theory does not currently exist
due to the emphasis by physicists on large stochastic systems as well as the emphasis by
engineers, dynamicists, and control theorists on relatively small deterministic systems.
It is our view that a "middle ground theory" is needed to fill the gap between these
worlds. The benefits of such a theory include the means to overcome the inherent lim-
itations of worst-case design. The present paper is directed toward this goal.

To begin we shall focus on dynamical systems that involve subsystems or states
whose values are nonnegative quantities [1 ]-[ 13]. Dynamical models of such systems
are based upon the physics of the processes by which various quantities are exchanged
by the coupled subsystems. In addition, conservation laws are used to account for the
possibly macroscopic transfer (or flow) of such quantities among subsystems. Models
for this class of systems are known as compartmental models.

The range of application of compartmental models is quite large. Their usage is
widespread in biology and ecology [10], [12], while closely related ideas appear in eco-
nomics [6, Chap. 9 ]. Our interest in compartmental models arises from electrical and
mechanical engineering applications. Thus far there has been little direct connection
between these engineering disciplines and compartmental modeling since classical
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(R, L, C) circuit models and (M, D, K) structural models are not cast in terms of
inherently nonnegative quantities and do not explicitly invoke conservation laws.

The goal of this paper is to demonstrate a direct connection between arbitrary linear
dynamical systems in state space form and compartmental models. The key to this con-
nection is the recognition that even for arbitrary systems that do not explicitly involve
nonnegative quantities (such as the (R, L, C) and (M, D, K) models mentioned above),
it is possible to identify nonnegative quantities that do behave like compartmental models
with conservation laws. In certain specific cases such connections have already been
demonstrated, albeit, usually without recognition ofcompartmental concepts. Examples
include energy flow and power transfer in random media 14 ]-[ 17 ], dissipative circuits
18 ]-[ 27 ], mechanical systems 28 ]-[ 30 ], coupled structures 31 ]-[ 46 ], and networks
ofqueues 47 and [48 ]. A compartmental-like description ofcoupled structures is given
in [35].

In each of the above applications, the key to formulating the system dynamics in
compartmental form is to characterize nonnegative quantities that arise from the un-
derlying physical phenomena. The reason that such models have not been more widely
used is that physical principles such as Kirchhoff’s laws and Newton’s law are not usually
formulated in terms of subsystem interaction and energy transfer. However, once the
underlying laws of physics have been formulated as a dynamical system, it is often possible
to reformulate these dynamics in terms of energy transfer. There are at least three math-
ematical formulations that may give rise to compartmental models:

(i) root mean square (rms) averaging of system states over time within a deter-
ministic formulation,

(ii) averaging system states over the statistics of stochastic disturbances, and
(iii) averaging system states over the statistics of uncertain parameters.

The nonnegative quantities that arise from these formulations are then simply the mean-
square averages ofthe original not-necessarily nonnegative states. In this paper we consider
(ii), while approach (iii) underlies much of Statistical Energy Analysis [31]-[ 42] and
has been explored in [49] and [50]. The averaging techniques developed in [51 ]-[ 53]
are also related to (iii). The results of this paper may also be applicable to large-scale
systems problems [54 ]-[ 59 ]. Such connections remain to be explored.

The goal ofthis paper is to establish some basic mathematical results that demonstrate
how compartmental models arise from a second-moment analysis of state space systems.
Physical interpretation of the derived compartmental models will not concern us here,
while connections to circuit theory and dynamics will be explored elsewhere. Indeed, the
above allusions to electrical and mechanical systems should be viewed as purely moti-
vational. Within the paper we shall, however, use "energy" and "power" terminology as
genetic language to facilitate the discussion.

After introducing some global notation at the end of this section, we proceed in
2 to summarize some basic properties of compartmental models. Using [6] as our

principal reference, we show that compartmental models are confined to a nonnegative
state space (Proposition 2.1 and then give necessary and sufficient conditions for the
existence of a steady-state equilibrium energy distribution (Proposition 2.2). Sufficient
conditions are also given (Corollary 2.2) under which the steady-state distribution is
uniform. This phenomenon is known as "equipartition of energy" 34 ], 41 ], 50 and
is also related to the notion ofa "monotemperaturic" system 21 ]. We stress that although
many of these results are well known [3 ], [6], they are restated here in a concise and
unified format that supports the development in later sections.

Specializing to the asymptotically stable case, we then consider the problem of de-
termining the steady-state energy distribution in the limit of strong coupling, that is, the
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case in which the off-diagonal terms in the dynamics matrix become arbitrarily large
(Proposition 2.4). As a special case of this result we state conditions under which energy
equipartition occurs (Corollary 2.3 ).

In 3 we shift gears and undertake an analysis ofthe nonnegative-definite second-
moment matrix of an arbitrary (that is, not-necessarily compartmental) nth order
asymptotically stable complex-valued system subjected to additive white noise distur-
bances. Specifically, we rearrange the elements of the n n second-moment matrix into
an nZ-dimensional vector whose first n components are the diagonal elements of the
second-moment matrix, and whose last n 2 n components are the off-diagonal elements.
Our ability to do this is based upon the following crucial fact: the diagonal elements of
a (complex, Hermitian) nonnegative-definite matrix are (real and) nonnegative.2

The central result of 3 is the derivation of an explicit equation that governs the
evolution ofthe diagonal elements of the second-moment equation. As can be seen from
3.18 ), this equation involves the unusual nonnegative matrix coefficient erto ept, where
F is the dynamics matrix of the original arbitrary (not-necessarily compartmental) state
space system, and "o" denotes Hadamard (Schur) product. Since this system has dynamics
that are more complex than an nth order state space system, we confine our attention
in 4 to the steady-state energy distribution.

The goal of 4 is to determine an nth order state space system whose steady-state
solution coincides with the steady-state limit of the nonnegative diagonal system. This
requirement leads to a derived dynamics matrix (see (4.12)) involving the elements of
the dynamics matrix of the original state space model. To prove that the induced model
is asymptotically stable, we consider the case of weak off-diagonal coupling which leads
to an M-matrix condition and implies asymptotic stability. A final scaling of the non-
negative system in 5 shows that in this case the derived model is, in fact, a compartmental
model. Finally, notation and identities involving Kronecker and Hadamard products
appear in the Appendix.

Notation.

N,C
Rrxs crxs
Iror I
J
Akl
Re A, Im A
/,A T, A*
SI(A ), V’(A
A>=>=O
AoB

coli(A)

oij, I/i
diag (a,..., a,)

(R), (9, vec, vecd, veco

expectation
real field, complex field
r s real, complex matrices
r r identity matrix
/-1
k, /)-element ofA C (or a subblock ofA)

real, imaginary part ofA e C x

conjugate, transpose, complex conjugate transpose
range and null space ofA e Nrs

A e N is a nonnegative matrix
Hadamard (Schur) (element-by-element) product

1. T (boldface distinguishes from exponential)
ith column ofA
ith column of/r
see Appendix
n n matrix with diagonal elements al,..., an
diagonal, off-diagonal part ofA e C x (see Appendix
see Appendix

Throughout the paper a nonnegative-definite matrix is assumed to be Hermitian.
Since this paper uses both nonnegative matrices and nonnegative-definite matrices in close proximity,

care must be taken to note the distinction.
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2. Analysis of compartmental models. To begin we consider a system comprised
ofcompartments or subsystems that interact by exchanging some quantity such as mass,
energy, fluid, etc. We shall use energy and power analogies for genetic terminology. By
applying conservation of energy, energy flow among subsystems and the external envi-
ronment as shown in Fig. leads to the energy balance equation

n

(2.1) /;(t) -aiiEi(t) + IIij(t) + Pi(t), >= O, n,
j=l
j4:i

where, for 1,..., n,

Ei (t) energy of the ith subsystem,
ffii-- loss coefficient of the ith subsystem, O’ii O,

Pi (t) external power applied to the th subsystem, Pi (t) >=>= O, > O,
II0(t) net energy flow from the jth subsystem to the ith subsystem, j :/: i.

As depicted in Fig. 1, it is assumed that II0.(t) is of the form

(2.2) IIi(t) iE(t)- aiEi(t), >-_ O,

where aij>= O, :/:j, i,j n. Note that II(t) -IIi(t), >_- 0. Assembling (2.1)
and (2.2) into matrix form yields the overall systems model

(2.3) /(t) AE(t) + P(t), >= O,

where

E(t) [E(t) E,(t)] , P(t) = [P(t) Pn(t)] r,
and A [Aij]in,j= is defined by

(2.4) Aii Z ffji,
j=l

i= 1,...,n,

(2.5) AigAaij, i4:j, i,j= 1,...,n.

Letting a = [aig]i,9= and using the matrix operators introduced in the Appendix, the
matrix A can be written compactly as

A -vecd- (ae) + (
As shown in the Appendix, the operator "vecd" extracts the diagonal elements of a
matrix to form a column vector, while "vecd-’’ transforms a column vector into a

FIG. 1. Compartmental model involving interconnected subsystems.
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diagonal matrix. Furthermore, (r) denotes the off-diagonal matrix comprised of only
the off-diagonal elements of tr with the diagonal elements replaced by zeros.

An important special form of (2.2) arises when trij trji for some : j. In this case
II,.(t) can be written as

(2.6) II0-(t) ri[E(t) Ei(t)], > O,

which can be interpreted thermodynamically as saying that heat flow is proportional to
temperature difference. Note that A is symmetric if and only if a is symmetric.

The solution E(t) to (2.3) can be written explicitly as

(2.7) E(t) eAtE(O) + eAt-s)p(s) ds,

where the function P(. is assumed to be such that the integral in (2.7) exists. To analyze
(2.7), we begin by noting that A is essentially nonnegative 13 ], that is, the off-diagonal
elements of A are nonnegative. Equivalently, -A is a Z-matrix [6], that is, -A has
nonpositive off-diagonal elements. The following lemma concerns the exponential of an
essentially nonnegative matrix. Variations of this result appear in 6, p. 146 ], 13, p.
74], [55, p. 37], and [60, p. 207].

LEMMA 2.1. Let B E . Then B is essentially nonnegative ifand only ifeat is
nonnegativefor all >= O.

Proof. IfB is essentially nonnegative, then there exists/3 > 0 sufficiently large such
that/ /31 + B is nonnegative. Consequently, et is nonnegative for all >= 0, and thus
e e-e e is nonnegative for all >- 0. Conversely, suppose that Bij. < 0 for some
j. Then, since (et)i tBi; + O(t2) as -- 0 for :P j, it follows that et)ij < 0 for some
> 0 sufficiently small. Hence e is not nonnegative for all >-_ 0.

Since A is essentially nonnegative, its exponential is nonnegative on [0, ). IfE(0)
and P(t) are both nonnegative, then it follows immediately from (2.7) that E(t) is non-
negative.

PROPOSITION 2.1. Suppose that E(O) >->= 0 and P( t) >=>= O, >= O. Then the solution
E( t) to (2.3) is nonnegativefor all >- O.

Henceforth we focus on the case in which the externally applied power P(t) is
constant, that is, P(t) P. In this case (2.3) and (2.7) become

(2.8) (t) AE(t) + P, >= O,

and

(2.9) E(t) eAtE(O) + eTM dsP, >= O.

The following lemma summarizes several properties of A that are useful in analyzing
(2.9). Recall 61 that the index k of a real matrix M, denoted ind (M), is defined to be
the smallest nonnegative integer k such that rank Mk rank Mk+l. (Here M I.)
Equivalently, ind (M) is the size of the largest Jordan block ofM associated with the
eigenvalue zero. Furthermore, recall that if ind (M) -< 1, then the Drazin inverse MD

specializes to the group inverse M# of M. It can be seen that ind (M) _-< and every
eigenvalue ofM either has negative real part or is zero if and only if limt_, eMt exists.
In this caseM is called semistable. Finally, let (M) and dV(M) denote the range and
nullspace ofM, respectively.
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LEMMA 2.2. The matrix A defined by (2.4), (2.5) has thefollowing properties:
(i) -A is an M-matrix,
(ii) If ), is an eigenvalue ofA then either Re X < 0 or X 0,
(iii) ind (A) _-< 1,
(iv) A is semistable, and limt_, eAt I- AA # >--> O,
(v) I(A) t#(I- AA#), V’(A) 1(I- AA#),
(vi) f eTM ds A#(em- I) + (I- AA#)t, >= O,
(vii) f eTM dsP exists if and only ifP (A),
(viii) IfP 6 (A), then f eTM dsP -A #P,
(ix) IfP (A) and P >=-> 0, then A #P >_- >= 0,
(x) A is nonsingular if and only if-A is a nonsingular M-matrix,
(xi) IfA is nonsingular, then A is asymptotically stable and -A -1 >=>= 0.

Proof. Since -A re >-> 0 and -A is a Z-matrix, it follows from [62, Thm. 1,
p. 237] or [6, Exercise 6.4.14, p. 155] that -A r, and hence -A, is an M-matrix with
"property c" (see [6, Def. 6.4.10, p. 152]), which proves (i). Since -A is an M-matrix,
it follows from [6, Prop. (Ell), P. 150 that the real part of each nonzero eigenvalue of
A is negative, which proves (ii). From [6, Lemma 6.4.11, p. 153], it follows that
ind (A) _-< 1, thus proving (iii). To prove (iv), write A S[ 0]S-1 where Ao is asymp-
totically stable. Then

eAt= S
0 I I

which proves (iv). Note that I- AA # is nonnegative since eAt is nonnegative for all >_-
0. To prove (v), note that if (I AA#)x 0, then x AA#x I(A). Conversely, if
x (A), then there exists y N" such that x Ay so that AA#x AA#Ay Ay x.
The second identity follows similarly. Next, (vi) follows from [61, Thm. 9.2.4] and can
be verified directly. Statement (vii) is a direct consequence of (v) and (vi), while (viii)
follows from (iv) and (vi). Next, (ix) follows from (viii) and the fact that eAt >= O, >=
0. Finally, (x) follows from (i) or 6, p. 137 ], and (xi) follows from (ii) and (ix) with
P=ei, 1,...,n. V]

Remark 2.1. Properties (ii) and (iii) imply that the homogeneous system/(t)
AE(t) is stable in the sense of Lyapunov. This result is given by [62, Thm. in terms
of the set Wq. The same result is given by [3, Lemmas and 2 and is attributed to
[1]. The result (ix) that x e (A) and x >=>= 0 imply that -A#x >=>= 0 is given by [63,
Thm. 3 ].

By using Lemma 2.2 we can obtain an expression for the steady-state energy dis-
tribution limt_. E(t). For notational convenience we denote this limit simply by E.

PROPOSITION 2.2. Suppose that E(O) >=>= 0 and P >->-_ 0 and let E(t) be given by
(2.9). Then E & limt_ E(t) exists ifand only ifP e l(A). In this case E is given by

(2.10) E (I- AA#)E(O) A#P,

and E >_->_- 0. If, in addition, A is nonsingular, then E exists for all P >_->- 0 and is given
by

(2.11) E -A-P.

In equilibrium, the dynamic system (2.8) becomes

(2.12) 0 AE + P.
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We now show that the steady-state solution (2.10) is in fact an equilibrium solution to
(2.8) and, furthermore, all solutions to (2.12) are of the form (2.10).

PROPOSITION 2.3. Let P N n. Then (2.12) has a solution E if and only if
P AA #P. Furthermore, E is a solution to (2.12) ifand only ifthere exists E(O)

such that (2.1 O) is satisfied.
Proof. Clearly, (2.12) has a solution E 6 n if and only if P 6 (A). By (v) of

Lemma 2.2, P (A) if and only if P ,U(I AA#), that is, P AA#P. Next, it is
easy to verify that E given by (2.10) is a solution to (2.12). Conversely, if E satisfies
(2.12) then z a__ E + A#P is in the null space ofA. Since by (v) of Lemma 2.2 the null
space ofA coincides with the range of I- AA #, it follows that there exists E(0)
such that z (I- AA#)E(O), which yields (2.10). if]

Remark 2.2. Proposition 2.3 is entirely analogous to the standard result involving
the Moore-Penrose generalized inverse (see, for example, [64, p. 37 ]). Except for the
necessity of the second statement, the result is given by [65, Lemma 5.1].

Writing E [E E] and P [P Pn], the ith component of(2.12) can
be written as

(2.13) 0 ffiiEi + o’ijEj rjiEi] + Pi,
j=l
ji

which can be viewed as an energy balance relation.
When the rank ofA is equal to n 1, it is possible to simplify expression (2.10).

The following lemma will be useful.
LEMMA 2.3. Suppose rank A n and let v satisfy Av O. Then either

v >=>= 0 or-v >=>= 0.
Proof. Since v X(A), it follows from (v) of Lemma 2.2 that v 1(I- AA#).

Since rank A n 1, it follows that (A) is one dimensional and thus
rank (I AA #) 1. By (iv) ofLemma 2.2, I AA # is also nonnegative. Since I- AA #

is also nonzero, there exists a nonnegative vector w such that (I AA #) w is also nonzero
(and nonnegative). Since v and (I AA #)w both lie in the same one-dimensional sub-
space, there exists/3 such that v 13(I AA #)w. If/3 >= 0 then v >=>= 0, whereas if

-< 0 then v =<=< O. I--q

COROLLARY 2.1. Suppose that E(O) >=>= O, P >=>= O, and P I(A). Furthermore,
assume that rank A n and let v , v 4 O, v >=>= 0 satisfy Av O. Then the
steady-state energy distribution E given by (2.1O) has theform
(2.14) E v A#P,

where/3 I1(I AA#)E(O) II/ Ilvll and I1" denotes an arbitrary norm on.
Proof. Since A is singular there exists nonzero v V(A). Furthermore, since

rank A n 1, it follows from Lemma 2.3 that either v >->= 0 or -v >=>= 0. Without
loss of generality, let v be chosen such that v >=>= 0. Since rank A n 1, it follows that
V’(A) and thus 1(I- AA #) are one dimensional. Thus there exists/3 >= 0 such that
fly (I- AA#)E(O). Note that/3 is necessarily nonnegative since v is nonzero and v
and (I- AA #)E(O) are both nonnegative vectors. Taking norms yields the given expres-
sion for/3. q

Remark 2.3. A sufficient condition for a singular M-matrix A to have rank n
is for A to be irreducible (see 6, Thm. 6.4.16, p. 156 ]). In this case the nonnegative
vector v (A) actually has all positive components (see [6]).

As an application of Corollary 2.1 we consider the case in which aii 0,
n. Then e rA 0, which implies that rank A -< n 1. In this case it is easy to see
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that when P 0 the total system energy is conserved, since (2.8) implies e T/(t)
e TAE(t) 0. If we also assume that Ae 0, we obtain the following result.

COROLLARY 2.2. Suppose that rii O, n, Ae O, and rank A n 1.
IfE(O >=>= 0 and P O, then the steady-state energy distribution E given by (2.1O) has
theform

(2.15) E= Ei(O) e.
]’

Proof. Since Ae 0, it follows from Corollary 2.1 and (2.14) that E =/3e, where
(choosing the Euclidean norm in Corollary 2.1) /3 n-1/2[ET(O)(I- AA#)T(I-
AA#)E(O)] 1/2. Next, since Ae ATe 0 and rankA n 1, it follows thatA isan EP
matrix ([ 61, p. 74 ). Consequently, AA # is symmetric and, in particular, I AA #

1/n)ee r. This implies that/3 n-lerE(O), which yields (2.15).
The result (2.15 shows that under the stated assumptions each component of the

steady-state energy vector is equal, that is, the steady-state energy is uniformly distributed
over all states. This phenomenon is known as equipartition ofenergy [34], [41], [50].

Henceforth we consider the case in which A is nonsingular, that is, in which -A is
a nonsingular M-matrix. Numerous necessary and sufficient conditions for a Z-matrix
to be a nonsingular M-matrix are given by 6, Thm. 6.2.3 ]. The following easily verified
condition is sufficient but not necessary.

LEMMA 2.4. If trii > O, n, then -A is a nonsingular M-matrix.
Proof. Ifffi/> 0, 1,..., n, then -ATe [r r] T >> 0. By [6, Condition

(I27), P. 136], -A T, and hence -A, is a nonsingular M-matrix.
Next we examine the steady-state energy distribution E as a function ofthe coupling

parameters a0, 4: j. Specifically, we wish to determine the steady-state energy distribution
E in the limit of strong coupling, that is, as a0 oe, 4 j. To do this, define

A = D + aC,

where the diagonal matrix D is defined by D diag (fill, finn) and the matrix C of
coupling parameters is defined by

n

(2.16) C/i ffji, 1,..., n,
j=l
j4:i

(2.17) Ci9 gig, 4:j, i,j n.

In the notation of the Appendix,

(2.18) D {tr}, C -vecd -1 ((a)Te) + (a) A + D,

where { a} and (a) denote the diagonal and off-diagonal portions, respectively, of A.
Note thatA Al. Furthermore, note that if O’ii > O, 1,..., n, then -A, is a nonsingular
M-matrix for all a >- 0. For P >_->_- 0, let E, denote the steady-state energy distribution
with A replaced by A,, that is,

(2.19) E, -A-dIP.
Note that letting a -- oe corresponds to letting rij -- oe, 4 j. The following result
provides an expression for lim,_ E,, which is the steady-state energy distribution in
the limit of strong coupling.
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PROPOSITION 2.4. If ffii > O, n, thenE & lima_. E, exists and is
given by

(2.20) E [D -1 D-1CD-I(CD-1)#]P.

Proof. Since eTCD -1 O, it follows from [6, Exercise 6.4.14, p. 155] that -CD -1

is a singular M-matrix with "property c." Hence 6, Lemma 6.4.11, p. 153 implies that
ind (CD -1 1. From 61, Cor. 7.6.4 ], we obtain

E lim [D-aC]-IP

D -1 lim 3131- CD
30

[D -1 D-1CD-I(CD-1)#]P.
A minor variation of the proof of Proposition 2.4 shows thatE can be written

equivalently as either

(2.21) Eoo [D -1 D-ICD-1/2(D-1/2CD-1/2)#D-1/2]P
or

(2.22) Eoo [O -1 D-1C(D-1C)#D-1]P.
The symmetry ofthe expression (2.21 will be useful in obtaining a more explicit expres-
sion for Eoo when C is symmetric and has rank n 1. The next result shows that in this
case strong coupling leads to energy equipartition.

COROLLARY 2.3. Assume that O’ii > O, n, and suppose that C is symmetric
and rank C n 1. Then Eoo is given by

(2.23) E=(eTp)eTDe e.

Proof. For convenience define ff & D-I/2CD-1/2, which also has rank n 1. Since
C and ( are symmetric, it follows that D1/2e 0. By decomposing ff it can be shown
that I- ff(# (eTDe)-lD1/2eeTD 1/2. Hence, using (2.21), we obtain

Eoo D-1/2[I- #]D-1/2p

(eTDe)-lD-1/ZD1/ZeeTD1/ZD-1/2p

eTDe e.

3. Second-moment analysis of state space systems. In this section we consider an
arbitrary asymptotically stable linear system subjected to additive white noise disturbances.
The second-moment matrix of the state then satisfies a matrix Lyapunov differential
equation. From this matrix differential equation, we then extract a vector differential
equation for the diagonal elements ofthe second-moment matrix. These diagonal elements
are the second moments ofthe individual states. This section relies heavily on Kronecker
matrix algebra, which is summarized in the Appendix.

To begin, consider the state space differential equation

(3.1) 2(t) Fx(t) + Gw(t), >= O,

where F e C" ", G e C" a, w(. is d-dimensional zero-mean stationary Gaussian white
noise with intensity Ia, and x(0) is Gaussian distributed with not-necessarily zero mean.
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The second-moment matrix ofx(t) defined by Q(t) & E[x(t)x*(t)] e C’’ satisfies the
matrix Lyapunov differential equation [66, p. 101],

(3.2) 0(t) FQ(t) + Q(t)F* + V, >= O,

where Q(0) :[x(0)x* (0)] and V& GG*. The solution Q(t) to (3.2) is given explicitly
by

(3.3) Q(t) eFQ(O)e* + ee’VeF* ds, >= O,

which shows that Q(t) is a (Hermitian) nonnegative-definite matrix.
Applying the vec operator [67 ], [68] to (3.2) and using (A.7) (see the Appendix)

yields

(3.4) vec ((t) (/ F) vec Q(t) + vec v.
Next, we use the n 2 X n 2 orthogonal permutation matrix U to rearrange the components
of vec Q(t) so that the diagonal elements of Q(t) appear as the first n elements. Hence
(3.4) implies

U vec 0(t) MU vec Q(t) + U vec V,(3.5)

whereM is defined by

(3.6)

Since U o], identities (A. 13 and (A. 14) imply

[UavecQ(t)l[UvecQ(t)=
Uo vec Q(t)

and similarly for vec 0(t) and vec V.
Next, defining

(3.5) can be written as

M U(ff @ F)U-’ U(P @ F)U.
vecd Q(t) ]
veco Q(t)

E(t) & vecd Q(t),

/(t) veco Q(t),

P & vecd V,

P & veco V,

Note that E(t) and P are real and nonnegative, whereas/(t) and/3 are generally complex.
Furthermore, Q(t) and V can be reconstructed from E(t),/(t), P, and/3 by means of

(3.8) Q(t) vecd -1 (E(t)) + veco -1 (/(t)), V= vecd -1 (P) + veco- (/5).

Next, partitionM defined by (3.6) as

[Mll M12](3.9) M=
M21 M22

where, using (3.6), the subblocks ofM are given by

Ml A__ Ud( F)U, M2 & Ua( ff @ F) Uro
M21 & Uo( ff (3 F)V, M22 _a_ Uo( ff F)Uo.
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Using (A. 11 and (A. 17 )-(A.20), Mll, M12, M21, and M22 can be simplified somewhat
as

(3.10) Mll 2 Re {F }, M12 Ue((ff) @ (F)) Uor,
(3.11)

M21 Uo(() (F))U, M22 Uo({/0} q {F})Uor + Uo(() (F))Uro,
where { F} and (F) denote the diagonal and off-diagonal portions of F, respectively.
Note that Mll is real and diagonal and that the term Uo( { if} @ { F} )Uro appearing in
M22 is diagonal.

We now wish to eliminate/(t) from (3.7)to obtain an equation solely in terms of
E(t). Hence solving for/(t) and substituting this expression into the equation for/(t)
with/(0) 0 and/3 0 yields the integro-differential equation

(3.12) (t) MilE(t) nt- M12 eM2(t-S)M21E(s) ds + P.

Again, using (3.7), it follows that the solution to (3.12) is given explicitly by

(3.13) E(t) [In 0]eMt In]E(0)0 + []0] eM, ds In p.
0

Since E(t) is nonnegative if E(0) and P are nonnegative, we expect the coefficients of
E(0) and P in (3.13) to be nonnegative matrices. This is illustrated by the following
result which provides explicit expressions for these matrices.

PROPOSITION 3.1. Thefollowing identities are satisfied:

(3.14)

(3.15)

[In O eMt[ In eFt e
0

01 es ds
I, eF’o e ds.
0

Proof. From (3.6) and (A.8) it follows that

O]eMt[ In Ue(P*F) ]o]=[I, o] ur[ 1"o
Ude(p*F)tu

Ud(e (R) eFt)U
epto eFt,

where the last step follows from (A. 11 ). Integrating (3.14) over [0, t) yields (3.15 ).
From (3.14), we obtain the following result.
COROLLARY 3.1. Thefollowing identities are satisfied:

(3.16)

(3.17)

M12M21 2Fo ff + 2 Re {F2 } 4(Re {F})2,
M12M22M21 2 Re {F } 8 Re {F} Re {F2 } + 8(Re {F})3

+ 6 Re (Fo ff2)_ 4 Re {F}(F )- 4(Fo ) Re {F}.
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Proof. First note that for - 0

O]ett[ In] I + Mllt + + M’zM2’)12

+ (MIII + MMzM2 + MzMzMI + MzMzzMz)t + O(/4),

eFt et (I + Ft + 1/2FZt 2 + F3t + O(t4))o (I + JOt + 1/2P2t2 + /3t3 + O(t4))

=I+ {F+F)t+(1/2{F2+j02} +Fo)t 2

+ (1/2 Re {F3} + Re (Fo J02))t3 + O(t4).
Equating terms of O(/2) and O(t 3) yields (3.16) and (3.17). []

COROLLARY 3.2. The matrix MlzMzl is essentially nonnegative.

Proof. The result follows from the fact that {M,zM2, ) 2 {Fo) >=>= O.
Using expressions 3. 4 and 3.15 ), 3.13 for E(t) can be written as

3.18 E(t) eFt etE(0) + eFSo e" dsP.

For comparison, let us recall the solution (2.9) to the compartmental model (2.8) given
by

(3.19) E(t) eAtE(O) + eAs dsP.

These models, that is, (3.18 and (3.19), will coincide if and only if

3.20 eat eFt eit, >= O.

In general, howe_ver, there does not exist a matrix A satisfying (3.19) for the obvious
reason that eFt eFt involves more spectral content than can be provided by the exponential
of a single n n matrix. It is easy to see that there exists a matrix A such that (3.19) and
(3.20) coincide if and only ifF is diagonal, in which case A F + F. To proceed, let us
consider the steady-state problem. To guarantee that limt_ E(t) exists, we shall assume
that F is semistable. The following result will be useful.

LEMMA 3.1. IfF is semistable, thenM is semistable.
Proof. Since eMt U(et (R) eFt) UT, the existence oflimt_ eFt implies the existence

of limt_ eMt. I-1

PROPOSITION 3.2. Suppose that F is semistable and assume that P /’(I
Ud( F)(F F) #U). Then E = limt- E(t) exists and is given by

(3.21) E (I FF#) (I FF#)E(0) Ud(F F)#UP.

Proof. The first term in (3.21 follows from (iv) ofLemma 2.2. Since ind (M) 1,
we have (using (vi) of Lemma 2.2)

;eFSo es dsP [In
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Since [In 0](I- MM#)[/] In Ud(F@ F)( (3 F)#U, the term linear in is zero
by assumption. Consequently, as o,

eFS ep" dsP -- [In 0 M# In p,
0

which is equal to Ua( (9 F) #UP.
When the rank ofF is n 1, some simplification is possible.
COROLLARY 3.3. Let F and P be as in Proposition 3.2. Furthermore, assume that

rank F n and let v C n, V 4: O, satisfy Fv O. Then E is given by

(3.22) E= ( (v )rE(O))-(v.v)2 V Ud(F (9 F)#UP.

Proof. Since rank (I- FF#) 1, it follows that I- FF# wy* for some
nonzero w, y 6 C n. Hence v (y*v)w, y (y*v/v*v)(I FF#)*v, and I FF#

(v*v)-lvv*(I- FF#). Using (A.10) in (3.21) now yields (3.22).

4. Steady-state compartmental modeling of the diagonal system. In the previous
section it was shown that the evolution of the diagonal portion of the second-moment
matrix cannot generally be modeled by means ofan nth-order state space system. Hence
we now focus our attention on the steady-state solution to the diagonal system. Our goal
is to determine conditions under which the steady-state energy distribution ofthe diagonal
system coincides with the steady-state energy distribution of a compartmental model.
Henceforth (and without further notice) we assume that F is asymptotically stable, that
is, every eigenvalue ofF has negative real part.

Since F is asymptotically stable, Q & lim/_ Q(t) exists, is nonnegative definite,
and is given by

(4.1) Q eVeF* ds,

which is the unique solution to the algebraic Lyapunov equation

(4.2) 0 FQ + QF* + V.

Note that Q is independent of Q(0). Furthermore, since F F is asymptotically stable
67 ], 68 ], M is asymptotically stable so that (3.13) can be written as

Now letting -- oe in (3.7) yields

(4.4) [J=-M-I[]
where E & lim_ E(t) and/ & limt_, oo/(t). For convenience, partitionM-1 as

(4.5) M_ =[Nil N12]N21 N22

where

Nil & Ud(P F)-1U’ff

N21 & Uo(P F)-’U,
N12 Ud(P ( F) -I UoT,

N22 a Uo(P F) -1Uro.
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Next, letting -- oe in (4.3) yields

eFt ept dt(4.6) N

which shows that-N is a (real) nonnegative matrix. Finally, if/3 0, then 4.4 implies
that E is given by

(4.7) E -NP.
Returning to (3.18), the assumption that F is asymptotically stable implies that

E limt__, E(t) exists for all E(0) and P. Hence we consider the case in which A is
also asymptotically stable so that E limt--, E(t) also exists for E(t) given by (3.19).
In this case, the steady-state solution to (3.19 is given by (2.1 ), that is,

(4.8) E -A-P.
Requiting that the steady-state values given by (4.7) and (4.8) be equal yields

(4.9) A- N.
The matrix A given by (4.9) will be called the derived model. However, for the derived
model to exist, Nl must be nonsingular. The following result addresses this question.

PROPOSITION 4.1. Nl is nonsingular ifand only ifM22 is nonsingular. In this case

(4.10) Ni-i Mll M2MM2,

(4.1 MJ N22 Nz N-{ N 2

Proof. The result follows immediately from M-M In2.
COROLLARY 4.1. Suppose that M2z is nonsingular. Then M2M;dM21 is real.
Proof. From (4.10) it follows that M2MdM2 MI N-{. Since Mll and

N]- are real (in fact, -Nl is nonnegative), M12M]M21 is also real. []

Hence if M:2 is nonsingular, then (4.9) and (4.10) imply that A is given by

(4.12) A M MzMJM2.
It remains to be shown, however, that A given by (4.12) is asymptotically stable and
represents the dynamics of a compartmental model as defined by (2.4), (2.5). For con-
venience in discussing (4.12) define

(4.13) tx a__ -M, MzMMI
so that (4.12) can be written as

(4.14) A -(# + ).
The key to analyzing (4.14) is to exploit the structure of MJ. To facilitate our analysis,
decompose F as F {F} + (F) so that M22 can be written as

(4.15) M22 La + Lo,

where

Ld Uo({ff} @ {F})Uor, Lo= Uo((} (F})UTo.
Note that Le and Lo depend upon the diagonal and off-diagonal portions ofF, respectively.
When L and Mz2 are nonsingular, we use the decomposition (4.15 and consider the
identity

(4.16) MJ L LLoM,
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which implies that

(4.17) MzMM2 MzL’M2 MzL LoMM2.

Let us rewrite (4.17) as

(4.18) o + o,
where

(4.19) o = M2L-M2, 1o A= _M2L-LoMJ M21.

In (4.18), o can be viewed as the zeroth-order term in an expansion of while o
is the corresponding remainder. To evaluate o, define the Hermitian matrix F e Cnn

by

(4.20) Fij F "Jv Fjj
j n

PROPOSITION 4.2. Suppose that La is nonsingular. Then

o 2 Re [{(ro F)F} + (F Fo )1.(4.21)

Proof. First note that

In ]L-’ Uo E I’agii (R) ojj UTo
i,j=

Then using (A.4), (A. 11 ), (A. 13 ), and I’a I’ji, we have

In ]o U(F @ F) E Fgj gii ( jj P F)U
i,j
ij

i,j
ij

n, ra[FaFiii + fijiff’ijojj + Fiiji + Fo-Paa]
i,j

2 Re E [FaFoFjioi, +
i,j
i4j

2 Re (Fo F)oigii + (ro F
i=1 j=l i,j=l

ji ij

=2Re[{(FoF}F} + (F Fo }].
COROLLARY 4.2. Suppose that {F} is asymptotically stable. Then La is nonsingular

and o is a Z-matrix. If, in addition, F has no zero @diagonal elements, then o is
essentially negative (has negative @diagonal elements).
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Proof. If { F} is asymptotically stable, then Ld is nonsingular. The result now follows
from the fact that for # j

o)9 21Fiyl 2 Re (Fii q-- Fjj)/lffii + Fjjl 2 0.

If, in addition, F/# 0, then o)0 < 0.
Next let us define

(4.22) F {F } + c(F),

where {F} and a(F) are diagonal and off-diagonal matrices, respectively, and a is a
positive number. The scalar a in (4.22) allows us to adjust the strength ofthe off-diagonal
coupling in F,. When F is replaced by F,, derived quantities such as M22 and o are
written as M22, and 0,. Consequently, (4.12) becomes

(4.23)

We thus have the following result for the case of weak coupling, that is, for a 0.
COROLLARY 4.3. Suppose that F ) is asymptotically stable and F has no zero off-

diagonal elements. Then there exists ao > 0 such that F. is asymptotically stable, M22
is nonsingular, and is essentially negativefor all c (0, co).

Proof. By Corollary 4.2, 0. M2.L M2. is essentially negative for all a > 0.
Furthermore, it follows from (3.10) and (3.11) that 0. O(c2) as a - 0. Thus ifc
is sufficiently small, then F. is asymptotically stable and M22. Ld + oLo is non-
singular. Consequently, o. O(a3). The result now follows from the fact that
,o, + o.

THEOREM 4.1. Suppose that { F} is asymptotically stable and F has no zero off-
diagonal elements. Then there exists ao > 0 such that -A, is a nonsingular M-matrix
for all c [0, ao).

Proof. Let a e [0, ao), where c0 is given by Corollary 4.3. Since by (4.14)
-(A,> (,>, it follows from Corollary 4.3 that -A, is a Z-matrix. Furthermore,
by (4.6) and (4.9), -AS f eF"to eFt dt is nonnegative. Hence it follows from
[6, p. 137 ], that -A is a nonsingular M-matrix.

COROLLARY 4.4. Under the assumptions ofTheorem 4.1, A, is asymptotically stable
for all a [0, c0).

Proof. By [6, p. 135 ], each eigenvalue of-A has a positive real part. HenceA is
asymptotically stable. 73

The remainder of this section is devoted to further analysis of the properties of
The following result gives an alternative sufficient condition for M22 to be asymptotically
stable and hence nonsingular.

PROPOSITION 4.3. IfF is upper triangular, then M22 is asymptotically stable.
Proof. The result follows from the fact that Ld is asymptotically stable and Lo is

strictly upper triangular.
PROPOSITION 4.4. Suppose that M22 is nonsingular. IfF is symmetric (but not

necessarily either real or Hermitian ), then is symmetric. If, in addition, is a Z-
matrix, then A defined by (4.14) is negative definite.

Proof. If F is symmetric, then so are (F> and (/>. The result is now imme-
diate. []

Next, we consider the case in which (F) is skew-Hermitian. This case arises fre-
quently in applications in which the modal coupling is energy conservative.
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PROPOSITION 4.5. Suppose that M22 is nonsingular. If (F) is skew-Hermitian,
then

(4.24) e re 0.

If, in addition, Re (F) 0, then is symmetric.
Proof. Using the fact that vecd In e along with (A. 14) and (A. 16 yields

((if) (F))Ue ((if) (F))U vecd In

((if) (F))vec In
vec (<F> + <f>)
0

which along with . and (4. implies that e 0. A similar argument shows that
io Te O. If Re.(F) O, then (F) j/O, where/ is real. Since (F) is skew-Hermitian,
it follows that F is symmetric. Consequently, (F) is symmetric, which implies that F is
symmetric. Now by Proposition 4.4, is symmetric, ff]

5. Compartmental modeling of state space systems. In this section we relate
the steady-state second-moment analysis of 4 to the compartmental model discussed
in2.

If-A is a nonsingular M-matrix (assuming M22 is nonsingular), it follows from
property (M36) [6, p. 137 ], that there exists a diagonal matrix D diag (d,, dn)
with positive diagonal elements di > 0, n, such that D(-A)D-’ is strictly
diagonally dominant, that is,

-Aii > Z (dj/di)Aji.
j=l
ji

Note that -Aii is positive since a nonsingular M-matrix has positive diagonal elements.
Now define A DAD-’ and note that- is also a nonsingular M-matrix. To show that

has the form of a compartmental model, define

(5.2) ffii -Aii . dj/ di )Aji, 1,..., n,
j=l
j4i

(5.3) aij (di/dj)Aig, :/:j, i,j 1,..., n.

With 5.3 we can rewrite (5.2) as

(5.4)
n

ffii =-Aii- Z oj
j=l
ji

Since Aij (di/)Ai, it follows that

(5.5) lii E O’ji,
j=l

i= 1,...,n,

(5.6) Ai ai, =/=j, i,j 1,..., n,

which verifies (2.4), (2.5) with A replaced by A.
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Next, we introduce the scaled energy states Es
DP so that (4.8) becomes

(5.7) 0 AEs +
With this scaling and the definition ofA, (5.7) has the form of a steady-state compart-
mental model as given by (2.12).

Remark 5.1. Consider the energy conservative case in which (F) is skew-Hermitian
so that (4.23) holds. Then the row and column sums of are zero. If is also a Z-
matrix, then no scaling is required (that is, D I suffices) to obtain a steady-state com-
partmental model.

6. Conclusion. Compartmental models are widely used to represent the dynamics
of systems involving the exchange of inherently nonnegative quantities such as mass or
energy. In this paper we summarized some of the key properties of these models and
characterized their steady-state energy distribution. In addition, conditions were given
under which the steady-state energy distribution tends toward equipartition in the limit
of strong off-diagonal coupling. We then considered arbitrary state space models with
additive white noise disturbance and obtained an equation that governs the evolution of
the nonnegative diagonal system. The steady-state limit of this diagonal system was then
examined for its relationship to steady-state compartmental models. The key step in this
regard was to show that the coefficient matrix is a Z-matrix, that is, has nonpositive off-
diagonal elements. It was shown that if the off-diagonal coupling is sufficiently weak,
then (up to a positive scaling) the diagonal system does in fact have the form of a
compartmental model. Conditions under which the diagonal system is a compartmental
model in the case of strong coupling remain an area for future research.

Appendix. Kronecker matrix algebra. In this Appendix we review some basic def-
initions and identities from Kronecker matrix algebra. Our main references are 67 and
68 ]. We also introduce several specialized definitions that are specific to this paper.

For A e C m, let col/(A denote the ith column ofA and define the vec and vec-1
operators by

vecA & [COll:(A)]col(A)j cnm’ vec- (vecA) &A"

For A 6 Cnm and B 6 Cp, the Kronecker product ofA and B is defined by

AIB A12B NimBI, AlB AB Az.mBA (R) B npXmq,

An B AneB An’mB-I
while for A e C n and B e C the Kronecker sum ofA and B is defined by

A (9 B & A (9 Im + In (9 B Cnmnm.
For compatible complex matrices A, B, C, D, the following identities hold:

(A.1) (A +B)(R)C=A(R)C+B(R)C,

(A.2) A (R) (B + C) A (R) B + A (R) C,

(A.3) (A (R) B)v= Ar(R) B 7", (A (9 B)r= A(9 B 7,
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(A.4)

(A.5)

(A.6)

(A.7)

(A.8)

(A.9)

(A (R) B)(C (R) D) (AC) (R) (BD),

(A (R) B) -1 A -I (R) B-,
vec ABC Cr (R) A) vec B,

vec (AB + BC) C @ A) vec B,

eAB eA (R) eB,

(A (R) B) C (R) D) (A C) (R) (B n).

If w, y (2" and x, z (2 m, then

(A.10) (WXT) (yz T) (Wo y)(Xo Z) T.

Next, let ei denote the ith column of the n n identity matrix, where the dimension n
is determined by context, and define 8rs & erers, which is the not-necessarily square
matrix whose (r, s) element is and whose remaining elements are all 0. Now define
the n /7 2 matrix

Ud ---- 11v22 nn] Z el" (R) Oii
i=1

Furthermore, letting I/i denote the (n n matrix obtained by deleting the ith row
of the n n identity matrix, define the (n 2 n) n 2 matrix

I/

Uo / I/2 0

IfA, B (2" x ,, then 69 and 70

n

Z Oii (R) I/i.
i=1

1/n

(A.11) Ud(A (R) B)U Ud(B (R) A)U A B.

Note that Ud and Uo satisfy the identities

(i.12) UaU In, UdUTo Onx(n2-n), UoUTo In2-n,
n

(i.13) UTo Uo Z ii (R) Ojj
i,j=l
i::j

Hence the matrix U N,2,2 defined by

satisfies Ur U-I; that is, U is an orthogonal (but not symmetric) permutation matrix.
For a square matrixA (2" ", let {A } and (A) denote the diagonal and off-diagonal

portions ofA, respectively. That is, A } is the diagonal matrix defined by

{A}&IoA,
and (A) is the off-diagonal matrix defined by
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Next, as in 67 ], let vecd A denote the n-vector comprised of the diagonal elements of
A, that is,

vecd A {A } e, vecd -1 (vecd A) {A },

where e 1] r, and let veco A denote the (n n)-vector comprised of the
-1off-diagonal elements of A ordered in accordance with vec A. Define also veco

(veco A) A ). The above-defined operators satisfy the following identities:

(1.14) vecd A Ue vec A vecd {A } Ue vec {A },

(A. 15 veco A Uo vec A veco (A) Uo vec (A),
(a. 16) vec A ) Uff vecd A, vec (A) Uo veco A.

Finally, ifA, B C n, it is useful to note that

(a.17) {A B) {A} @ {B}, (A @ B) (A)
(A. 18) A B {A} {B} + (A)
(a.19) Ua(A @ B)US {A + B}, Uo{A B} Uff O,

(A.20) Uo(A B)U Uo((A) (B))US.
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