
Chapter 2

Compartmental Models
in Epidemiology

Fred Brauer

Abstract We describe and analyze compartmental models for disease trans-
mission. We begin with models for epidemics, showing how to calculate the
basic reproduction number and the final size of the epidemic. We also study
models with multiple compartments, including treatment or isolation of in-
fectives. We then consider models including births and deaths in which there
may be an endemic equilibrium and study the asymptotic stability of equi-
libria. We conclude by studying age of infection models which give a unifying
framework for more complicated compartmental models.

2.1 Introduction

Communicable diseases such as measles, influenza, or tuberculosis, are a fact
of modern life. The mechanism of transmission of infections is now known
for most diseases. Generally, diseases transmitted by viral agents, such as
influenza, measles, rubella (German measles), and chicken pox, confer im-
munity against reinfection, while diseases transmitted by bacteria, such as
tuberculosis, meningitis, and gonorrhea, confer no immunity against rein-
fection. Other diseases, such as malaria, are transmitted not directly from
human to human but by vectors, which are agents (usually insects) who are
infected by humans and who then transmit the disease to humans. The West
Nile virus involves two vectors, mosquitoes and birds. For sexually transmit-
ted diseases with heterosexual transmission each sex acts as a vector and
disease is transmitted back and forth between the sexes.
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We will be concerned both with epidemics which are sudden outbreaks
of a disease, and endemic situations, in which a disease is always present.
Epidemics such as the 2002 outbreak of SARS, the Ebola virus and avian
flu outbreaks are events of concern and interest to many people. The 1918
Spanish flu epidemic caused millions of deaths, and a recurrence of a major
influenza epidemic is a dangerous possibility. An introduction of smallpox is
of considerable concern to government officials dealing with terrorism threats.

An endemic situation is one in which a disease is always present. The preva-
lence and effects of many diseases in less developed countries are probably
less well-known but may be of even more importance. Every year millions of
people die of measles, respiratory infections, diarrhea and other diseases that
are easily treated and not considered dangerous in the Western world. Dis-
eases such as malaria, typhus, cholera, schistosomiasis, and sleeping sickness
are endemic in many parts of the world. The effects of high disease mortality
on mean life span and of disease debilitation and mortality on the economy
in afflicted countries are considerable.

Our goal is to provide an introduction to mathematical epidemiology, in-
cluding the development of mathematical models for the spread of disease
as well as tools for their analysis. Scientific experiments usually are designed
to obtain information and to test hypotheses. Experiments in epidemiology
with controls are often difficult or impossible to design and even if it is pos-
sible to arrange an experiment there are serious ethical questions involved
in withholding treatment from a control group. Sometimes data may be ob-
tained after the fact from reports of epidemics or of endemic disease levels,
but the data may be incomplete or inaccurate. In addition, data may con-
tain enough irregularities to raise serious questions of interpretation, such as
whether there is evidence of chaotic behaviour [12]. Hence, parameter esti-
mation and model fitting are very difficult. These issues raise the question of
whether mathematical modeling in epidemiology is of value.

Our response is that mathematical modeling in epidemiology provides un-
derstanding of the underlying mechanisms that influence the spread of disease
and, in the process, it suggests control strategies. In fact, models often iden-
tify behaviours that are unclear in experimental data – often because data
are non-reproducible and the number of data points is limited and subject to
errors in measurement. For example, one of the fundamental results in math-
ematical epidemiology is that most mathematical epidemic models, including
those that include a high degree of heterogeneity, usually exhibit “threshold”
behaviour. In epidemiological terms this can be stated as follows: If the av-
erage number of secondary infections caused by an average infective, called
the basic reproduction number, is less than one a disease will die out, while
if it exceeds one there will be an epidemic. This broad principle, consistent
with observations and quantified via epidemiological models, has been con-
sistently used to estimate the effectiveness of vaccination policies and the
likelihood that a disease may be eliminated or eradicated. Hence, even if it
is not possible to verify hypotheses accurately, agreement with hypotheses of
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a qualitative nature is often valuable. Expressions for the basic reproduction
number for HIV in various populations have been used to test the possible
effectiveness of vaccines that may provide temporary protection by reducing
either HIV-infectiousness or susceptibility to HIV. Models are used to esti-
mate how widespread a vaccination plan must be to prevent or reduce the
spread of HIV.

In the mathematical modeling of disease transmission, as in most other
areas of mathematical modeling, there is always a trade-off between simple
models, which omit most details and are designed only to highlight general
qualitative behaviour, and detailed models, usually designed for specific sit-
uations including short-term quantitative predictions. Detailed models are
generally difficult or impossible to solve analytically and hence their useful-
ness for theoretical purposes is limited, although their strategic value may
be high. In these notes we describe simple models in order to establish broad
principles. Furthermore, these simple models have additional value as they
are the building blocks of models that include more detailed structure.

Many of the early developments in the mathematical modeling of commu-
nicable diseases are due to public health physicians. The first known result in
mathematical epidemiology is a defense of the practice of inoculation against
smallpox in 1760 by Daniel Bernoulli, a member of a famous family of math-
ematicians (eight spread over three generations) who had been trained as a
physician. The first contributions to modern mathematical epidemiology are
due to P.D. En’ko between 1873 and 1894 [11], and the foundations of the
entire approach to epidemiology based on compartmental models were laid
by public health physicians such as Sir Ross, R.A., W.H. Hamer, A.G. McK-
endrick and W.O. Kermack between 1900 and 1935, along with important
contributions from a statistical perspective by J. Brownlee. A particularly
instructive example is the work of Ross on malaria. Dr. Ross was awarded
the second Nobel Prize in Medicine for his demonstration of the dynamics of
the transmission of malaria between mosquitoes and humans. Although his
work received immediate acceptance in the medical community, his conclu-
sion that malaria could be controlled by controlling mosquitoes was dismissed
on the grounds that it would be impossible to rid a region of mosquitoes com-
pletely and that in any case mosquitoes would soon reinvade the region. After
Ross formulated a mathematical model that predicted that malaria outbreaks
could be avoided if the mosquito population could be reduced below a critical
threshold level, field trials supported his conclusions and led to sometimes
brilliant successes in malaria control. However, the Garki project provides a
dramatic counterexample. This project worked to eradicate malaria from a
region temporarily. However, people who have recovered from an attack of
malaria have a temporary immunity against reinfection. Thus elimination of
malaria from a region leaves the inhabitants of this region without immunity
when the campaign ends, and the result can be a serious outbreak of malaria.

We will begin with an introduction to epidemic models. Next, we will
incorporate demographic effects into the models to explore endemic states,
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and finally we will describe models with infectivity depending on the age
of infection. Our approach will be qualitative. By this we mean that rather
than attempting to find explicit solutions of the systems of differential equa-
tions which will form our models we will be concerned with the asymptotic
behaviour, that is, the behaviour as t → ∞ of solutions.

This material is meant to be an introduction to the study of compartmental
models in mathematical epidemiology. More advanced material may be found
in many other sources, including Chaps. 5–9 of this volume, the case studies
in Chaps. 11–14, and [2, 4–6,9, 17,29,35].

2.1.1 Simple Epidemic Models

An epidemic, which acts on a short temporal scale, may be described as a
sudden outbreak of a disease that infects a substantial portion of the popula-
tion in a region before it disappears. Epidemics usually leave many members
untouched. Often these attacks recur with intervals of several years between
outbreaks, possibly diminishing in severity as populations develop some im-
munity. This is an important aspect of the connection between epidemics and
disease evolution.

The Book of Exodus describes the plagues that Moses brought down upon
Egypt, and there are several other biblical descriptions of epidemic outbreaks.
Descriptions of epidemics in ancient and medieval times frequently used the
term “plague” because of a general belief that epidemics represented divine
retribution for sinful living. More recently some have described AIDS as pun-
ishment for sinful activities. Such views have often hampered or delayed at-
tempts to control this modern epidemic .

There are many biblical references to diseases as historical influences, such
as the decision of Sennacherib, the king of Assyria, to abandon his attempt to
capture Jerusalem about 700 BC because of the illness of his soldiers (Isaiah
37, 36–38). The fall of empires has been attributed directly or indirectly to
epidemic diseases. In the second century AD the so-called Antonine plagues
(possibly measles and smallpox) invaded the Roman Empire, causing drastic
population reductions and economic hardships. These led to disintegration
of the empire because of disorganization, which facilitated invasions of bar-
barians. The Han empire in China collapsed in the third century AD after
a very similar sequence of events. The defeat of a population of millions of
Aztecs by Cortez and his 600 followers can be explained in part by a small-
pox epidemic that devastated the Aztecs but had almost no effect on the
invading Spaniards thanks to their built-in immunities. The Aztecs were not
only weakened by disease but also confounded by what they interpreted as
a divine force favoring the invaders. Smallpox then spread southward to the
Incas in Peru and was an important factor in the success of Pizarro’s invasion
a few years later. Smallpox was followed by other diseases such as measles
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and diphtheria imported from Europe to North America. In some regions,
the indigenous populations were reduced to one tenth of their previous levels
by these diseases. Between 1519 and 1530 the Indian population of Mexico
was reduced from 30 million to 3 million.

The Black Death spread from Asia throughout Europe in several waves
during the fourteenth century, beginning in 1346, and is estimated to have
caused the death of as much as one third of the population of Europe between
1346 and 1350. The disease recurred regularly in various parts of Europe
for more than 300 years, notably as the Great Plague of London of 1665–
1666. It then gradually withdrew from Europe. As the plague struck some
regions harshly while avoiding others, it had a profound effect on political
and economic developments in medieval times. In the last bubonic plague
epidemic in France (1720–1722), half the population of Marseilles, 60% of
the population in nearby Toulon, 44% of the population of Arles and 30%
of the population of Aix and Avignon died, but the epidemic did not spread
beyond Provence.

The historian W.H. McNeill argues, especially in his book [26], that the
spread of communicable diseases has frequently been an important influence
in history. For example, there was a sharp population increase throughout the
world in the eighteenth century; the population of China increased from 150
million in 1760 to 313 million in 1794 and the population of Europe increased
from 118 million in 1700 to 187 million in 1800. There were many factors in-
volved in this increase, including changes in marriage age and technological
improvements leading to increased food supplies, but these factors are not
sufficient to explain the increase. Demographic studies indicate that a satis-
factory explanation requires recognition of a decrease in the mortality caused
by periodic epidemic infections. This decrease came about partly through
improvements in medicine, but a more important influence was probably the
fact that more people developed immunities against infection as increased
travel intensified the circulation and co-circulation of diseases.

Perhaps the first epidemic to be examined from a modeling point of view
was the Great Plague in London (1665–1666). The plague was one of a se-
quence of attacks beginning in the year 1346 of what came to be known as
the Black Death. It is now identified as the bubonic plague, which had ac-
tually invaded Europe as early as the sixth century during the reign of the
Emperor Justinian of the Roman Empire and continued for more than three
centuries after the Black Death. The Great Plague killed about one sixth of
the population of London. One of the few “benefits” of the plague was that it
caused Cambridge University to be closed for two years. Isaac Newton, who
was a student at Cambridge at the time, was sent to his home and while “in
exile” he had one of the most productive scientific periods of any human in
history. He discovered his law of gravitation, among other things, during this
period.

The characteristic features of the Great Plague were that it appeared
quite suddenly, grew in intensity, and then disappeared, leaving part of the
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population untouched. The same features have been observed in many other
epidemics, both of fatal diseases and of diseases whose victims recovered with
immunity against reinfection.

In the nineteenth century recurrent invasions of cholera killed millions in
India. The influenza epidemic of 1918–1919 killed more than 20 million people
overall, more than half a million in the United States. One of the questions
that first attracted the attention of scientists interested in the study of the
spread of communicable diseases was why diseases would suddenly develop in
a community and then disappear just as suddenly without infecting the entire
community. One of the early triumphs of mathematical epidemiology [21] was
the formulation of a simple model that predicted behaviour very similar to
the behaviour observed in countless epidemics. The Kermack–McKendrick
model is a compartmental model based on relatively simple assumptions on
the rates of flow between different classes of members of the population.

There are many questions of interest to public health physicians confronted
with a possible epidemic. For example, how severe will an epidemic be? This
question may be interpreted in a variety of ways. For example, how many
individuals will be affected altogether and thus require treatment? What is
the maximum number of people needing care at any particular time? How
long will the epidemic last? How much good would quarantine or isolation of
victims do in reducing the severity of the epidemic? These are some of the
questions we would like to study with the aid of models.

2.1.2 The Kermack–McKendrick Model

We formulate our descriptions as compartmental models, with the population
under study being divided into compartments and with assumptions about
the nature and time rate of transfer from one compartment to another. Dis-
eases that confer immunity have a different compartmental structure from
diseases without immunity. We will use the terminology SIR to describe a
disease which confers immunity against re-infection, to indicate that the pas-
sage of individuals is from the susceptible class S to the infective class I to
the removed class R. On the other hand, we will use the terminology SIS
to describe a disease with no immunity against re-infection, to indicate that
the passage of individuals is from the susceptible class to the infective class
and then back to the susceptible class. Other possibilities include SEIR and
SEIS models, with an exposed period between being infected and becom-
ing infective, and SIRS models, with temporary immunity on recovery from
infection.

The independent variable in our compartmental models is the time t and
the rates of transfer between compartments are expressed mathematically as
derivatives with respect to time of the sizes of the compartments, and as a
result our models are formulated initially as differential equations. Possible
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generalizations, which we shall not explore in these notes, include models in
which the rates of transfer depend on the sizes of compartments over the past
as well as at the instant of transfer, leading to more general types of func-
tional equations, such as differential-difference equations, integral equations,
or integro-differential equations.

In order to model such an epidemic we divide the population being studied
into three classes labeled S, I, and R. We let S(t) denote the number of indi-
viduals who are susceptible to the disease, that is, who are not (yet) infected
at time t. I(t) denotes the number of infected individuals, assumed infectious
and able to spread the disease by contact with susceptibles. R(t) denotes the
number of individuals who have been infected and then removed from the
possibility of being infected again or of spreading infection. Removal is car-
ried out either through isolation from the rest of the population or through
immunization against infection or through recovery from the disease with full
immunity against reinfection or through death caused by the disease. These
characterizations of removed members are different from an epidemiological
perspective but are often equivalent from a modeling point of view which
takes into account only the state of an individual with respect to the disease.

In formulating models in terms of the derivatives of the sizes of each com-
partment we are assuming that the number of members in a compartment
is a differentiable function of time. This may be a reasonable approximation
if there are many members in a compartment, but it is certainly suspect
otherwise. In formulating models as differential equations, we are assuming
that the epidemic process is deterministic, that is, that the behaviour of a
population is determined completely by its history and by the rules which
describe the model. In other chapters of this volume Linda Allen and Ping
Yan describe the study of stochastic models in which probabilistic concepts
are used and in which there is a distribution of possible behaviours. The de-
veloping study of network science, introduced in Chap. 4 of this volume and
described in [28,30,33], is another approach.

The basic compartmental models to describe the transmission of commu-
nicable diseases are contained in a sequence of three papers by W.O. Ker-
mack and A.G. McKendrick in 1927, 1932, and 1933 [21–23]. The first of
these papers described epidemic models. What is often called the Kermack–
McKendrick epidemic model is actually a special case of the general model
introduced in this paper. The general model included dependence on age of
infection, that is, the time since becoming infected. Curiously, Kermack and
McKendrick did not explore this situation further in their later models which
included demographic effects. Age of infection models have become important
in the study of HIV/AIDS, and we will return to them in the last section of
this chapter.

The special case of the model proposed by Kermack and McKendrick in
1927 which is the starting point for our study of epidemic models is
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S′ = −βSI

I ′ = βSI − αI

R′ = αI .

A flow chart is shown in Fig. 2.1. It is based on the following assumptions:

S I R

Fig. 2.1 Flow chart for the SIR model

(1) An average member of the population makes contact sufficient to trans-
mit infection with βN others per unit time, where N represents total
population size (mass action incidence) .

(2) Infectives leave the infective class at rate αI per unit time.
(3) There is no entry into or departure from the population, except possibly

through death from the disease.

According to (1), since the probability that a random contact by an in-
fective is with a susceptible, who can then transmit infection, is S/N , the
number of new infections in unit time per infective is (βN)(S/N), giving
a rate of new infections (βN)(S/N)I = βSI. Alternately, we may argue
that for a contact by a susceptible the probability that this contact is with
an infective is I/N and thus the rate of new infections per susceptible is
(βN)(I/N), giving a rate of new infections (βN)(I/N)S = βSI. Note that
both approaches give the same rate of new infections; there are situations
which we shall encounter where one is more appropriate than the other. We
need not give an algebraic expression for N since it cancels out of the final
model, but we should note that for a disease that is fatal to all who are in-
fected N = S+I; while, for a disease from which all infected members recover
with immunity, N = S + I +R. Later, we will allow the possibility that some
infectives recover while others die of the disease. The hypothesis (3) really
says that the time scale of the disease is much faster than the time scale
of births and deaths so that demographic effects on the population may be
ignored. An alternative view is that we are only interested in studying the
dynamics of a single epidemic outbreak. In later sections we shall consider
models that are the same as those considered in this first section except for
the incorporation of demographic effects (births and deaths) along with the
corresponding epidemiological assumptions.
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The assumption (2) requires a fuller mathematical explanation, since the
assumption of a recovery rate proportional to the number of infectives has
no clear epidemiological meaning. We consider the “cohort” of members who
were all infected at one time and let u(s) denote the number of these who
are still infective s time units after having been infected. If a fraction α of
these leave the infective class in unit time then

u′ = −αu ,

and the solution of this elementary differential equation is

u(s) = u(0) e−αs .

Thus, the fraction of infectives remaining infective s time units after having
become infective is e−αs, so that the length of the infective period is dis-
tributed exponentially with mean

∫∞
0

e−αsds = 1/α, and this is what (2)
really assumes.

The assumptions of a rate of contacts proportional to population size N
with constant of proportionality β, and of an exponentially distributed recov-
ery rate are unrealistically simple. More general models can be constructed
and analyzed, but our goal here is to show what may be deduced from ex-
tremely simple models. It will turn out that many more realistic models
exhibit very similar qualitative behaviours.

In our model R is determined once S and I are known, and we can drop
the R equation from our model, leaving the system of two equations

S′ = −βSI (2.1)
I ′ = (βS − α)I .

We are unable to solve this system analytically but we learn a great deal
about the behaviour of its solutions by the following qualitative approach.
To begin, we remark that the model makes sense only so long as S(t) and I(t)
remain non-negative. Thus if either S(t) or I(t) reaches zero we consider the
system to have terminated. We observe that S′ < 0 for all t and I ′ > 0 if and
only if S > α/β. Thus I increases so long as S > α/β but since S decreases for
all t, I ultimately decreases and approaches zero. If S(0) < α/β, I decreases
to zero (no epidemic), while if S(0) > α/β, I first increases to a maximum
attained when S = α/β and then decreases to zero (epidemic). We think of
introducing a small number of infectives into a population of susceptibles and
ask whether there will be an epidemic. The quantity βS(0)/α is a threshold
quantity, called the basic reproduction number and denoted by R0, which
determines whether there is an epidemic or not. If R0 < 1 the infection dies
out, while if R0 > 1 there is an epidemic.

The definition of the basic reproduction number R0 is that the basic re-
production number is the number of secondary infections caused by a single
infective introduced into a wholly susceptible population of size K ≈ S(0)
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over the course of the infection of this single infective. In this situation, an
infective makes βK contacts in unit time, all of which are with susceptibles
and thus produce new infections, and the mean infective period is 1/α; thus
the basic reproduction number is actually βK/α rather than βS(0)/α.

Instead of trying to solve for S and I as functions of t, we divide the two
equations of the model to give

I ′

S′ =
dI

dS
=

(βS − α)I
−βSI

= −1 +
α

βS
,

and integrate to find the orbits (curves in the (S, I)-plane, or phase plane)

I = −S +
α

β
logS + c , (2.2)

with c an arbitrary constant of integration. Here, we are using log to denote
the natural logarithm. Another way to describe the orbits is to define the
function

V (S, I) = S + I − α

β
log S

and note that each orbit is a curve given implicitly by the equation V (S, I) = c
for some choice of the constant c. The constant c is determined by the ini-
tial values S(0), I(0) of S and I, respectively, because c = V (S(0), I(0)) =
S(0)+I(0)−α log S(0)/β. Note that the maximum value of I on each of these
orbits is attained when S = α/β. Note also that since none of these orbits
reaches the I - axis, S > 0 for all times. In particular, S∞ = limt→∞ S(t) > 0,
which implies that part of the population escapes infection.

Let us think of a population of size K into which a small number of
infectives is introduced, so that S0 ≈ K, I0 ≈ 0, and R0 = βK/α. If we use
the fact that limt→∞ I(t) = 0, and let S∞ = limt→∞ S(t), then the relation
V (S0, I0) = V (S∞, 0) gives

K − α

β
log S0 = S∞ − α

β
log S∞ ,

from which we obtain an expression for β/α in terms of the measurable
quantities S0 and S∞, namely

β

α
=

(log S0 − log S∞)
K − S∞

.

We may rewrite this in terms of R0 as the final size relation

log S0 − log S∞ = R0

[

1 − S∞
K

]

. (2.3)

In particular, since the right side of (2.3) is finite, the left side is also finite,
and this shows that S∞ > 0.
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It is generally difficult to estimate the contact rate β which depends on
the particular disease being studied but may also depend on social and be-
havioural factors. The quantities S0 and S∞ may be estimated by serological
studies (measurements of immune responses in blood samples) before and
after an epidemic, and from these data the basic reproduction number R0

may be estimated by using (2.3). This estimate, however, is a retrospective
one which can be determined only after the epidemic has run its course.

Initially, the number of infectives grows exponentially because the equation
for I may be approximated by

I ′ = (βK − α)I

and the initial growth rate is

r = βK − α = α(R0 − 1) .

This initial growth rate r may be determined experimentally when an epi-
demic begins. Then since K and α may be measured β may be calculated as

β =
r + α

K
.

However, because of incomplete data and under-reporting of cases this esti-
mate may not be very accurate. This inaccuracy is even more pronounced for
an outbreak of a previously unknown disease, where early cases are likely to
be misdiagnosed.

The maximum number of infectives at any time is the number of infectives
when the derivative of I is zero, that is, when S = α/β. This maximum is
given by

Imax = S0 + I0 −
α

β
log S0 −

α

β
+

α

β
log

α

β
, (2.4)

obtained by substituting S = α/β, I = Imax into (2.2).

Example. (The Great Plague in Eyam) The village of Eyam near Sheffield,
England suffered an outbreak of bubonic plague in 1665–1666 the source of
which is generally believed to be the Great Plague of London. The Eyam
plague was survived by only 83 of an initial population of 350 persons. As
detailed records were preserved and as the community was persuaded to
quarantine itself to try to prevent the spread of disease to other communities,
the disease in Eyam has been used as a case study for modeling [31]. Detailed
examination of the data indicates that there were actually two outbreaks
of which the first was relatively mild. Thus we shall try to fit the model
(2.1) over the period from mid-May to mid-October 1666, measuring time in
months with an initial population of seven infectives and 254 susceptibles,
and a final population of 83. Values of susceptibles and infectives in Eyam are
given in [31] for various dates, beginning with S(0) = 254, I(0) = 7, shown
in Table 2.1.
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Fig. 2.2 The S–I plane

Table 2.1 Eyam Plague data

Date (1666) Susceptibles Infectives

July 3/4 235 14.5

July 19 201 22

August 3/4 153.5 29

August 19 121 21

September 3/4 108 8

September 19 97 8

October 4/5 Unknown Unknown

October 20 83 0

The relation (2.3) with S0 = 254, I0 = 7, S∞ = 83 gives β/α = 6.54 ×
10−3, α/β = 153. The infective period was 11 days, or 0.3667 month, so that
α = 2.73. Then β = 0.0178. The relation (2.4) gives an estimate of 30.4 for
the maximum number of infectives. We use the values obtained here for the
parameters β and α in the model (2.1) for simulations of both the phase
plane, the (S, I)-plane, and for graphs of S and I as functions of t (Figs. 2.2,
2.3, and 2.4). Figure 2.5 plots these data points together with the phase
portrait given in Fig. 2.2 for the model (2.1).

The actual data for the Eyam epidemic are remarkably close to the predic-
tions of this very simple model. However, the model is really too good to be
true. Our model assumes that infection is transmitted directly between peo-
ple. While this is possible, bubonic plague is transmitted mainly by rat fleas.
When an infected rat is bitten by a flea, the flea becomes extremely hungry
and bites the host rat repeatedly, spreading the infection in the rat. When
the host rat dies its fleas move on to other rats, spreading the disease further.
As the number of available rats decreases the fleas move to human hosts, and
this is how plague starts in a human population (although the second phase
of the epidemic may have been the pneumonic form of bubonic plague, which
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can be spread from person to person). One of the main reasons for the spread
of plague from Asia into Europe was the passage of many trading ships; in
medieval times ships were invariably infested with rats. An accurate model
of plague transmission would have to include flea and rat populations, as well
as movement in space. Such a model would be extremely complicated and
its predictions might well not be any closer to observations than our simple
unrealistic model. In [31] a stochastic model was also used to fit the data,
but the fit was rather poorer than the fit for the simple deterministic model
(2.1).
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In the village of Eyam the rector persuaded the entire community to quar-
antine itself to prevent the spread of disease to other communities. This policy
actually increased the infection rate in the village by keeping fleas, rats, and
people in close contact with one another, and the mortality rate from bubonic
plague was much higher in Eyam than in London. Further, the quarantine
could do nothing to prevent the travel of rats and thus did little to prevent the
spread of disease to other communities. One message this suggests to math-
ematical modelers is that control strategies based on false models may be
harmful, and it is essential to distinguish between assumptions that simplify
but do not alter the predicted effects substantially, and wrong assumptions
which make an important difference.

2.1.3 Kermack–McKendrick Models with General
Contact Rates

The assumption in the model (2.1) of a rate of contacts per infective which
is proportional to population size N , called mass action incidence or bilinear
incidence, was used in all the early epidemic models. However, it is quite
unrealistic, except possibly in the early stages of an epidemic in a population
of moderate size. It is more realistic to assume a contact rate which is a
non-increasing function of total population size. For example, a situation in
which the number of contacts per infective in unit time is constant, called
standard incidence, is a more accurate description for sexually transmitted
diseases.



2 Compartmental Models 33

We generalize the model (2.1) by replacing the assumption (1) by the
assumption that an average member of the population makes C(N) contacts
in unit time with C ′(N) ≥ 0 [7, 10], and we define

β(N) =
C(N)

N
.

It is reasonable to assume β′(N) ≤ 0 to express the idea of saturation in the
number of contacts. Then mass action incidence corresponds to the choice
C(N) = βN , and standard incidence corresponds to the choice C(N) = λ.
The assumptions C(N) = Nβ(N), C ′(N) ≥ 0 imply that

β(N) + Nβ′(N) ≥ 0 . (2.5)

Some epidemic models [10] have used a Michaelis–Menten type of interac-
tion of the form

C(N) =
aN

1 + bN
.

Another form based on a mechanistic derivation for pair formation [14] leads
to an expression of the form

C(N) =
aN

1 + bN +
√

1 + 2bN
.

Data for diseases transmitted by contact in cities of moderate size [25] sug-
gests that data fits the assumption of a form

C(N) = λNa

with a = 0.05 quite well. All of these forms satisfy the conditions C ′(N) ≥
0, β′(N) ≤ 0.

Because the total population size is now present in the model we must
include an equation for total population size in the model. This forces us
to make a distinction between members of the population who die of the
disease and members of the population who recover with immunity against
reinfection. We assume that a fraction f of the αI members leaving the
infective class at time t recover and the remaining fraction (1 − f) die of
disease. We use S, I, and N as variables, with N = S +I +R. We now obtain
a three-dimensional model

S′ = −β(N)SI

I ′ = β(N)SI − αI (2.6)
N ′ = −(1 − f)αI .

We also have the equation R′ = −fαI, but we need not include it in the
model since R is determined when S, I, and N are known. We should note
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that if f = 1 the total population size remains equal to the constant K, and
the model (2.6) reduces to the simpler model (2.1) with β replaced by the
constant β(K).

We wish to show that the model (2.6) has the same qualitative behaviour
as the model (2.1), namely that there is a basic reproduction number which
distinguishes between disappearance of the disease and an epidemic outbreak,
and that some members of the population are left untouched when the epi-
demic passes. These two properties are the central features of all epidemic
models.

For the model (2.6) the basic reproduction number is given by

R0 =
Kβ(K)

α

because a single infective introduced into a wholly susceptible population
makes C(K) = Kβ(K) contacts in unit time, all of which are with sus-
ceptibles and thus produce new infections, and the mean infective period is
1/α. In addition to the basic reproduction number R0 there is also a time-
dependent running reproduction number which we call R∗, representing the
number of secondary infections caused by a single individual in the popula-
tion who becomes infective at time t. In this situation, an infective makes
C(N) = Nβ(N) contacts in unit time and a fraction S/N are with suscep-
tibles and thus produce new infections. Thus it is easy to see that for the
model (2.6) the running reproduction number is given by

R∗ =
Sβ(N)

α
.

If R∗ < 1 for all large t, the epidemic will pass. We may calculate the rate of
change of the running reproduction number with respect to time, using (2.6)
and (2.5) to find that

d

dt
R∗ =

S′(t)β(N) + S(t)β′(N)N ′(t)
α

=
(−β(N))2SI − Sα(1 − f)β′(N)

α
.

≤ β(N)SI

α
·
[

β(N) − (1 − f)α
N

]

.

Thus d
dtR∗ < 0 if Nβ(N) > α(1−f), or R∗ > (1−f)S/N. This means that R∗

decreases whenever R∗ > 1. Thus if R∗ < 1 for t = T then R∗ < 1 for t > T .
If R0 > 1 then I ′(0) = α(R0 − 1)I(0) > 0, and an epidemic begins. However,
R∗ decreases until it is less than 1 and then remains less than 1. Thus the
epidemic will pass. If R0 < 1 then I ′(0) = α(R0 − 1)I(0) < 0,R∗ < 1 for all
t, and there is no epidemic.

From (2.6) we obtain
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S′ + I ′ = −αI

N ′ = −α(1 − f)I .

Integration of these equations from 0 to t gives

S(t) + I(t) − S(0) − I(0) = −α

∫ t

0

I(s)ds (2.7)

N(t) − N(0) = −α(1 − f)
∫ t

0

I(s)ds .

When we combine these two equations, eliminating the integral expression,
and use N(0) = S(0) + I(0) = K, we obtain

K − N(t) = (1 − f)[K − S(t) − I(t)] .

If we let t → ∞, S(t) and N(t) decrease monotonically to limits S∞ and N∞
respectively and I(t) → 0. This gives the relation

K − N∞ = (1 − f)[K − S∞] . (2.8)

In this equation, K−N∞ is the change in population size, which is the number
of disease deaths over the course of the epidemic, while K−S∞ is the change
in the number of susceptibles, which is the number of disease cases over the
course of the epidemic. In this model, (2.8) is obvious, but we shall see in
a more general setting how to derive an analogous equation from which we
can calculate an average disease mortality. Equation (2.8) generalizes to the
infection age epidemic model of Kermack and McKendrick.

If we use the same approach as was used for (2.1) to show that S∞ > 0,
we obtain

dI

dS
= −1 +

α

Sβ(N)

and we are unable to proceed because of the dependence on N . However, we
may use a different approach to obtain the desired result. We assume that
β(0) is finite, thus ruling out standard incidence. If we let t → ∞ in the
second equation of (2.7) we obtain

α

∫ ∞

0

I(s)ds = S(0) + I(0) − S∞ = K − S∞.

The first equation of (2.6) may be written as

−S′(t)
S(t)

= β(N(t))I(t).

Since
β(N) ≤ β(0),
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integration from 0 to ∞ gives

log
S(0)
S∞

=
∫ ∞

0

β(N(t))I(t)dt

≤ β(0)
∫ ∞

0

I(t)dt

=
β(0)(K − S∞)

αK
.

Since the right side of this inequality is finite, the left side is also finite and
this establishes that S∞ > 0.

In addition, if we use the same integration together with the inequality

β(N) ≥ β(K),

we obtain a final size inequality

log
S(0)
S∞

=
∫ ∞

0

β(N(t))I(t)dt

≥ β(K)
∫ ∞

0

I(t)dt = R0

[

1 − S∞
K

]

.

If β(N) → ∞ as N → 0 we must use a different approach to analyze the
limiting behaviour. It is possible to show that S∞ = 0 is possible only if
N → 0 and

∫K

0
β(N)dN diverges, and this is possible only if f = 0, that is,

only if all infectives ide of disease. The assumption that β(N) is unbounded
as N → 0 is biologically unreasonable. In particular, standard incidence is
not realistic for small population sizes. A more realistic assumption would
be that the number of contacts per infective in unit time is linear for small
population size and saturates for larger population sizes, which rules out the
possibility that the epidemic sweeps through the entire population.

2.1.4 Exposed Periods

In many infectious diseases there is an exposed period after the transmission
of infection from susceptibles to potentially infective members but before
these potential infectives can transmit infection. If the exposed period is short
it is often neglected in modeling. A longer exposed period could perhaps lead
to significantly different model predictions, and we need to show that this is
not the case. To incorporate an exponentially distributed exposed period with
mean exposed period 1/κ we add an exposed class E and use compartments
S,E, I,R and total population size N = S+E+I+R to give a generalization
of the epidemic model (2.6).
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S′ = −β(N)SI

E′ = β(N)SI − κE (2.9)
I ′ = κE − αI

N ′ = −(1 − f)αI .

We also have the equation R′ = −fαI, but we need not include it in the
model since R is determined when S, I, and N are known. A flow chart is
shown in Fig. 2.6.

S E I R

Fig. 2.6 Flow chart for the SEIR model

The analysis of this model is the same as the analysis of (2.6), but with I
replaced by E + I. That is, instead of using the number of infectives as one
of the variables we use the total number of infected members, whether or not
they are capable of transmitting infection.

Some diseases have an asymptomatic stage in which there is some infec-
tivity rather than an exposed period. This may be modeled by assuming
infectivity reduced by a factor εE during an exposed period. A calculation of
the rate of new infections per susceptible leads to a model

S′ = −β(N)S(I + εEE)
E′ = β(N)S(I + εEE) − κE (2.10)
I ′ = κE − αI .

For this model

R0 =
Kβ(K)

α
+ εE

Kβ(K)
κ

.

There is a final size relation like (2.3) for the model (2.9). Integration of
the sum of the first two equations of (2.9) from 0 to ∞ gives

K − S∞ = κ

∫ ∞

0

E(s)ds

and division of the first equation of (2.9) by S followed by integration from
0 to ∞ gives
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log S0 − log S∞ =
∫ ∞

0

β(N(s))[I(s) + εEE(s)ds

≥ β(K)
∫ ∞

0

[I(s) + εEE(s)ds

= β(K)[εE +
κ

α
]
∫ ∞

0

E(s)ds

= R0

[

1 − S∞
K

]

.

The same integration using β(N) ≤ β(0) < ∞ shows as in the previous
section that S∞ > 0.

2.1.5 Treatment Models

One form of treatment that is possible for some diseases is vaccination to
protect against infection before the beginning of an epidemic. For example,
this approach is commonly used for protection against annual influenza out-
breaks. A simple way to model this would be to reduce the total population
size by the fraction of the population protected against infection. However,
in reality such inoculations are only partly effective, decreasing the rate of
infection and also decreasing infectivity if a vaccinated person does become
infected. To model this, it would be necessary to divide the population into
two groups with different model parameters and to make some assumptions
about the mixing between the two groups. We will not explore such more
complicated models here.

If there is a treatment for infection once a person has been infected, we
model this by supposing that a fraction γ per unit time of infectives is selected
for treatment, and that treatment reduces infectivity by a fraction δ. Suppose
that the rate of removal from the treated class is η. The SITR model, where
T is the treatment class, is given by

S′ = −β(N)S[I + δT ]
I ′ = β(N)S[I + δT ] − (α + γ)I (2.11)
T ′ = γI − ηT

N ′ = −(1 − f)αI − (1 − fT )ηT.

A flow chart is shown in Fig. 2.7.
It is not difficult to prove, much as was done for the model (2.1) that

S∞ = lim
t→∞

S(t) > 0, lim
t→∞

I(t) = lim
t→∞

T (t) = 0.
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S I

T

R

Fig. 2.7 Flow chart for the SITR model

In order to calculate the basic reproduction number, we may argue that an
infective in a totally susceptible population causes βK new infections in unit
time, and the mean time spent in the infective compartment is 1/(α + γ). In
addition, a fraction γ/(α+γ) of infectives are treated. While in the treatment
stage the number of new infections caused in unit time is δβK, and the mean
time in the treatment class is 1/η. Thus R0 is

R0 =
βK

α + γ
+

γ

α + γ

δβK

η
. (2.12)

It is also possible to establish the final size relation (2.3) by means similar
to those used for the simple model (2.1). We integrate the first equation of
(2.11) to obtain

log
S(0)
S∞

=
∫ ∞

0

β(N(t))[I(t) + δT (t)]dt

≥ β(K)
∫ ∞

0

[I(t) + δT (t)]dt.

Integration of the third equation of (2.11) gives

γ

∫ ∞

0

I(t)dt = η

∫ ∞

0

T (t)dt.

Integration of the sum of the first two equations of (2.11) gives

K − S∞ = (α + γ)
∫ ∞

0

I(t)dt.

Combination of these three equations and (2.12) gives
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log
S(0)
S∞

≥ R0

[
K − S∞

K

]

.

If β is constant, this relation is an equality, and is the same as (2.3).

2.1.6 An Epidemic Management
(Quarantine-Isolation) Model

An actual epidemic differs considerably from the idealized models (2.1) or
(2.6), as was shown by the SARS epidemic of 2002–3. Some notable differences
are:

1. As we have seen in the preceding section, at the beginning of an epi-
demic the number of infectives is small and a deterministic model, which
presupposes enough infectives to allow homogeneous mixing, is inappro-
priate.

2. When it is realized that an epidemic has begun, individuals are likely to
modify their behaviour by avoiding crowds to reduce their contacts and
by being more careful about hygiene to reduce the risk that a contact
will produce infection.

3. If a vaccine is available for the disease which has broken out, public
health measures will include vaccination of part of the population. Various
vaccination strategies are possible, including vaccination of health care
workers and other first line responders to the epidemic, vaccination of
members of the population who have been in contact with diagnosed
infectives, or vaccination of members of the population who live in close
proximity to diagnosed infectives.

4. Diagnosed infectives may be hospitalized, both for treatment and to iso-
late them from the rest of the population.

5. Contact tracing of diagnosed infectives may identify people at risk of
becoming infective, who may be quarantined (instructed to remain at
home and avoid contacts) and monitored so that they may be isolated
immediately if and when they become infective.

6. In some diseases, exposed members who have not yet developed symp-
toms may already be infective, and this would require inclusion in the
model of new infections caused by contacts between susceptibles and
asymptomatic infectives from the exposed class.

7. Isolation may be imperfect; in-hospital transmission of infection was a
major problem in the SARS epidemic.

In the SARS epidemic of 2002–2003 in-hospital transmission of disease
from patients to health care workers or visitors because of imperfect isolation
accounted for many of the cases. This points to an essential heterogeneity in
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disease transmission which must be included whenever there is any risk of
such transmission.

All these generalizations have been considered in studies of the SARS epi-
demic of 2002–3. While the ideas were suggested in SARS modelling, they are
in fact relevant to any epidemic. One beneficial effect of the SARS epidemic
has been to draw attention to epidemic modelling which may be of great
value in coping with future epidemics.

If a vaccine is available for a disease which threatens an epidemic outbreak,
a vaccinated class which is protected at least partially against infection should
be included in a model. While this is not relevant for an outbreak of a new
disease, it would be an important aspect to be considered in modelling an
influenza epidemic or a bioterrorist outbreak of smallpox.

For an outbreak of a new disease, where no vaccine is available, isolation
and quarantine are the only control measures available. Let us formulate a
model for an epidemic once control measures have been started. Thus, we
assume that an epidemic has started, but that the number of infectives is
small and almost all members of the population are still susceptible.

We formulate a model to describe the course of an epidemic when control
measures are begun under the assumptions:

1. Exposed members may be infective with infectivity reduced by a factor
εE , 0 ≤ εE < 1.

2. Exposed members who are not isolated become infective at rate κ1.
3. We introduce a class Q of quarantined members and a class J of isolated

members.
4. Exposed members are quarantined at a proportional rate γ1 in unit time

(in practice, a quarantine will also be applied to many susceptibles, but
we ignore this in the model). Quarantine is not perfect, but reduces the
contact rate by a factor εQ. The effect of this assumption is that some
susceptibles make fewer contacts than the model assumes.

5. There may be transmission of disease by isolated members, with an in-
fectivity factor of εJ .

6. Infectives are diagnosed at a proportional rate γ2 per unit time and iso-
lated. In addition, quarantined members are monitored and when they
develop symptoms at rate κ2 they are isolated immediately.

7. Infectives leave the infective class at rate α1 and a fraction f1 of these
recover, and isolated members leave the isolated class at rate α2 with a
fraction f2 recovering.

These assumptions lead to the SEQIJR model [13]
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S′ = −β(N)S[εEE + εEεQQ + I + εJJ ]
E′ = β(N)S[εEE + εEεQQ + I + εJJ ] − (κ1 + γ1)E
Q′ = γ1E − κ2Q (2.13)
I ′ = κ1E − (α1 + γ2)I
J ′ = κ2Q + γ2I − α2J

N ′ = −(1 − f1)α1I − (1 − f2)α2J .

Here, we have used an equation for N to replace the equation

R′ = f1α1I + f2α2J .

The model before control measures are begun is the special case

γ1 = γ2 = κ2 = α2 = f2 = 0, Q = J = 0

of (2.13). It is the same as (2.10).
We define the control reproduction number Rc to be the number of sec-

ondary infections caused by a single infective in a population consisting essen-
tially only of susceptibles with the control measures in place. It is analogous
to the basic reproduction number but instead of describing the very begin-
ning of the disease outbreak it describes the beginning of the recognition
of the epidemic. The basic reproduction number is the value of the control
reproduction number with

γ1 = γ2 = κ2 = α2 = f2 = 0 .

In addition, there is a time-dependent effective reproduction number R∗

which continues to track the number of secondary infections caused by a sin-
gle infective as the epidemic continues with control measures (quarantine of
asymptomatics and isolation of symptomatics) in place. It is not difficult to
show that if the inflow into the population from travellers and new births
is small (i.e., if the epidemiological time scale is much faster than the de-
mographic time scale), our model implies that R∗ will become and remain
less than unity, so that the epidemic will always pass. Even if Rc > 1, the
epidemic will abate eventually when the effective reproduction number be-
comes less than unity. The effective reproduction number R∗ is essentially
Rc multiplied by a factor S/N , but allows time-dependent parameter values
as well.

However, it should be remembered that if the epidemic takes so long to
pass that there are enough new births and travellers to keep R∗ > 1, there
will be an endemic equilibrium meaning that the disease will establish itself
and remain in the population.

We have already calculated R0 for (2.10) and we may calculate Rc in the
same way but using the full model with quarantined and isolated classes. We
obtain
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Rc =
εEKβ(K)

D1
+

Kβ(K)κ1

D1D2
+

εQεEKβ(K)γ1

D1κ2
+

εJKβ(K)κ1γ2

α2D1D2
+

εJKβ(K)γ1

α2D1

R∗ = Rc
S

N
,

where D1 = γ1 + κ1, D2 = γ2 + α1.
Each term of Rc has an epidemiological interpretation. The mean dura-

tion in E is 1/D1 with contact rate εEβ, giving a contribution to Rc of
εEKβ(K)/D1. A fraction κ1/D1 goes from E to I, with contact rate β and
mean duration 1/D2, giving a contribution of Kβ(K)κ1/D1D2. A fraction
γ1/D1 goes from E to Q, with contact rate εEεQβ and mean duration 1/κ2,
giving a contribution of εEεQKβ(K)γ1/D1κ2. A fraction κ1γ2/D1D2 goes
from E to I to J , with a contact rate of εJβ and a mean duration of 1/α2,
giving a contribution of εJKβ(K)κ1γ2/α2D1D2. Finally, a fraction γ1/D1

goes from E to Q to J with a contact rate of εJβ and a mean duration of
1/α2 giving a contribution of εJKβ(K)γ1/D1α2. The sum of these individual
contributions gives Rc.

In the model (2.13) the parameters γ1 and γ2 are control parameters which
may be varied in the attempt to manage the epidemic. The parameters εQ

and εJ depend on the strictness of the quarantine and isolation processes and
are thus also control measures in a sense. The other parameters of the model
are specific to the disease being studied. While they are not variable, their
measurements are subject to experimental error.

The linearization of (2.13) at the disease-free equilibrium (K, 0, 0, 0, 0,K)
has matrix

⎡

⎢
⎢
⎣

εEKβ(K) − (κ1 + γ1) εEεQβ(K) Kβ(K) εJKβ(K)
γ1 −κ2 0 0
κ1 0 −(α1 + γ2) 0
0 κ2 γ2 −α2

⎤

⎥
⎥
⎦ .

The corresponding characteristic equation is a fourth degree polynomial equa-
tion whose leading coefficient is 1 and whose constant term is a positive con-
stant multiple of 1 − Rc, thus positive if Rc < 1 and negative if Rc > 1. If
Rc > 1 there is a positive eigenvalue, corresponding to an initial exponen-
tial growth rate of solutions of (2.13). If Rc < 1 it is possible to show that
all eigenvalues of the coefficient matrix have negative real part, and thus
solutions of (2.13) die out exponentially [38].

Next, we wish to show that analogues of the relation (2.8) and S∞ > 0
derived for the model (2.6) are valid for the management model (2.13). We
begin by integrating the equations for S + E,Q, I, J, and N of (2.13) with
respect to t from t = 0 to t = ∞, using the initial conditions

S(0) + E(0) = N(0) = K, Q(0) = I(0) = J(0) = 0 .

We obtain, since E,Q, I, and J all approach zero at t → ∞,
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K − S∞ = (κ1 + γ1)
∫ ∞

0

E(s)ds

γ1

∫ ∞

0

E(s)ds = κ2

∫ ∞

0

Q(s)ds

κ1

∫ ∞

0

E(s)ds = (α1 + γ2)
∫ ∞

0

I(s)ds

κ2

∫ ∞

0

Q(s)ds = α2

∫ ∞

0

J(s)ds − γ2

∫ ∞

0

I(s)ds

K − N∞ = (1 − f1)α1

∫ ∞

0

I(s)ds + (1 − f2)α2

∫ ∞

0

J(s)ds .

In order to relate (K − S∞) to (K − N∞), we need to express
∫∞
0

I(s)ds

and
∫∞
0

J(s)ds in terms of
∫∞
0

E(s)ds.
From the three above relations for integrals we obtain

(α1 + γ2)
∫ ∞

0

I(s)ds = κ1

∫ ∞

0

E(s)ds

α2

∫ ∞

0

J(s)ds =
γ1α1 + γ1γ2 + κ1γ2

α1 + γ2

∫ ∞

0

E(s)ds .

Thus we have

K − N∞ =
(1 − f1)α1κ1 + (1 − f2)(γ1α1 + γ1γ2 + κ1γ2)

α1 + γ2

∫ ∞

0

E(s)ds

=
(1 − f1)α1κ1 + (1 − f2)(γ1α1 + γ1γ2 + κ1γ2)

(κ1 + γ1)(α1 + γ2)
[K − S∞] .

This has the form, analogous to (2.8),

K − N∞ = c[K − S∞] (2.14)

with c, the disease death rate, given by

c =
(1 − f1)α1κ1 + (1 − f2)(γ1α1 + γ1γ2 + κ1γ2)

(κ1 + γ1)(α1 + γ2)
.

The mean disease death rate may be measured and this expression gives
information about some of the parameters in the model which can not be
measured directly. It is easy to see that 0 ≤ c ≤ 1 with c = 0 if and only if
f1 = f2 = 1, that is, if and only if there are no disease deaths, and c = 1 if
and only if f1 = f2 = 0, that is, if and only if the disease is universally fatal.

An argument similar to the one used for (2.6) but technically more com-
plicated may be used to show that S∞ > 0 for the treatment model (2.13).
Thus the asymptotic behaviour of the management model (2.13) is the same
as that of the simpler model (2.6). If the control reproduction number Rc is
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less than 1 the disease dies out and if Rc > 1 there is an epidemic which will
pass leaving some members of the population untouched.

2.1.7 Stochastic Models for Disease Outbreaks

The underlying assumptions of the models of Kermack–McKendrick type
studied in this chapter are that the sizes of the compartments are large enough
that the mixing of members is homogeneous. While these assumptions are
probably reasonable once an epidemic is well underway, at the beginning of
a disease outbreak the situation may be quite different. At the beginning of
an epidemic most members of the population are susceptible, that is, not
(yet) infected, and the number of infectives (members of the population who
are infected and may transmit infection) is small. The transmission of infec-
tion depends strongly on the pattern of contacts between members of the
population, and a description should involve this pattern. Since the number
of infectives is small a description involving an assumption of mass action
should be replaced by a model which incorporates stochastic effects.

One approach would be a complete description of stochastic epidemic mod-
els, for which we refer the reader to the chapter on stochastic models in this
volume by Linda Allen. Another approach would be to consider a stochastic
model for an outbreak of a communicable disease to be applied so long as
the number of infectives remains small, distinguishing a (minor) disease out-
break confined to this initial stage from a (major) epidemic which occurs if
the number of infectives begins to grow at an exponential rate. Once an epi-
demic has started we may switch to a deterministic compartmental model.
This approach is described in Chap. 4 on network models in this volume.
There is an important difference between the behaviour of network models
and the behaviour of models of Kermack–McKendrick type, namely that for
a stochastic disease outbreak model if R0 < 1 the probability that the in-
fection will die out is 1, while if R0 > 1 there is a positive probability that
the infection will persist, and will lead to an epidemic and a positive proba-
bility that the infection will increase initially but will produce only a minor
outbreak and will die out before triggering a major epidemic.

2.2 Models with Demographic Effects

2.2.1 The SIR Model

Epidemics which sweep through a population attract much attention and
arouse a great deal of concern. As we have mentioned in the introduction,



46 F. Brauer

the prevalence and effects of many diseases in less developed countries are
probably less well-known but may be of even more importance. There are dis-
eases which are endemic in many parts of the world and which cause millions
of deaths each year. We have omitted births and deaths in our description of
models because the time scale of an epidemic is generally much shorter than
the demographic time scale. In effect, we have used a time scale on which the
number of births and deaths in unit time is negligible. To model a disease
which may be endemic we need to think on a longer time scale and include
births and deaths.

For diseases that are endemic in some region public health physicians need
to be able to estimate the number of infectives at a given time as well as the
rate at which new infections arise. The effects of quarantine or vaccine in
reducing the number of victims are of importance, just as in the treatment of
epidemics. In addition, the possibility of defeating the endemic nature of the
disease and thus controlling or even eradicating the disease in a population
is worthy of study.

Measles is a disease for which endemic equilibria have been observed in
many places, frequently with sustained oscillations about the equilibrium.
The epidemic model of the first section assumes that the epidemic time scale
is so short relative to the demographic time scale that demographic effects
may be ignored. For measles, however, the reason for the endemic nature
of the disease is that there is a flow of new susceptible members into the
population, and in order to try to model this we must include births and
deaths in the model. The simplest way to incorporate births and deaths in
an infectious disease model is to assume a constant number of births and
an equal number of deaths per unit time so that the total population size
remains constant. This is, of course, feasible only if there are no deaths due to
the disease. In developed countries such an assumption is plausible because
there are few deaths from measles. In less developed countries there is often
a very high mortality rate for measles and therefore other assumptions are
necessary.

The first attempt to formulate an SIR model with births and deaths
to describe measles was given in 1929 by H.E. Soper [32], who assumed a
constant birth rate µK in the susceptible class and a constant death rate µK
in the removed class. His model is

S′ = −βSI + µK

I ′ = βSI − γI

R′ = γI − µK .

This model is unsatisfactory biologically because the linkage of births of sus-
ceptibles to deaths of removed members is unreasonable. It is also an im-
proper model mathematically because if R(0) and I(0) are sufficiently small
then R(t) will become negative. For any disease model to be plausible it is
essential that the problem be properly posed in the sense that the number of
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members in each class must remain non-negative. A model that does not sat-
isfy this requirement cannot be a proper description of a disease model and
therefore must contain some assumption that is biologically unreasonable. A
full analysis of a model should include verification of this property.

A model of Kermack and McKendrick [22] includes births in the suscep-
tible class proportional to total population size and a death rate in each
class proportional to the number of members in the class. This model allows
the total population size to grow exponentially or die out exponentially if
the birth and death rates are unequal. It is applicable to such questions as
whether a disease will control the size of a population that would otherwise
grow exponentially. We shall return to this topic, which is important in the
study of many diseases in less developed countries with high birth rates. To
formulate a model in which total population size remains bounded we could
follow the approach suggested by [15] in which the total population size is
held constant by making birth and death rates equal. Such a model is

S′ = −βSI + µ(K − S)
I ′ = βSI − γI − µI

R′ = γI − µR .

Because S + I + R = K, we can view R as determined when S and I are
known and consider the two-dimensional system

S′ = −βSI + µ(K − S)
I ′ = βSI − γI − µI .

We shall examine a slightly more general SIR model with births and
deaths for a disease that may be fatal to some infectives. For such a disease
the class R of removed members should contain only recovered members, not
members removed by death from the disease. It is not possible to assume that
the total population size remain constant if there are deaths due to disease; a
plausible model for a disease that may be fatal to some infectives must allow
the total population to vary in time. The simplest assumption to allow this
is a constant birth rate Λ, but in fact the analysis is quite similar if the birth
rate is a function Λ(N) of total population size N .

Let us analyze the model

S′ = Λ − βSI − µS

I ′ = βSI − µI − αI (2.15)
N ′ = Λ − (1 − f)αI − µN ,

where N = S + I + R, with a mass action contact rate, a constant number
of births Λ per unit time, a proportional natural death rate µ in each class,
and a rate of recovery or disease death α of infectives with a fraction f of
infectives recovering with immunity against reinfection. In this model if f = 1
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the total population size approaches a limit K = Λ/µ. Then K is the carrying
capacity of the population. If f < 1 the total population size is not constant
and K represents a carrying capacity or maximum possible population size,
rather than a population size. We view the first two equations as determining
S and I, and then consider the third equation as determining N once S and
I are known. This is possible because N does not enter into the first two
equations. Instead of using N as the third variable in this model we could
have used R, and the same reduction would have been possible.

If the birth or recruitment rate Λ(N) is a function of total population
size then in the absence of disease the total population size N satisfies the
differential equation

N ′ = Λ(N) − µN .

The carrying capacity of population size is the limiting population size K,
satisfying

Λ(K) = µK, Λ′(K) < µ .

The condition Λ′(K) < µ assures the asymptotic stability of the equilibrium
population size K. It is reasonable to assume that K is the only positive
equilibrium, so that

Λ(N) > µN

for 0 ≤ N ≤ K. For most population models,

Λ(0) = 0, Λ′′(N) ≤ 0 .

However, if Λ(N) represents recruitment into a behavioural class, as would
be natural for models of sexually transmitted diseases, it would be plausible
to have Λ(0) > 0, or even to consider Λ(N) to be a constant function. If
Λ(0) = 0, we require Λ′(0) > µ because if this requirement is not satisfied
there is no positive equilibrium and the population would die out even in the
absence of disease.

We have used a mass action contact rate for simplicity, even though a
more general contact rate would give a more accurate model, just as in the
epidemics considered in the preceding section. With a general contact rate
and a density-dependent birth rate we would have a model

S′ = Λ(N) − β(N)SI − µS

I ′ = β(N)SI − µI − αI (2.16)
N ′ = Λ(N) − (1 − f)αI − µN.

If f = 1, so that there are no disease deaths, the equation for N is

N ′ = Λ(N) − µN ,

so that N(t) approaches a limiting population size K. The theory of asymp-
totically autonomous systems [8, 24, 34, 37] implies that if N has a constant
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limit then the system is equivalent to the system in which N is replaced
by this limit. Then the system (2.16) is the same as the system (2.15) with
β replaced by the constant β(K) and N by K, and Λ(N) replaced by the
constant Λ(K) = µK.

We shall analyze the model (2.15) qualitatively. In view of the remark
above, our analysis will also apply to the more general model (2.16) if there
are no disease deaths. Analysis of the system (2.16) with f < 1 is much more
difficult. We will confine our study of (2.16) to a description without details.

The first stage of the analysis is to note that the model (2.15) is a properly
posed problem. That is, since S′ ≥ 0 if S = 0 and I ′ ≥ 0 if I = 0, we have
S ≥ 0, I ≥ 0 for t ≥ 0 and since N ′ ≤ 0 if N = K we have N ≤ K for
t ≥ 0. Thus the solution always remains in the biologically realistic region
S ≥ 0, I ≥ 0, 0 ≤ N ≤ K if it starts in this region. By rights, we should verify
such conditions whenever we analyze a mathematical model, but in practice
this step is frequently overlooked.

Our approach will be to identify equilibria (constant solutions) and then
to determine the asymptotic stability of each equilibrium. Asymptotic stabil-
ity of an equilibrium means that a solution starting sufficiently close to the
equilibrium remains close to the equilibrium and approaches the equilibrium
as t → ∞ >, while instability of the equilibrium means that there are solu-
tions starting arbitrarily close to the equilibrium which do not approach it.
To find equilibria (S∞, I∞) we set the right side of each of the two equations
equal to zero. The second of the resulting algebraic equations factors, giving
two alternatives. The first alternative is I∞ = 0, which will give a disease-free
equilibrium, and the second alternative is βS∞ = µ + α, which will give an
endemic equilibrium, provided βS∞ = µ+α < βK. If I∞ = 0 the other equa-
tion gives S∞ = K = Λ/µ. For the endemic equilibrium the first equation
gives

I∞ =
Λ

µ + α
− µ

β
. (2.17)

We linearize about an equilibrium (S∞, I∞) by letting y = S−S∞, z = I−I∞,
writing the system in terms of the new variables y and z and retaining only
the linear terms in a Taylor expansion. We obtain a system of two linear
differential equations,

y′ = −(βI∞ + µ)y − βS∞z

z′ = βI∞y + (βS∞ − µ − α)z .

The coefficient matrix of this linear system is
[
−βI∞ − µ −βS∞

βI∞ βS∞ − µ − α

]

.

We then look for solutions whose components are constant multiples of
eλt; this means that λ must be an eigenvalue of the coefficient matrix. The
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condition that all solutions of the linearization at an equilibrium tend to zero
as t → ∞ is that the real part of every eigenvalue of this coefficient matrix
is negative. At the disease-free equilibrium the matrix is

[
−µ −βK

0 βK − µ − α

]

,

which has eigenvalues −µ and βK−µ−α. Thus, the disease-free equilibrium
is asymptotically stable if βK < µ + α and unstable if βK > µ + α. Note
that this condition for instability of the disease-free equilibrium is the same
as the condition for the existence of an endemic equilibrium.

In general, the condition that the eigenvalues of a 2×2 matrix have negative
real part is that the determinant be positive and the trace (the sum of the
diagonal elements) be negative. Since βS∞ = µ+α at an endemic equilibrium,
the matrix of the linearization at an endemic equilibrium is

[
−βI∞ − µ −βS∞

βI∞ 0

]

(2.18)

and this matrix has positive determinant and negative trace. Thus, the en-
demic equilibrium, if there is one, is always asymptotically stable. If the
quantity

R0 =
βK

µ + α
=

K

S∞
(2.19)

is less than one, the system has only the disease-free equilibrium and this
equilibrium is asymptotically stable. In fact, it is not difficult to prove that
this asymptotic stability is global, that is, that every solution approaches
the disease-free equilibrium. If the quantity R0 is greater than one then the
disease-free equilibrium is unstable, but there is an endemic equilibrium that
is asymptotically stable. Again, the quantity R0 is the basic reproduction
number. It depends on the particular disease (determining the parameter α)
and on the rate of contacts, which may depend on the population density
in the community being studied. The disease model exhibits a threshold be-
haviour: If the basic reproduction number is less than one the disease will
die out, but if the basic reproduction number is greater than one the disease
will be endemic. Just as for the epidemic models of the preceding section, the
basic reproduction number is the number of secondary infections caused by a
single infective introduced into a wholly susceptible population because the
number of contacts per infective in unit time is βK, and the mean infective
period (corrected for natural mortality) is 1/(µ + α).

There are two aspects of the analysis of the model (2.16) which are more
complicated than the analysis of (2.15). The first is in the study of equilibria.
Because of the dependence of Λ(N) and β(N) on N , it is necessary to use
two of the equilibrium conditions to solve for S and I in terms of N and then
substitute into the third condition to obtain an equation for N . Then by
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comparing the two sides of this equation for N = 0 and N = K it is possible
to show that there must be an endemic equilibrium value of N between 0
and K.

The second complication is in the stability analysis. Since (2.16) is a three-
dimensional system which can not be reduced to a two-dimensional system,
the coefficient matrix of its linearization at an equilibrium is a 3 × 3 matrix
and the resulting characteristic equation is a cubic polynomial equation of
the form

λ3 + a1λ
2 + a2λ + a3 = 0 .

The Routh–Hurwitz conditions

a1 > 0, a1a2 > a3 > 0

are necessary and sufficient conditions for all roots of the characteristic equa-
tion to have negative real part. A technically complicated calculation is
needed to verify that these conditions are satisfied at an endemic equilib-
rium for the model (2.16).

The asymptotic stability of the endemic equilibrium means that the com-
partment sizes approach a steady state. If the equilibrium had been unstable,
there would have been a possibility of sustained oscillations. Oscillations in a
disease model mean fluctuations in the number of cases to be expected, and if
the oscillations have long period could also mean that experimental data for a
short period would be quite unreliable as a predictor of the future. Epidemi-
ological models which incorporate additional factors may exhibit oscillations.
A variety of such situations is described in [18,19].

The epidemic models of the first section also exhibited a threshold be-
haviour but of a slightly different kind. For these models, which were SIR
models without births or natural deaths, the threshold distinguished between
a dying out of the disease and an epidemic, or short term spread of disease.

From the third equation of (2.15) we obtain

N ′ = Λ − µN − (1 − f)αI ,

where N = S + I + R. From this we see that at the endemic equilibrium
N = K − (1 − f)αI/µ, and the reduction in the population size from the
carrying capacity K is

(1 − f)
α

µ
I∞ = (1 − f)[

αK

µ + α
− α

β
] .

The parameter α in the SIR model may be considered as describing the
pathogenicity of the disease. If α is large it is less likely that R0 > 1. If α
is small then the total population size at the endemic equilibrium is close to
the carrying capacity K of the population. Thus, the maximum population
decrease caused by disease will be for diseases of intermediate pathogenicity.
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2.2.2 The SIS Model

In order to describe a model for a disease from which infectives recover with
immunity against reinfection and that includes births and deaths as in the
model (2.16), we may modify the model (2.16) by removing the equation for
R and moving the term fαI describing the rate of recovery from infection to
the equation for S. This gives the model

S′ = Λ(N) − β(N)SI − µS + fαI (2.20)
I ′ = β(N)SI − αI − µI

describing a population with a density-dependent birth rate Λ(N) per unit
time, a proportional death rate µ in each class, and with a rate α of depar-
ture from the infective class through recovery or disease death and with a
fraction f of infectives recovering with no immunity against reinfection. In
this model, if f < 1 the total population size is not constant and K repre-
sents a carrying capacity, or maximum possible population size, rather than
a constant population size.

It is easy to verify that

R0 =
Kβ(K)
µ + α

.

If we add the two equations of (2.20), and use N = S + I we obtain

N ′ = Λ(N) − µN − (1 − f)αI .

For the SIS model we are able to carry out the analysis with a general contact
rate. If f = 1 the equation for N is

N ′ = Λ(N) − µN

and N approaches the limit K. The system (2.20) is asymptotically au-
tonomous and its asymptotic behaviour is the same as that of the single
differential equation

I ′ = β(K)I(K − I) − (α + µ)I , (2.21)

where S has been replaced by K − I. But (2.21) is a logistic equation which
is easily solved analytically by separation of variables or qualitatively by an
equilibrium analysis. We find that I → 0 if Kβ(K) < (µ+α), or R0 < 1 and
I → I∞ > 0 with

I∞ = K − µ + α

β(K)
= K(1 − 1

R0
)

if Kβ(K) > (µ + α) or R0 > 1.
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To analyze the SIS model if f < 1, it is convenient to use I and N as
variables instead of S and I, with S replaced by N − I. This gives the model

I ′ = β(N)I(N − I) − (µ + α)I (2.22)
N ′ = Λ(N) − µN − (1 − f)αI .

Equilibria are found by setting the right sides of the two differential equations
equal to zero. The first of the resulting algebraic equations factors, giving
two alternatives. The first alternative is I = 0, which will give a disease-free
equilibrium I = 0, N = K, and the second alternative is β(N)(N − I) =
µ + α, which may give an endemic equilibrium. For an endemic equilibrium
(I∞, N∞) the first equation gives

I∞β(N∞) = N∞β(N∞) − (µ + α) .

Substitution into the other equilibrium condition gives

Λ(N∞) = µN∞ + (1 − f)α[N∞ − µ + α

β(N∞)
] ,

which can be simplified to

β(N∞)Λ(N∞) = µN∞β(N∞) + (1 − f)α [N∞β(N∞) − (µ + α)] . (2.23)

At N = 0 the left side of (2.23) is β(0)Λ(0) ≥ 0, while the right side is
−(1 − f)α(µ + α), which is negative since f < 1. At N = K the left side of
(2.23) is

β(K)Λ(K) = µKβ(K)

while the right side of (2.23) is

µKβ(K) + (1 − f)α[Kβ(K) − (µ + α)] .

Since

R0 =
Kβ(K)
µ + α

,

if R0 > 1 the left side of (2.23) is less than the right side of (2.23), and
this implies that (2.23) has a solution for N, 0 < N < K. Thus there is an
endemic equilibrium if R0 > 1. If R0 < 1 this reasoning may be used to show
that there is no endemic equilibrium.

The linearization of (2.22) at an equilibrium (I∞, N∞) has coefficient ma-
trix
[
β(N∞)(N∞ − 2I∞) − (µ + α) β(N∞)I∞ + β′(N∞)I∞(N∞ − I∞)

−(1 − f)α Λ′(N∞) − µ.

]

At the disease-free equilibrium the matrix is
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[
Kβ(K) − (µ + α) 0

−(1 − f)α Λ′(K) − µ

]

,

which has eigenvalues Λ′(K) − µ and KβK − (µ + α). Thus, the disease-
free equilibrium is asymptotically stable if Kβ(K) < µ + α, or R0 < 1, and
unstable if Kβ(K) > µ+α, or R0 > 1. Note that the condition for instability
of the disease-free equilibrium is the same as the condition for the existence
of an endemic equilibrium.

At an endemic equilibrium, since β(N∞)(N∞ − I∞) = µ + α, the matrix
is [

−Iβ(N∞) I∞β(N∞) + I∞(N∞ − I∞)β′(N∞)
−(1 − f)α Λ′(N∞) − µ

]

.

Since β′(N∞) ≤ 0

β(N∞) + (N∞ − I∞)β′(N∞) ≥ β(N∞) + N∞β′(N∞) ≥ 0 .

Thus if Λ′(N∞) < µ the coefficient matrix has sign structure
[
− +
− −

]

.

It is clear that the coefficient matrix has negative trace and positive determi-
nant if Λ′(N) < µ and this implies that the endemic equilibrium is asymp-
totically stable. Thus, the endemic equilibrium, which exists if R0 > 1, is
always asymptotically stable. If R0 < 1 the system has only the disease-free
equilibrium and this equilibrium is asymptotically stable. In the case f = 1
the verification of these properties remains valid if there are no births and
deaths. This suggests that a requirement for the existence of an endemic
equilibrium is a flow of new susceptibles either through births, as in the SIR
model or through recovery without immunity against reinfection, as in the
SIS model with or without births and deaths.

If the epidemiological and demographic time scales are very different, for
the SIR model we observed that the approach to endemic equilibrium is like a
rapid and severe epidemic. The same happens in the SIS model, especially if
there is a significant number of deaths due to disease. If there are few disease
deaths the number of infectives at endemic equilibrium may be substantial,
and there may be damped oscillations of large amplitude about the endemic
equilibrium.

For both the SIR and SIS models we may write the differential equation
for I as

I ′ = I[β(N)S − (µ + α)] = β(N)I[S − S∞] ,

which implies that whenever S exceeds its endemic equilibrium value S∞, I
is increasing and epidemic-like behaviour is possible. If R0 < 1 and S < K
it follows that I ′ < 0, and thus I is decreasing. Thus, if R0 < 1, I cannot
increase and no epidemic can occur.
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Next, we will turn to some applications of SIR and SIS models, taken
mainly from [3].

2.3 Some Applications

2.3.1 Herd Immunity

In order to prevent a disease from becoming endemic it is necessary to re-
duce the basic reproduction number R0 below one. This may sometimes be
achieved by immunization. If a fraction p of the Λ newborn members per unit
time of the population is successfully immunized, the effect is to replace K
by K(1−p), and thus to reduce the basic reproduction number to R0(1−p).
The requirement R0(1 − p) < 1 gives 1 − p < 1/R0, or

p > 1 − 1
R0

.

A population is said to have herd immunity if a large enough fraction has
been immunized to assure that the disease cannot become endemic. The only
disease for which this has actually been achieved worldwide is smallpox for
which R0 is approximately 5, so that 80% immunization does provide herd
immunity.

For measles, epidemiological data in the United States indicate that R0

for rural populations ranges from 5.4 to 6.3, requiring vaccination of 81.5–
84.1% of the population. In urban areas R0 ranges from 8.3 to 13.0, requiring
vaccination of 88.0–92.3% of the population. In Great Britain, R0 ranges
from 12.5 to 16.3, requiring vaccination of 92–94% of the population. The
measles vaccine is not always effective, and vaccination campaigns are never
able to reach everyone. As a result, herd immunity against measles has not
been achieved (and probably never can be). Since smallpox is viewed as more
serious and requires a lower percentage of the population be immunized, herd
immunity was attainable for smallpox. In fact, smallpox has been eliminated;
the last known case was in Somalia in 1977, and the virus is maintained now
only in laboratories (although there is currently some concern that it may
be reintroduced as a bioterrorism attack). The eradication of smallpox was
actually more difficult than expected because high vaccination rates were
achieved in some countries but not everywhere, and the disease persisted
in some countries. The eradication of smallpox was possible only after an
intensive campaign for worldwide vaccination [16].
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2.3.2 Age at Infection

In order to calculate the basic reproduction number R0 for a disease, we
need to know the values of the contact rate β and the parameters µ,K,
and α. The parameters µ,K, and α can usually be measured experimentally
but the contact rate β is difficult to determine directly. There is an indirect
means of estimating R0 in terms of the life expectancy and the mean age at
infection which enables us to avoid having to estimate the contact rate. In
this calculation, we will assume that β is constant, but we will also indicate
the modifications needed when β is a function of total population size N . The
calculation assumes exponentially distributed life spans and infective periods.
In fact, the result is valid so long as the life span is exponentially distributed.

Consider the “age cohort” of members of a population born at some time
t0 and let a be the age of members of this cohort. If y(a) represents the
fraction of members of the cohort who survive to age (at least) a, then the
assumption that a fraction µ of the population dies per unit time means
that y′(a) = −µy(a). Since y(0) = 1, we may solve this first order initial
value problem to obtain y(a) = e−µa. The fraction dying at (exactly) age a
is −y′(a) = µy(a). The mean life span is the average age at death, which is∫∞
0

a[−y′(a)]da, and if we integrate by parts we find that this life expectancy
is ∫ ∞

0

[−ay′(a)] da = [−ay(a)]∞0 +
∫ ∞

0

y(a) da =
∫ ∞

0

y(a) da .

Since y(a) = e−µa, this reduces to 1/µ. The life expectancy is often denoted
by L, so that we may write

L =
1
µ

.

The rate at which surviving susceptible members of the population become
infected at age a and time t0 +a, is βI(t0 +a). Thus, if z(a) is the fraction of
the age cohort alive and still susceptible at age a, z′(a) = −[µ+βI(t0+a)]z(a).
Solution of this first linear order differential equation gives

z(a) = e−[µa+
∫ a
0 βI(t0+b) db] = y(a)e−

∫ a
0 βI(t0+b) db .

The mean length of time in the susceptible class for members who may be-
come infected, as opposed to dying while still susceptible, is

∫ ∞

0

e−
∫ a
0 βI(t0+b)dbda ,

and this is the mean age at which members become infected. If the system is
at an equilibrium I∞, this integral may be evaluated, and the mean age at
infection, denoted by A, is given by
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A =
∫ ∞

0

e−βI∞a da =
1

βI∞
.

For our model the endemic equilibrium is

I∞ =
µK

µ + α
− µ

β
,

and this implies
L

A
=

βI∞
µ

= R0 − 1 . (2.24)

This relation is very useful in estimating basic reproduction numbers. For
example, in some urban communities in England and Wales between 1956 and
1969 the average age of contracting measles was 4.8 years. If life expectancy
is assumed to be 70 years, this indicates R0 = 15.6.

If β is a function β(N) of total population size the relation (2.24) becomes

R0 =
β(K)
β(N)

[

1 +
L

A

]

.

If disease mortality does not have a large effect on total population size, in
particular if there is no disease mortality, this relation is very close to (2.24).

The relation between age at infection and basic reproduction number in-
dicates that measures such as inoculations, which reduce R0, will increase
the average age at infection. For diseases such as rubella (German measles),
whose effects may be much more serious in adults than in children, this indi-
cates a danger that must be taken into account: While inoculation of children
will decrease the number of cases of illness, it will tend to increase the danger
to those who are not inoculated or for whom the inoculation is not success-
ful. Nevertheless, the number of infections in older people will be reduced,
although the fraction of cases which are in older people will increase.

2.3.3 The Interepidemic Period

Many common childhood diseases, such as measles, whooping cough, chicken
pox, diphtheria, and rubella, exhibit variations from year to year in the num-
ber of cases. These fluctuations are frequently regular oscillations, suggesting
that the solutions of a model might be periodic. This does not agree with the
predictions of the model we have been using here; however, it would not be
inconsistent with solutions of the characteristic equation, which are complex
conjugate with small negative real part corresponding to lightly damped os-
cillations approaching the endemic equilibrium. Such behaviour would look
like recurring epidemics. If the eigenvalues of the matrix of the linearization at
an endemic equilibrium are −u± iv, where i2 = −1, then the solutions of the
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linearization are of the form Be−ut cos(vt + c), with decreasing “amplitude”
Be−ut and “period” 2π

v .
For the model (2.15) we recall from (2.17) that at the endemic equilibrium

we have
βI∞ + µ = µR0, βS∞ = µ + α

and from (2.18) the matrix of the linearization is
[

−µR0 −(µ + α)
µ(R0 − 1) 0

]

The eigenvalues are the roots of the quadratic equation

λ2 + µR0λ + µ(R0 − 1)(µ + α) = 0,

which are

λ =
−µR0 ±

√
µ2R0

2 − 4µ(R0 − 1)(µ + α)

2
.

If the mean infective period 1/α is much shorter than the mean life span 1/µ,
we may neglect the terms that are quadratic in µ. Thus, the eigenvalues are
approximately

−µR0 ±
√

−4µ(R0 − 1)α
2

,

and these are complex with imaginary part
√

µ(R0 − 1)α. This indicates
oscillations with period approximately

2π
√

µ(R0 − 1)α
.

We use the relation µ(R0−1) = µL/A and the mean infective period τ = 1/α
to see that the interepidemic period T is approximately 2π

√
Aτ . Thus, for ex-

ample, for recurring outbreaks of measles with an infective period of 2 weeks
or 1/26 year in a population with a life expectancy of 70 years with R0 esti-
mated as 15, we would expect outbreaks spaced 2.76 years apart. Also, as the
“amplitude” at time t is e−µR0t/2, the maximum displacement from equilib-
rium is multiplied by a factor e−(15)(2.76)/140 = 0.744 over each cycle. In fact,
many observations of measles outbreaks indicate less damping of the oscilla-
tions, suggesting that there may be additional influences that are not included
in our simple model. To explain oscillations about the endemic equilibrium
a more complicated model is needed. One possible generalization would be
to assume seasonal variations in the contact rate. This is a reasonable sup-
position for a childhood disease most commonly transmitted through school
contacts, especially in winter in cold climates. Note, however, that data from
observations are never as smooth as model predictions and models are in-
evitably gross simplifications of reality which cannot account for random
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variations in the variables. It may be difficult to judge from experimental
data whether an oscillation is damped or persistent.

2.3.4 “Epidemic” Approach to the Endemic
Equilibrium

In the model (2.15) the demographic time scale described by the birth and
natural death rates Λ and µ and the epidemiological time scale described
by the rate α of departure from the infective class may differ substan-
tially. Think, for example, of a natural death rate µ = 1/75, correspond-
ing to a human life expectancy of 75 years, and epidemiological parameters
α = 25, f = 1, describing a disease from which all infectives recover after a
mean infective period of 1/25 year, or two weeks. Suppose we consider a
carrying capacity K = 1, 000 and take β = 0.1, indicating that an average
infective makes (0.1)(1, 000) = 100 contacts per year. Then R0 = 4.00, and
at the endemic equilibrium we have S∞ = 250.13, I∞ = 0.40, R∞ = 749.47.
This equilibrium is globally asymptotically stable and is approached from
every initial state.

However, if we take S(0) = 999, I(0) = 1, R(0) = 0, simulating the
introduction of a single infective into a susceptible population and solve the
system numerically we find that the number of infectives rises sharply to a
maximum of 400 and then decreases to almost zero in a period of 0.4 year,
or about 5 months. In this time interval the susceptible population decreases
to 22 and then begins to increase, while the removed (recovered and immune
against reinfection) population increases to almost 1,000 and then begins a
gradual decrease. The size of this initial “epidemic” could not have been
predicted from our qualitative analysis of the system (2.15). On the other
hand, since µ is so small compared to the other parameters of the model,
we might consider neglecting µ, replacing it by zero in the model. If we do
this, the model reduces to the simple Kermack–McKendrick epidemic model
(without births and deaths) of the first section.

If we follow the model (2.15) over a longer time interval we find that the
susceptible population grows to 450 after 46 years, then drops to 120 during a
small epidemic with a maximum of 18 infectives, and exhibits widely spaced
epidemics decreasing in size. It takes a very long time before the system
comes close to the endemic equilibrium and remains close to it. The large
initial epidemic conforms to what has often been observed in practice when
an infection is introduced into a population with no immunity, such as the
smallpox inflicted on the Aztecs by the invasion of Cortez.

If we use the model (2.15) with the same values of β, K and µ, but take
α = 25, f = 0 to describe a disease fatal to all infectives, we obtain very
similar results. Now the total population is S + I, which decreases from
an initial size of 1,000 to a minimum of 22 and then gradually increases and
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eventually approaches its equilibrium size of 250.53. Thus, the disease reduces
the total population size to one-fourth of its original value, suggesting that
infectious diseases may have large effects on population size. This is true even
for populations which would grow rapidly in the absence of infection, as we
shall see later.

2.3.5 Disease as Population Control

Many parts of the world experienced very rapid population growth in the
eighteenth century. The population of Europe increased from 118 million in
1700 to 187 million in 1800. In the same time period the population of Great
Britain increased from 5.8 million to 9.15 million, and the population of
China increased from 150 million to 313 million [27]. The population of En-
glish colonies in North America grew much more rapidly than this, aided by
substantial immigration from England, but the native population, which had
been reduced to one tenth of their previous size by disease following the early
encounters with Europeans and European diseases, grew even more rapidly.
While some of these population increases may be explained by improvements
in agriculture and food production, it appears that an even more important
factor was the decrease in the death rate due to diseases. Disease death rates
dropped sharply in the eighteenth century, partly from better understanding
of the links between illness and sanitation and partly because the recurring
invasions of bubonic plague subsided, perhaps due to reduced susceptibility.
One plausible explanation for these population increases is that the bubonic
plague invasions served to control the population size, and when this control
was removed the population size increased rapidly.

In developing countries it is quite common to have high birth rates and
high disease death rates. In fact, when disease death rates are reduced by
improvements in health care and sanitation it is common for birth rates to
decline as well, as families no longer need to have as many children to ensure
that enough children survive to take care of the older generations. Again, it
is plausible to assume that population size would grow exponentially in the
absence of disease but is controlled by disease mortality.

The SIR model with births and deaths of Kermack and McKendrick [22]
includes births in the susceptible class proportional to population size and a
natural death rate in each class proportional to the size of the class. Let us
analyze a model of this type with birth rate r and a natural death rate µ < r.
For simplicity we assume the disease is fatal to all infectives with disease
death rate α, so that there is no removed class and the total population size
is N = S + I. Our model is

S′ = r(S + I) − βSI − µS (2.25)
I ′ = βSI − (µ + α)I .
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From the second equation we see that equilibria are given by either I = 0 or
βS = µ+α. If I = 0 the first equilibrium equation is rS = µS, which implies
S = 0 since r > µ. It is easy to see that the equilibrium (0,0) is unstable.
What actually would happen if I = 0 is that the susceptible population
would grow exponentially with exponent r − µ > 0. If βS = µ + α the first
equilibrium condition gives

r
µ + α

β
+ rI − (µ + α)I − µ(µ + α)

β
= 0 ,

which leads to

(α + µ − r)I =
(r − µ)(µ + α)

β
.

Thus, there is an endemic equilibrium provided r < α + µ, and it is possible
to show by linearizing about this equilibrium that it is asymptotically stable.
On the other hand, if r > α + µ there is no positive equilibrium value for I.
In this case we may add the two differential equations of the model to give

N ′ = (r − µ)N − αI ≥ (r − µ)N − αN = (r − µ − α)N

and from this we may deduce that N grows exponentially. For this model
either we have an asymptotically stable endemic equilibrium or population
size grows exponentially. In the case of exponential population growth we may
have either vanishing of the infection or an exponentially growing number of
infectives.

If only susceptibles contribute to the birth rate, as may be expected if
the disease is sufficiently debilitating, the behaviour of the model is quite
different. Let us consider the model

S′ = rS − βSI − µS = S(r − µ − βI) (2.26)
I ′ = βSI − (µ + α)I = I(βS − µ − α)

which has the same form as the celebrated Lotka–Volterra predator–prey
model of population dynamics. This system has two equilibria, obtained by
setting the right sides of each of the equations equal to zero, namely (0,0) and
an endemic equilibrium ((µ + α)/β, (r−µ)/β). It turns out that the qualita-
tive analysis approach we have been using is not helpful as the equilibrium
(0,0) is unstable and the eigenvalues of the coefficient matrix at the endemic
equilibrium have real part zero. In this case the behaviour of the linearization
does not necessarily carry over to the full system. However, we can obtain
information about the behaviour of the system by a method that begins with
the elementary approach of separation of variables for first order differential
equations. We begin by taking the quotient of the two differential equations
and using the relation

I ′

S′ =
dI

dS
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to obtain the separable first order differential equation

dI

dS
=

I(βS − µ − α)
S(r − βI)

.

Separation of variables gives
∫ ( r

I
− β
)
dI =

∫ (

β − µ + α

S

)

dS .

Integration gives the relation

β(S + I) − r log I − (µ + α) log S = c

where c is a constant of integration. This relation shows that the quantity

V (S, I) = β(S + I) − r log I − (µ + α) log S

is constant on each orbit (path of a solution in the (S, I− plane). Each of
these orbits is a closed curve corresponding to a periodic solution.

This model is the same as the simple epidemic model of the first section
except for the birth and death terms, and in many examples the time scale of
the disease is much faster than the time scale of the demographic process. We
may view the model as describing an epidemic initially, leaving a susceptible
population small enough that infection cannot establish itself. Then there is a
steady population growth until the number of susceptibles is large enough for
an epidemic to recur. During this growth stage the infective population is very
small and random effects may wipe out the infection, but the immigration of
a small number of infectives will eventually restart the process. As a result,
we would expect recurrent epidemics. In fact, bubonic plague epidemics did
recur in Europe for several hundred years. If we modify the demographic part
of the model to assume limited population growth rather than exponential
growth in the absence of disease, the effect would be to give behaviour like
that of the model studied in the previous section, with an endemic equilibrium
that is approached slowly in an oscillatory manner if R0 > 1.

Example. (Fox rabies) Rabies is a viral infection to which many animals,
especially foxes, coyotes, wolves, and rats, are highly susceptible. While dogs
are only moderately susceptible, they are the main source of rabies in hu-
mans. Although deaths of humans from rabies are few, the disease is still of
concern because it is invariably fatal. However, the disease is endemic in ani-
mals in many parts of the world. A European epidemic of fox rabies thought
to have begun in Poland in 1939 and spread through much of Europe has
been modeled. We present here a simplified version of a model due to R.M.
Anderson and coworkers [1].

We begin with the demographic assumptions that foxes have a birth
rate proportional to population size but that infected foxes do not produce
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offspring (because the disease is highly debilitating), and that there is a nat-
ural death rate proportional to population size. Experimental data indicate
a birth rate of approximately 1 per capita per year and a death rate of ap-
proximately 0.5 per capita per year, corresponding to a life expectancy of
2 years. The fox population is divided into susceptibles and infectives, and
the epidemiological assumptions are that the rate of acquisition of infection
is proportional to the number of encounters between susceptibles and infec-
tives. We will assume a contact parameter β = 80, in rough agreement with
observations of frequency of contact in regions where the fox density is ap-
proximately 1 fox/km2, and we assume that all infected foxes die with a mean
infective period of approximately 5 days or 1/73 year. These assumptions lead
to the model

S′ = −βSI + rS − µS

I ′ = βSI − (µ + α)I

with β = 80, r = 1.0, µ = 0.5, α = 73. As this is of the form (2.26), we know
that the orbits are closed curves in the (S, I) plane, and that both S and
I are periodic functions of t. We illustrate with some simulations obtained
using Maple (Figs. 2.8, 2.9, and 2.10). It should be noted from the graphs of
I in terms of t that the period of the oscillation depends on the amplitude,
and thus on the initial conditions, with larger amplitudes corresponding to
longer periods.

Fig. 2.8 The (S, I) plane

A warning is in order here. The model predicts that for long time intervals
the number of infected foxes is extremely small. With such small numbers,
the continuous deterministic models we have been using (which assume that
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population sizes are differentiable functions) are quite inappropriate. If the
density of foxes is extremely small an encounter between foxes is a random
event, and the number of contacts cannot be described properly by a func-
tion of population densities. To describe disease transmission properly when
population sizes are very small we would need to use a stochastic model.

Now let us modify the demographic assumptions by assuming that the
birth rate decreases as population size increases. We replace the birth rate
of r per susceptible per year by a birth rate of re−aS per susceptible per
year, with a a positive constant. Then, in the absence of infection, the fox
population is given by the first order differential equation

N ′ = N
(
re−aN − µ

)

and equilibria of this equation are given by N = 0 and re−aN = µ, which
reduces to eaN = r/µ, or

N =
1
a

log
r

µ
.

Fig. 2.9 I as a function of t (larger amplitude)

We omit the verification that the equilibrium N = 0 is unstable while the
positive equilibrium N = (1/a) log(r/µ) is asymptotically stable. Thus, the
population has a carrying capacity given by

K =
1
a
log

r

µ
.

The model now becomes
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Fig. 2.10 I as a function of t (smaller amplitude)

S′ = rSe−aS − βSI − µS

I ′ = βSI − (µ + α)I .

We examine this by looking for equilibria and analyzing their stability. From
the second equation, equilibria satisfy either I = 0 or βS = µ + α. If I = 0
the first equilibrium condition reduces to the same equation that determined
the carrying capacity, and we have a disease-free equilibrium S = K, I = 0.
If βS = µ + α there is an endemic equilibrium with βI + µ = re−aS . A
straightforward computation, which we shall not carry out here shows, that
the disease-free equilibrium is asymptotically stable if R0 = βK/(µ + α) < 1
and unstable if R0 > 1, while the endemic equilibrium, which exists if and
only if R0 > 1, is always asymptotically stable. Another way to express the
condition for an endemic equilibrium is to say that the fox population density
must exceed a threshold level KT given by

KT =
µ + α

β
.

With the parameter values we have been using, this gives a threshold fox den-
sity of 0.92 fox/km2. If the fox density is below this threshold value, the fox
population will approach its carrying capacity and the disease will die out.
Above the threshold density, rabies will persist and will regulate the fox pop-
ulation to a level below its carrying capacity. This level may be approached
in an oscillatory manner for large R0.
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2.4 Age of Infection Models

2.4.1 The Basic SI∗R Model

The 1927 epidemic model of Kermack and McKendrick is considerably more
general than what is usually called the Kermack–McKendrick model, which
was analyzed in the first section. The general model described by Kermack
and McKendrick included a dependence of infectivity on the time since be-
coming infected (age of infection). The 1932 and 1933 models of Kermack and
McKendrick, which incorporated births and deaths, did not include this de-
pendence. While age of infection models have not played a large role in studies
of epidemics, they are very important in studies of HIV/AIDS. HIV/AIDS
acts on a very long time scale and it is essential to include demographic effects
(recruitment into and departure from a population of sexually active individ-
uals). Also, the infectivity of HIV-positive people is high for a relatively short
time after becoming infected, then very low for a long period, possibly several
years, and then high shortly before developing into full-blown AIDS. Thus,
the age of infection models described by Kermack and McKendrick for epi-
demics but not for endemic situations, have become important in endemic
situations.

We will describe a general age of infection model and carry out a partial
analysis; there are many unsolved problems in the analysis. We continue to
let S(t) denote the number of susceptibles at time t and R(t) the number of
members recovered with immunity, but now we let I∗(t) denote the number
of infected (but not necessarily infective) members.

We make the following assumptions:

1. The population has a birth rate Λ(N), and a natural death rate µ giving
a carrying capacity K such that Λ(K) = µK,Λ′(K) < µ.

2. An average infected member makes C(N) contacts in unit time of which
S/N are with susceptibles. We define β(N) = C(N)/N and it is reason-
able to assume that β′(N) ≤ 0, C ′(N) ≥ 0.

3. B(τ) is the fraction of infecteds remaining infective if alive when infection
age is τ and Bµ(τ) = e−µτB(τ) is the fraction of infecteds remaining alive
and infected when infection age is τ . Let B̂µ(0) =

∫∞
0

Bµ(τ)dτ.
4. A fraction f of infected members recovers with immunity and a fraction

(1 − f) dies of disease.
5. π(τ) with 0 ≤ π(τ) ≤ 1 is the infectivity at infection age τ ; let A(τ) =

π(τ)B(τ), Aµ(τ) = π(τ)Bµ(τ), Âµ(0) =
∫∞
0

Aµ(τ)dτ .

In previous sections we have used B(τ) = e−ατ , which would give Bµ(τ) =
e−(µ+α)τ . We let i0(t) be the number of new infecteds at time t, i(t, τ) be the
number of infecteds at time t with infection age τ , and let φ(t) be the total
infectivity at time t. Then
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i(t, τ) = i0(t − τ)Bµ(τ), 0 ≤ τ ≤ t

i0(t) = Sβ(N)φ(t)

and

S′ = Λ(N) − µS − β(N)Sφ

I∗(t) =
∫ ∞

0

i(t, τ)dτ

=
∫ ∞

0

i0(t − τ)Bµ(τ)dτ

=
∫ ∞

0

β(N(t − τ))S(t − τ)φ(t − τ)Bµ(τ)dτ

φ(t) =
∫ ∞

0

i0(t − τ)Aµ(τ)dτ

=
∫ ∞

0

β(N(t − τ))S(t − τ)φ(t − τ)Aµ(τ)dτ .

Differentiation of the equation for I∗ gives three terms, including the rate
of new infections and the rate of natural deaths. The third term gives the
rate of recovery plus the rate of disease death as

−
∫ ∞

0

β(N(t − τ))S(t − τ)φ(t − τ)e−µτB′(τ)dτ .

Thus the SI∗R model is

S′ = Λ(N) − µS − β(N)Sφ

φ(t) =
∫ ∞

0

β(N(t − τ))S(t − τ)φ(t − τ)Aµ(τ)dτ (2.27)

N ′(t) = Λ(N) − µN

+ (1 − f)
∫ ∞

0

β(N(t − τ))S(t − τ)φ(t − τ)e−µτB′(τ)dτ .

Since I∗ is determined when S, φ,N are known we have dropped the equa-
tion for I∗ from the model, but it will be convenient to recall

I∗(t) =
∫ ∞

0

β(N(t − τ))S(t − τ)φ(t − τ)Bµ(τ)dτ .

If f = 1 then N(t) approaches the limit K, the model is asymptotically
autonomous and its dimension may be reduced to two, replacing N by the
constant K. We note, for future use, that
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B̂µ(0) =
∫ ∞

0

e−µτB(τ)dτ ≤
∫ ∞

0

e−µτdτ = 1/µ ,

so that
0 ≤ 1 − µB̂µ(0) ≤ 1 .

We define M = (1− f)(1− µB̂µ(0), and 0 ≤ M ≤ 1. We note, however, that
if f = 1 then M = 0. We also have, using integration by parts,

−
∫ ∞

0

e−µτB′(τ)dτ = 1 − µB̂µ(0) ≥ 0 .

If a single infective is introduced into a wholly susceptible population, making
Kβ(K) contacts in unit time, the fraction still infective at infection age τ
is Bµ(τ) and the infectivity at infection age τ is Aµ(τ). Thus R0, the total
number of secondary infections caused, is

∫ ∞

0

Kβ(K)Aµ(τ)dτ = Kβ(K)Âµ(0) .

Example. (Exposed periods) One common example of an age of infection
model is a model with an exposed period, during which individuals have been
infected but are not yet infected. Thus we may think of infected susceptibles
going into an exposed class (E), proceeding from the exposed class to the
infective class (I) at rate κE and out of the infective class at rate αI. Exposed
members have infectivity 0 and infective members have infectivity 1. Thus
I∗ = E + I and φ = I.

We let u(τ) be the fraction of infected members with infection age τ who
are not yet infective if alive and v(τ) the fraction of infected members who
are infective if alive. Then the fraction becoming infective at infection age τ
if alive is κu(τ), and we have

u′(τ) = −κu(τ), u(0) = 1 (2.28)
v′(τ) = κu(τ) − αv(τ) v(0) = 0 .

The solution of the first of the equations of (2.28) is

u(τ) = e−κτ

and substitution of this into the second equation gives

v′(τ) = κe−κτ − αv(τ) .

When we multiply this equation by the integrating factor eατ and integrate,
we obtain the solution

v(τ) =
κ

κ − α
[e−ατ − e−κτ ],
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and this is the term Aµ(τ) in the general model. The term B(τ) is u(τ)+v(τ).
Thus we have

A(τ) =
κ

κ − α
[e−ατ − e−κτ ]

B(τ) =
κ

κ − α
e−ατ − α

κ − α
e−κτ

e−µτB′(τ) = − ακ

κ − α
[e−(µ+α)τ − e−(µ+κ)τ ] .

With these choices and the identifications

I = φ, E = I∗ − φ

we may verify that the system (2.27) reduces to

S′ = Λ(N) − β(N)SI − µS

E′ = β(N)SI − κE

I ′ = κE − (µ + α)I
N ′ = Λ(N) − (1 − f)αI − µN ,

which is a standard SEIR model.
For some diseases there is an asymptomatic period during which individ-

uals have some infectivity rather than an exposed period. If the infectivity
during this period is reduced by a factor ε, then the model can be described
by the system

S′ = Λ(N) − β(N)S(I + εE) − µS

E′ = β(N)S(I + εE) − κE

I ′ = κE − (µ + α)I
N ′ = Λ(N) − (1 − f)αI − µN .

This may be considered as an age of infection model with the same iden-
tifications of the variables and the same choice of u(τ), v(τ) but with
A(τ) = εu(τ) + v(τ).

2.4.2 Equilibria

There is a disease-free equilibrium S = N = K,φ = 0 of (2.27). Endemic
equilibria (S,N, φ) are given by
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Λ(N) = µS + Sφβ(N)
Sβ(N)Âµ(0) = 1

Λ(N) = µN + (1 − f)(1 − µB̂µ(0))Sβ(N)φ .

If f = 1 the third condition gives Λ(N) = µN , which implies N = K. Then
the second condition may be solved for S, after which the first condition may
be solved for φ. Thus, there is always an endemic equilibrium.

If f < 1 the second of the equilibrium conditions gives

φ =
Âµ(0)

M
[Λ(N) − µN ].

Now substitution of the first two equilibrium conditions into the third gives
an equilibrium condition for N , namely

(1 − M)Λ(N) = µN − µM

β(N)Âµ(0)
(2.29)

= µN

[

1 − M

C(N)Âµ(0)

]

.

If R0 < 1,
C(N)Âµ(0) ≤ C(K)Âµ(0) = R0 < 1

so that
1 − M

C(N)Âµ(0)
< 1 − M .

Then we must have Λ(N) < µN . However, this would contradict the demo-
graphic condition Λ(N) > µN, 0 < N < K imposed earlier. This shows that
if R0 < 1 there is no endemic equilibrium.

If R0 > 1 for N = 0 the left side of (2.29) is non-negative while the right
side is negative. For N = K the left side of (2.29) is µK(1 − M) while the
right side is

µK − MµK

R0
> µK(1 − M) .

This shows that there is an endemic equilibrium solution for N .

2.4.3 The Characteristic Equation

The linearization of (2.27) at an equilibrium (S,N, φ) is
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x′ = −[µ + φβ(N)]x + [Λ′(N) − Sφβ′(N)]y − Sβ(N)z

y′ = [Λ′(N) − µ]y

+(1 − f)

∫ ∞

0
e−µτ B′(τ)[φβ(N)x(t − τ) + Sφβ′(N)y(t − τ) + Sβ(N)z(t − τ)]dτ

z(t) =

∫ ∞

0
Aµ(τ)[φβ(N)x(t − τ) + Sφβ′(N)y(t − τ) + Sβ(N)z(t − τ)]dτ .

The condition that this linearization has solutions which are constant mul-
tiples of e−λτ is that λ satisfies a characteristic equation. The characteristic
equation at an equilibrium (S,N, φ) is

det

⎡

⎣
−[λ + µ + φβ(N)] [Λ′(N) − Sφβ′(N)] −Sβ(N)

−φβ(N)Q(λ) −[λ − Λ′(N) + µ] − Sφβ′(N)Q(λ) −Sφβ(N)Q(λ)

φβ(N)Âµ(λ) Sφβ′(N)Âµ(λ) Sβ(N)Âµ(λ) − 1

⎤

⎦ = 0

with

Âµ(λ) =
∫ ∞

0

e−λτAµ(τ)dτ

B̂µ(λ) =
∫ ∞

0

e−λτBµ(τ)dτ

Q(λ) = (1 − f)[1 − (λ + µ)B̂µ(λ)] .

Here, the choice of Q(λ) is motivated by the integration by parts formula
∫ ∞

0

e−(λ+µ)τB′(τ)dτ = −1 + B̂µ(λ) .

The characteristic equation then reduces to

Sβ(N)Âµ(λ) + (1 − f)φSβ′(N)B̂µ(λ)

= 1 +
fφβ(N)
λ + µ

+
(1 − f)φP

λ + µ − Λ′(N)
[1 − Λ′(N)B̂µ(λ)] , (2.30)

where P = β(N) + Sβ′(N) ≥ 0.
The characteristic equation for a model consisting of a system of ordinary

differential equations is a polynomial equation. Now we have a transcendental
characteristic equation, but there is a basic theorem that if all roots of the
characteristic equation at an equilibrium have negative real part then the
equilibrium is asymptotically stable [39, Chap. 4].

At the disease-free equilibrium S = N = K,φ = 0 the characteristic
equation is

Kβ(K)Âµ(λ) = 1 .

Since the absolute value of the left side of this equation is no greater than
Kβ(K)Âµ(0) if �λ ≥ 0 the disease-free equilibrium is asymptotically stable
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if and only if
R0 = Kβ(K)Âµ(0) < 1 .

2.4.4 The Endemic Equilibrium

In the analysis of the characteristic equation (2.30) it is helpful to make use
of the following elementary result:

If |P (λ)| ≤ 1,�g(λ) > 0 for �λ ≥ 0, then all roots of the characteristic
equation

P (λ) = 1 + g(λ)

satisfy �λ < 0.

To prove this result, we observe that if �λ ≥ 0 the left side of the charac-
teristic equation has absolute value at most 1 while the right side has absolute
value greater than 1.

If f = 1, the characteristic equation reduces to

Sβ(N)Âµ(λ) = 1 +
φβ(N)
λ + µ

.

We have
|Sβ(N)Âµ(λ)| ≤ Sβ(N)Âµ(0) = 1

The term
φβ(N)
λ + µ

in (2.30) has positive real part if �λ ≥ 0. It follows from the above elemen-
tary result that all roots satisfy �λ < 0, so that the endemic equilibrium
is asymptotically stable. Thus all roots of the characteristic equation (2.30)
have negative real part if f = 1.

The analysis if f < 1 is more difficult. The roots of the characteristic
equation depend continuously on the parameters of the equation. In order to
have a root with �λ ≥ 0 there must be parameter values for which either
there is a root at “infinity”, or there is a root λ = 0 or there is a pair of pure
imaginary roots λ = ±iy, y > 0. Since the left side of (2.30) approaches 0
while the right side approaches 1 as λ → ∞,�λ ≥ 0, it is not possible for a
root to appear at “infinity”. For λ = 0, since Sβ(N)Âµ(0) = 1 and β′(N) ≤ 0
the left side of (2.30) is less than 1 at λ = 0, while the right side is greater
than 1 since

1 − Λ′(N)B̂µ(0) > 1 − Λ′(N)/µ > 0

if Λ′(N) < µ. This shows that λ = 0 is not a root of (2.30), and therefore
that all roots satisfy �λ < 0 unless there is a pair of roots λ = ±iy, y > 0.
According to the Hopf bifurcation theorem [20] a pair of roots λ = ±iy, y > 0
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indicates that the system (2.27) has an asymptotically stable periodic solution
and there are sustained oscillations of the system.

A somewhat complicated calculation using the fact that since Bµ(τ) is
monotone non-increasing,

∫ ∞

0

Bµ(τ) sin yτdy ≥ 0

for 0 ≤ y < ∞ shows that the term

(1 − f)φP

λ + µ − Λ′(N)
· [1 − Λ′(N)B̂µ(λ)]

in (2.30) has positive real part at least if

−µ ≤ Λ′(N) ≤ µ .

Thus if −µ ≤ Λ′(N) ≤ µ, instability of the endemic equilibrium is possible
only if the term

(1 − f)φSβ′(N)B̂µ(iy)

in (2.30) has negative real part for some y > 0. This is not possible with mass
action incidence, since β′(N) = 0; thus with mass action incidence the en-
demic equilibrium of (2.27) is always asymptotically stable. Since β′(N)≤ 0,
instability requires

�B̂µ(iy) =
∫ ∞

0

Bµ(τ) cos yτdτ < 0

for some y > 0. If the function B(τ) is non-increasing and convex, that is, if
B′(τ) ≤ 0, B′′(τ) ≥ 0, then it is easy to show using integration by parts that

∫ ∞

0

Bµ(τ) cos yτdτ ≥ 0

for 0 < y < ∞. Thus if B(τ) is convex, which is satisfied, for example, by the
choice

B(τ) = e−ατ

the endemic equilibrium of (2.22) is asymptotically stable if −µ ≤ Λ′(N) ≤ µ.
There are certainly less restrictive conditions which guarantee asymptotic

stability. However, examples have been given [36,37] of instability, even with
f = 0, Λ′(N) = 0, where constant infectivity would have produced asymp-
totic stability. Their results indicate that concentration of infectivity early
in the infected period is conducive to such instability. In these examples,
the instability arises because a root of the characteristic equation crosses the
imaginary axis as parameters of the model change, giving a pure imaginary
root of the characteristic equation. This translates into oscillatory solutions
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of the model. Thus infectivity which depends on infection age can cause in-
stability and sustained oscillations.

2.4.5 An SI∗S Model

In order to formulate an SI∗S age of infection model we need only take the
SI∗R age of infection model (2.22) and move the recovery term from the
equation for R (which was not listed explicitly in the model) to the equation
for S. We obtain the model

S′ = Λ(N) − µS − β(N)Sφ (2.31)

−f

∫ ∞

0

β(N(t − τ))S(t − τ)φ(t − τ)e−µτB′(τ)dτ

φ(t) =
∫ ∞

0

β(N(t − τ))S(t − τ)φ(t − τ)Aµ(τ)dτ (2.32)

N ′(t) = Λ(N) − µN

+ (1 − f)
∫ ∞

0

β(N(t − τ))S(t − τ)φ(t − τ)e−µτB′(τ)dτ .

Although we will not carry out any analysis of this model, it may be
attacked using the same approach as that used for (2.27). It may be shown
that if R0 = Kβ(K)Âµ(0) < 1 the disease-free equilibrium is asymptotically
stable. If R0 > 1 there is an endemic equilibrium and the characteristic
equation at this equilibrium is

Sβ(N)Âµ(λ) + (1 − f)φSβ′(N)B̂µ(λ)

= 1 + fφβ(N)B̂µ(λ) +
(1 − f)φP

λ + µ − Λ′(N)
· [1 − Λ′(N)B̂µ(λ)] (2.33)

where P = β(N) + Sβ′(N) ≥ 0.
Many diseases, including most strains of influenza, impart only temporary

immunity against reinfection on recovery. Such disease may be described by
SIS age of infection models, thinking of the infected class I∗ as comprised
of the infective class I together with the recovered and immune class R. In
this way, members of R neither spread or acquire infection. We assume that
immunity is lost at a proportional rate κ.

We let u(τ) be the fraction of infected members with infection age τ who
are infective if alive and v(τ) the fraction of infected members who are not
recovered and still immune if alive. Then the fraction becoming immune at
infection age τ if alive is αu(τ), and we have
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u′(τ) = −αu(τ), u(0) = 1 (2.34)
v′(τ) = αu(τ) − κv(τ) v(0) = 0 .

These equations are the same as (2.28) obtained in formulating the SEIR
model with α and κ interchanged. Thus we may solve to obtain

u(τ) = e−ατ

v(τ) =
α

κ − α
[e−ατ − e−κτ ] .

We take B(τ) = u(τ)+v(τ), A(τ) = u(τ). Then if we define I = φ,R = I∗−φ,
the model (2.31) is equivalent to the system

S′ = Λ(N) − β(N)SI − µS + κR

I ′ = β(N)SI − (µ + α)I
R′ = fαE − (µ + κ)R
N ′ = Λ(N) − (1 − f)αI − µN,

which is a standard SIRS model.
If we assume that, instead of an exponentially distributed immune period,

that there is an immune period of fixed length ω we would again obtain
u(τ) = e−ατ , but now we may calculate that

v(τ) = 1 − e−ατ , (τ ≤ ω), v(τ) = e−ατ (eαω − 1), (τ > ω) .

To obtain this, we note that

v′(τ) = αu(τ), (τ ≤ ω), v′(τ) = αu(τ) − αu(τ − ω), (τ > ω) .

From these we may calculate A(τ), B(τ) for an SI∗S model. Since it is known
that the endemic equilibrium for an SIRS model with a fixed removed period
can be unstable [19], this shows that (2.33) may have roots with non-negative
real part and the endemic equilibrium of an SI∗S age of infection model is
not necessarily asymptotically stable.

The SI∗R age of infection model is actually a special case of the SI∗S
age of infection model. We could view the class R as still infected but having
no infectivity, so that v(τ) = 0. The underlying idea is that in infection age
models we divide the population into members who may become infected
and members who can not become infected, either because they are already
infected or because they are immune.
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2.4.6 An Age of Infection Epidemic Model

We conclude by returning to the beginning, namely an infection age epi-
demic model closely related to the original Kermack–McKendrick epidemic
model [21]. We simply remove the birth and natural death terms from the
SI∗R model (2.27). The result is

S′ = −β(N)Sφ

φ(t) =
∫ ∞

0

β(N(t − τ))S(t − τ)φ(t − τ)A(τ)dτ

N ′(t) = (1 − f)
∫ ∞

0

β(N(t − τ))S(t − τ)φ(t − τ)B′(τ)dτ

which we may rewrite as

S′ = −β(N)Sφ

φ(t) =
∫ ∞

0

[−S′(t − τ)]A(τ)dτ (2.35)

N ′(t) = (1 − f)
∫ ∞

0

[−S′(t − τ ]B′(τ)dτ .

Then integration of the equation for N with respect to t from 0 to ∞ gives

K − N∞ = (1 − f)
∫ ∞

0

[
∫ ∞

0

[−S′(t − τ)]B′(τ)dτdt

= (1 − f)
∫ ∞

0

[
∫ ∞

0

[−S′(t − τ)]dtB′(τ)dτ

= (1 − f)
∫ ∞

0

[S(−τ) − S∞]B′(τ)dτ

= (1 − f)(K − S∞) ,

which is the same relation (2.8) obtained for the model (2.6). In this calcu-
lation we use the initial data to give S(−τ) = K and

∫ ∞

0

B′(τ)dτ = B(∞) − B(0) = −1 .

The argument that S∞ > 0 for the model (2.35) is analogous to the argument
for (2.10). From (2.35) we have

−S′(t)
S(t)

= β(N(t))
∫ ∞

0

[−S′(t − τ)]A(τ)dτ

and integration with respect to t from 0 to ∞ gives
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log
S(0)
S∞

=
∫ ∞

0

β(N(t))
∫ ∞

0

[−S′(t − τ)]A(τ)dτdt

=
∫ ∞

0

A(τ)
∫ ∞

0

β(N(t))[−S′(t − τ)]dtdτ

≤ β(0)
∫ ∞

0

A(τ)
∫ ∞

0

[−S′(t − τ)]dtdτ

= β(0)
∫ ∞

0

A(τ)[S(−τ) − S∞]dsdτ

= β(0)(K − S∞)
∫ ∞

0

A(τ)dτ

and this shows that S∞ > 0. We recall that we are assuming here that β(0)
is finite; in other words we are ruling out standard incidence. It is possible to
show that S∞ can be zero only if N → 0 and

∫K

0
β(N)dN diverges. However,

from (2.8) we see that this is possible only if f = 0. If there are no disease
deaths, so that the total population size N is constant, or if β is constant
(mass action incidence), the above integration gives the final size relation

log
S(0)
S∞

= R0

[

1 − S∞
K

]

.

We may view the epidemic management model (2.13) as an age of infection
model. We define I∗ = E +Q+ I +J , and we need only calculate the kernels
A(τ), B(τ). We let u(τ) denote the number of members of infection age τ in
E, v(τ) the number of members of infection age τ in Q, w(τ) the number
of members of infection age τ in I, and z(τ) the number of members of
infection age τ in J . Then (u, v, w, z) satisfies the linear homogeneous system
with constant coefficient

u′(τ) = −(κ1 + γ1)u(τ)
v′(τ) = γ1u(τ) − κ2v(τ)
w′(τ) = κ1u(τ) − α1w(τ) − γ2w(τ)
z′(τ) = γ2w(τ) + κ2v(τ) − α2z(τ)

with initial conditions u(0) = 1, v(0) = 0, w(0) = 0, z(0) = 0. This system
is easily solved recursively, and then the system (2.13) is an age of infection
epidemic model with

A(τ) = εEu(τ)+εEεQv(τ)+w(τ)+εJz(τ), B(τ) = u(τ)+v(τ)+w(τ)+z(τ) .

In particular, it now follows from the argument carried out just above that
S∞ > 0 for the model (2.13). The proof is less complicated technically than
the proof obtained for the specific model (2.13). The generalization to age
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of infection models both unifies the theory and makes some calculations less
complicated.
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