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Abstract
Here we present the Coon OMSSA Proteomic Analysis Software Suite (COMPASS): a free and
open-source software pipeline for high-throughput analysis of proteomics data, designed around
the Open Mass Spectrometry Search Algorithm. We detail a synergistic set of tools for protein
database generation, spectral reduction, peptide false discovery rate analysis, peptide quantitation
via isobaric labeling, protein parsimony and protein false discovery rate analysis, and protein
quantitation. We strive for maximum ease of use, utilizing graphical user interfaces and working
with data files in the original instrument vendor format. Results are stored in plain text comma-
separated values files, which are easy to view and manipulate with a text editor or spreadsheet
program. We illustrate the operation and efficacy of COMPASS through the use of two LC–MS/
MS datasets. The first is a dataset of a highly annotated mixture of standard proteins and manually
validated contaminants that exhibits the identification workflow. The second is a dataset of yeast
peptides, labeled with isobaric stable isotope tags and mixed in known ratios, to demonstrate the
quantitative workflow. For these two datasets, COMPASS performs equivalently or better than the
current de facto standard, the Trans-Proteomic Pipeline.
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1 Introduction
LC–MS/MS is the analytical tool of choice for assessing the protein content of a biological
sample [1]. Over the past fifteen years, several database search algorithms have been
developed for the pivotal task of matching experimental tandem mass spectra to peptide
sequences through the use of a protein database, such as Sequest [2] and Mascot [3]. More
recently, open-source software such as X!Tandem [4] and the Open Mass Spectrometry
Search Algorithm (OMSSA) [5] has been released for this purpose. These free alternatives
are competitive with their commercial counterparts [6] and have been steadily gaining
popularity. However, a variety of common tasks require software in addition to database
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searching. These include protein database generation, spectral reduction, peptide false
discovery rate (FDR) analysis, peptide quantitation, protein parsimony and protein FDR
analysis, and protein quantitation. As many of these tasks are relatively recent additions to
data processing workflows, software supporting them is far less mature. Nonetheless, they
are essential for contemporary proteomics. FDR analysis, for example, is critical for
maximizing sensitivity while simultaneously controlling specificity. Tools for performing
these discrete tasks are sometimes freely available, but often from disparate sources and are
usually not explicitly designed to work together [7]. Additionally, they are often intended for
older database search algorithms (i.e., Sequest and Mascot) rather than the newer
alternatives.

A software suite, comprising most of the tools necessary for typical proteomic data analysis,
resolves this problem. Built on the pioneering algorithms PeptideProphet [8] and
ProteinProphet [9], the Trans-Proteomics Pipeline (TPP) [10–12] is the de facto standard for
such a software suite. The TPP, designed around open extensible markup language (XML)
files [13,14], admirably strives for maximum flexibility, with the ability to read input data
files in a variety of instrument vendor formats. The TPP is primarily designed for peptide
identification with the commercial tools Sequest or Mascot, although it has recently been
adapted [11] to support OMSSA and various other search tools including SpectraST [15,16],
an open-source spectrum library algorithm.

Here we describe a free and open-source software package for use with OMSSA [5], which
provides excellent results, speed, scalability, and flexibility. The software currently accepts
Thermo Scientific .raw format files as input, but is readily adaptable to data files in other
formats. The main output format is simple, plain text comma-separated values (CSV) files,
which are easy to view and manipulate with a text editor or spreadsheet program. Unlike
XML, CSV files are very intuitive for non-programmers, and require only standard office
software to work with efficiently. The CSV files are originally an output of OMSSA, and are
extended by simply appending columns with additional data. At later stages of the
workflow, peptide- and protein-centric CSV files are created by the software to complement
OMSSA’s original spectrum-centric CSV output files. All of the software in this suite is
designed to work in Microsoft Windows (with the exception of OMSSA, which is cross-
platform), and all programs have a graphical user interface (GUI) for ease of use. The suite
contrasts with most other proteomics packages, such as Virtual Expert Mass Spectrometrist
[17] and Proteios [18], in that it intended to be operated autonomously on a single desktop
computer as opposed to a client–server model which can require considerable
administration.

Note we aim to provide neither the absolute state of the art in proteomic data analysis, nor
the tools for every possible analytical task. Rather, we intend to make available easy-to-use
software for automatically applying the commonly accepted rules for interpretation of
shotgun proteomics data, a chore which can be quite daunting without viable software. We
anticipate that this free, open-source suite will constitute the backbone of software
infrastructure for labs looking to perform high-throughput proteomics with OMSSA as the
primary database search algorithm. The software is available at
http://www.chem.wisc.edu/~coon/software.php#compass.

2 Materials and methods
2.1 Software

2.1.1 Development—All software (with the exception of OMSSA [5], which was
developed by the National Center for Biotechnology Information) was developed in C# with
Microsoft Visual Studio 2005/2008/2010 and the Microsoft .NET Framework version
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2.0/3.5 (freely available at http://www.microsoft.com/NET/). Access to data in the
proprietary .raw file format was enabled by the XRawfile Component Object Model (COM)
library (XRawfile2.dll, installed automatically with Thermo Xcalibur).

2.1.2 Protein database generation—Database Maker creates protein databases for
target–decoy searching [19]. Each protein sequence in an input .fasta text file is converted to
a decoy version of the same length by reversing, shuffling, or generating random amino
acids (the N-terminus can optionally be excluded to account for initiator methionines). The
resulting concatenated target–decoy .fasta protein database is automatically converted to the
basic local alignment search tool format for use with OMSSA.

2.1.3 Spectral reduction—DTA Generator reduces LC–MS/MS data to merged .dta text
files for database searching with OMSSA. To facilitate different search parameters, spectra
are automatically split into separate files for each combination of fragmentation method and
MS/MS mass analyzer. For each MS/MS spectrum, if the precursor charge state was
determined by the instrument firmware, only a single spectrum at that charge state is
generated. If the charge is unknown (either due to ambiguous or low-resolution MS1 data), a
spectrum is generated for each precursor charge state in a user-defined range. Removal of
remaining precursor is optional, as well as electron-transfer dissociation (ETD) pre-
processing to remove precursor, charge-reduced precursors, and neutral losses from charge-
reduced precursors [20].

2.1.4 Peptide identification—OMSSA [5] (http://pubchem.ncbi.nlm.nih.gov/omssa/,
version 2.1.7) was used for peptide identification by protein database search. The CSV
output option (-oc) was used.

2.1.5 Peptide FDR analysis—FDR Optimizer calculates spectrum score and precursor
mass error thresholds to maximize the number of target identifications at a given error rate.
First, the best peptide–spectrum match (PSM) for each spectrum, as determined by
expectation value (e-value), is extracted. The precursor mass error is determined by first
finding the isolation center m/z peak (i.e., scan filter m/z) in the preceding MS1 spectrum.
This isolation m/z is converted to neutral mass and compared to the monoisotopic mass of
the identified peptide. The nearest multiple of 1.00335 Da (carbon-13 mass minus carbon-12
mass, the main contributor to peptide isotopic peaks) is subtracted, and this mass error is
converted to ppm.

High-confidence identifications are leveraged to determine the systematic precursor mass
error for post-acquisition recalibration. First, a preliminary 1% spectrum FDR threshold is
established. The median precursor mass error of the PSMs below the FDR threshold is taken
to be the systematic error, and this quantity is subtracted from every precursor mass error to
yield an adjusted precursor mass error. This correction more effectively allows the use of a
symmetric precursor mass error window, which greatly improves analysis speed.

To appropriately combine results from different searches, q-values [21,22] are then
computed for each PSM, without regard to precursor mass accuracy. The final FDR
optimization considers q-values instead of e-values. Iteratively, each precursor mass error
threshold is applied, and the q-value threshold is adjusted until the desired error rate is
obtained. The thresholds yielding the maximum number of target identifications are used.

This program has many key options. First is the ability to select between low- or high-
resolution precursor analysis. If an FT MS1 scan is available, the high-resolution option will
perform a two-dimensional analysis utilizing both the q-value and precursor mass error of
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every PSM. The low-resolution version performs a simple one-dimensional analysis
utilizing only q-value.

Another option is batch versus non-batch analysis. For experiments spanning multiple LC–
MS/MS runs, it is often critical to establish a FDR for the entire dataset, requiring the batch
version. Other times, such as when analyses are being compared, it is desirable to have a
constant FDR threshold for each dataset, and non-batch is preferable. A final critical option
is the ability to select between FDR analysis at the PSM or unique peptide level. If the
maximum number of accepted spectra is desired, the former is preferable, but for most
proteomic studies, the latter is more appropriate. Note that the software defines a unique
peptide as a distinct combination of amino acid sequence and modifications, regardless of
precursor charge state.

2.1.6 Peptide quantitation—TagQuant extracts and processes isobaric labeling
quantitative information from MS/MS spectra. It is compatible with collision- and electron-
based dissociation [23] of tandem mass tags (TMT) duplex [24] and 6-plex [25], and
isobaric tags for relative and absolute quantitation (iTRAQ) 4-plex [26] and 8-plex [27].
Intensities of the reporter ions of interest are obtained from the raw data, and these values
are subsequently denormalized by multiplying by the ion injection time to yield the number
of ion counts detected, a quantity which can be fairly compared across different spectra and
analyses. Purity correction is then applied, as has been previously published [28], using
user-specified purity data provided by the manufacturer. Finally, normalization is performed
such that the total intensity of each tag is equal, accounting for differences in sample mixing
quantities.

2.1.7 Protein parsimony and protein FDR analysis—Protein Herder infers the most
likely proteins identified based on the peptides validated by FDR Optimizer. All peptide
sequences are first re-searched against the protein database to find all instances of those
sequences in any protein, with enzyme specificity if provided. The Boyer–Moore string
search algorithm [29] is used for optimal performance. Several filtering steps are then
executed to apply the rules of parsimony to the identified protein list [30].

First, all sets of indistinguishable proteins, which are identified by the same collection of
peptides, are combined into protein groups. Next, subset proteins, which are identified by
fewer peptides than another protein and contain no unique peptides, are eliminated. At this
stage, protein groups are sorted in ascending order by protein probability value (p-value),
calculated as the product of the best p-value for each unique peptide [9]. Next, subsumable
proteins, which are identified by a combination of the peptides that identify other proteins,
are also eliminated. Finally, using decoy protein groups divided by target protein groups as
the protein FDR, a protein p-value threshold is established to give a controlled error rate.

2.1.8 Protein quantitation—ProteinTagQuant combines peptide quantitation to yield
protein quantitation. This is achieved by summing reporter ion intensities from TagQuant.
Various criteria are available to filter out spectra that might provide dubious quantitation,
e.g., high levels of precursor interference [31], peptides shared between multiple protein
groups, or peptides containing modification sites.

2.2 Experimental
2.2.1 Identification dataset—The Institute for Systems Biology (ISB) standard protein
mix sample [32] (mix “B”) was acquired following digestion with trypsin. Peptides were
separated on a Waters nanoACQUITY UPLC (Milford, MA) with a self-packed 9 cm
precolumn (75 μm i.d.) and a 25 cm analytical column (50 μm i.d.), both packed with
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Alltech Alltima 5 μm C18 particles (Deerfield, IL) [33]. The peptides were eluted with a
gradient of 10 to 30% acetonitrile over two hours at a flow rate of 300 nL/min. The eluent
was analyzed with LC–MS/MS on a Thermo Scientific LTQ Orbitrap Velos mass
spectrometer (San Jose, CA/Bremen, Germany). The instrument method was 165 minutes
and consisted of a 60,000 resolving power MS1 survey scan detected in the orbitrap
followed by data-dependent top-10 MS2 detected in the ion trap, utilizing decision tree logic
[34] to decide between resonant-excitation CAD and ETD [35] as the activation type.
Precursor charge states that were unknown or +1 were excluded, and dynamic exclusion was
enabled after one fragmentation event for 45 seconds.

This dataset was searched against the ISB database of 18 standard proteins + 92 contaminant
proteins + 1709 Haemophilus influenzae Rd proteins as background
(http://regis-web.systemsbiology.net/PublicDatasets/database/
18mix_db_plus_contaminants_20081209.fasta) using OMSSA 2.1.7. Full trypsin enzymatic
specificity was required, allowing up to three missed cleavages. Carbamidomethylation of
cysteines (+57 Da) was specified as a fixed modification, while oxidation of methionines
(+16 Da) was specified as a variable modification. An average mass tolerance of ±5 Da was
used for precursors, while a monoisotopic mass tolerance of ±0.5 Da was used for products.

For TPP analysis, the data was searched with Sequest (version 27 from the University of
Washington) or OMSSA (version 2.1.9) using either a ±5 Da average precursor mass
tolerance or a ±10 ppm monoisotopic precursor mass tolerance and a monoisotopic fragment
bin size of 0.38 Da (Sequest) or a monoisotopic product mass tolerance of ±0.5 Da
(OMSSA). Results were filtered with PeptideProphet, iProphet and ProteinProphet from
TPP 4.3 rev 1. The accurate mass, non-parametric model, and decoy estimation options were
used in PeptideProphet.

2.2.2 Quantitation dataset—BY4741 wild-type yeast were grown in yeast extract
peptone dextrose media to mid-log phase (OD600 = 0.6). Proteins were chemically extracted
with YPer (Thermo Scientific Pierce; Rockford, IL), and digested with Promega sequencing-
grade modified trypsin (Madison, WI) at a 1:50 enzyme:substrate ratio at 37 °C overnight
and quenched by acidification with TFA. Peptides were desalted and labeled with Thermo
Scientific Pierce TMTsixplex (Rockford, IL; lot number KD130680A), with intermittent
mixing at room temperature, and quenched following an hour of incubation. Peptides
labeled with tags of nominal m/z 126 through 131 were mixed in ratios of 1: 5: 2: 1.5: 1: 3,
respectively.

Peptides were separated on a Waters nanoACQUITY UPLC (Milford, MA) with a self-
packed 9 cm precolumn (75 μm i.d.) and a 30 cm analytical column (50 μm i.d.), both
packed with Alltech Alltima 5 μm C18 particles (Deerfield, IL) [33]. The peptides were
eluted with a gradient of 5 to 30% acetonitrile over two hours at a flow rate of 300 nL/min.
The eluent was analyzed with LC–MS/MS on a Thermo Scientific LTQ Orbitrap Velos mass
spectrometer (San Jose, CA/Bremen, Germany). The instrument method was 165 minutes
and consisted of a 30,000 resolving power MS1 survey scan followed by data-dependent
top-10 higher-energy collision dissociation (HCD) MS2 at 7,500 resolving power, all
detected in the orbitrap. Precursor charges states that were unknown or +1 were excluded,
and dynamic exclusion was enabled after one fragmentation event for 45 seconds.

This dataset was searched against the Saccharomyces Genome Database [36]
(http://www.yeastgenome.org/; January 5, 2010 release; “all” file including verified,
uncharacterized, and dubious open reading frames, and pseudogenes). Full trypsin
enzymatic specificity was required, allowing up to three missed cleavages.
Carbamidomethylation of cysteines (+57 Da) and TMT 6-plex on peptide N-termini and
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lysines (+229 Da) were specified as fixed modifications, while oxidation of methionines
(+16 Da) and TMT 6-plex (+229 Da) on tyrosines were specified as variable modifications.
An average mass tolerance of ±5 Da was used for precursors, while a monoisotopic mass
tolerance of ±0.01 Da was used for products. For TPP analysis, the data was searched with
Sequest (version 27 from the University of Washington) or OMSSA (2.1.9) using either a ±5
Da average precursor mass tolerance or a ±10 ppm monoisotopic precursor mass tolerance
and a monoisotopic fragment bin size of 0.01 Da (Sequest) or a monoisotopic product mass
tolerance of ±0.01 Da (OMSSA). Results were filtered with PeptideProphet, iProphet and
ProteinProphet from TPP 4.3 rev 1. The accurate mass, non-parametric model, and decoy
estimation options were used in PeptideProphet. The TPP component Libra was used for
isobaric label quantitation.

3 Results and discussion
3.1 Data analysis workflow

Figure 1 depicts the two basic workflows of COMPASS—identification and quantitation.
Independently of the LC–MS/MS data, a protein database is generated with Database
Maker. This step is only performed once per .fasta (e.g., when an updated protein database is
released). Although several methods exist for performing target–decoy searches [19,37],
simple protein sequence reversal was the first [38] and is most straightforward. Other decoy
methods are similarly effective but require more effort for database generation and/or post-
search correction (i.e., with random databases, the increased number of decoy peptides
relative to target peptides must be compensated for). A search against a concatenated
database—the approach assumed by COMPASS—as opposed to separate target and decoy
database searches, is also the simpler and arguably more effective approach [19].

DTA Generator processes instrument data from LC–MS/MS analyses. This software reduces
the raw data to text formats usable by search algorithms. Although OMSSA is our focus,
individual .dta files for Sequest or .mgf files for Mascot are additional output options.
Database searching can be performed with OMSSA using either the command-line interface
or the NCBI OMSSA Browser, with the only requirement that CSV output must be specified
for use with the rest of the workflow. We have also developed our own GUI for OMSSA,
named the OMSSA Navigator. This software translates between textual and graphical search
parameters, and also validates user input, in real time.

FDR analysis is then performed at the spectrum/peptide level with FDR Optimizer. Two
important considerations come into play at this step: when to apply the FDR threshold and
whether it should be applied based on PSMs or unique peptides. For typical experiments,
FDR analysis should be performed once for all datasets simultaneously (batch option) at the
unique peptide level. Performing FDR analysis for each dataset independently will likely
overestimate the number of identifications at the reported error rate, as target identifications
are more likely to repeat in different analyses, while decoy identifications are more random.
The same is true for PSMs, as target PSMs typically reduce more drastically to unique
peptides than decoy PSMs.

At this point the identification and quantitation workflows diverge. For isobaric label-based
experiments, quantitative data is extracted with TagQuant. The workflow continues as
normal with the next stage, simply using new results files which have extra columns of
quantitative data appended.

Next, Protein Herder infers the minimum set of proteins which can explain the list of
confidently identified peptides. Previously established principles of parsimony [30] are
applied to eliminate proteins whose peptides could be better explained by the presence of
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other proteins. Proteins which are indistinguishable, given the peptides that identify them,
are combined into protein groups. The final parsimonious list of protein groups is then
filtered to the user-specified FDR.

Finally, for quantitative datasets, peptide quantitation must be combined to yield protein
quantitation. ProteinTagQuant accomplishes this task by summing quantitation from the
peptides that make up a protein group, effectively weighting peptide quantitation by reporter
tag signal abundance. Various filtering options are available to improve quantitation by
removing data from peptides known to be problematic based on several criteria.

3.2 Identification dataset
With this dataset, we aim to demonstrate and validate the basic peptide and protein
identification workflow of COMPASS. To accomplish this, we use a relatively simple,
manually annotated sample—the ISB standard 18 protein mix [32], for which all 18 standard
proteins have been identified and many contaminant proteins have been manually validated
—to prove its efficacy. The sample was interrogated by nanoflow LC–MS/MS using a
CAD/ETD decision-tree method [34].

One of the most critical components of contemporary shotgun proteomics is FDR analysis at
the spectrum/peptide level, typically achieved using a target–decoy search strategy. Because
an incorrect PSM is equally likely to match to a target or decoy sequence, the distribution of
scores for decoy hits can be used as a surrogate for incorrect target hits by which one can
estimate the number of false positives and thus, FDR. The advent of linear ion trap–Fourier
transform hybrid mass spectrometers [39,40] enhanced peptide identification by enabling the
detection and selection of precursors for activation from high-mass accuracy MS1 spectra.
This process yields ppm-level precursor mass errors, which provide a highly orthogonal
dimension for FDR filtering [41].

The MacCoss lab has shown that wide precursor mass tolerance searches followed by
filtering is preferable to narrow searches [42], and COMPASS uses this approach. For
maximum sensitivity, DTA Generator outputs the isolation center m/z as the precursor and
OMSSA searches should be performed with a wide precursor mass tolerance (i.e., up to ±5
Da) to ensure that the correct peptide will be considered even if an isotopic peak has been
selected. This strategy avoids determination of the precursor monoisotopic m/z, which is an
error-prone process that, when coupled with narrow precursor mass tolerance searches, can
lead to the loss of identifications. The COMPASS workflow is explicitly designed to avoid
these pitfalls.

The post-search filtering process, performed by FDR Optimizer, is demonstrated in Figure 2.
Precursor mass error—the x-axis—is a metric for how well the MS1 information matches
the candidate peptide, while −log10(e-value)—the y-axis—measures how well the MS2 data
matches the candidate peptide. With low-resolution MS1 data, only the y-axis is used due to
poor measurement precision of the x-axis, leading to the acceptance of many matches that
unknowingly have high precursor mass error, and thus are unlikely to be correct (Figure 2a).
Performing FDR analysis using only q-values yields 864 unique target peptides at 1% FDR.
However, when precursor mass error is used as a filter, the number of peptides taken from
the dense region around 0 ppm precursor mass error is increased (Figure 2b). Peptides with
worse-matching MS/MS spectra, but low precursor mass errors, can be accepted, leading to
an 11.5% increase in the number of identifications, to 963 unique target peptides.

Carrying out FDR analysis using q-values, not e-values, is a critical distinction for
combining diverse search results. In this case, although it is a single LC–MS/MS analysis,
two different fragmentation methods—CAD and ETD—are utilized. Because OMSSA e-
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values can have slightly different meanings for different data types or search parameters, the
software calculates the q-value for each PSM. Q-values are a more empirical measure of
confidence in a given identification, and therefore are better suited for combining results. In
both Figure 2a and 2b, a single q-value threshold represents an e-value threshold for CAD
results that is slightly lower than that for ETD results.

The well-annotated nature of the sample analyzed in this dataset enables validation of the
FDR analysis employed by COMPASS. The database provides two different levels of decoy
databases; therefore, after the normal FDR rules are applied, additional “background”
proteins from an unrelated organism (H. influenzae, in this case) remain to verify the
estimated error rate. In this case, out of the 3,177 accepted PSMs, only 17 (0.54%) were
from H. influenzae proteins. At the unique peptide level, 17 out of 963 were from H.
influenzae, for an actual error rate of 1.8%, close to the expected 1%.

Protein-level analysis is shown in Table 1. In total, 34 proteins were identified at a 1% FDR.
All 18 of the standard proteins were identified with very high confidence, ranging from 17
to 399 PSMs and from 4 to 92 unique peptides. Furthermore, though they tend to
overestimate confidence, protein p-values were at worst 10−66, and many were effectively
zero due to numeric underflow (i.e., many small numbers multiplied until the computer
assumes zero). The minimum protein sequence coverage was about 20%, ranging all the
way up to 95%. Additionally, 15 contaminant proteins that have previously been manually
validated were identified.

As one out of the 34 proteins identified at a 1% FDR was actually a background H.
influenzae protein, the true error rate for this dataset was 2.9%. However, this value reflects
the low number of proteins present in the sample, and in fact one background protein is
expected to be accepted at a 1% protein FDR statistically (negative binomial distribution; r
= 1, p = 0.5). For realistic proteomic datasets with hundreds or even thousands of identified
proteins, this issue is much less significant.

For comparison, this dataset was searched with the TPP using a ±5.0 Da average precursor
mass tolerance, typical for COMPASS, and a ±10 ppm monoisotopic precursor mass
tolerance, typical of most proteomic searches. The TPP searches were done using both
Sequest and OMSSA. PSMs, peptide, and protein identifications at a 1% FDR are given in
Table 2. COMPASS performs favorably in all metrics, in particular unique peptides for
which it yielded the most across all analyses.

3.3 Quantitation dataset
With this dataset we aim to demonstrate and validate the quantitative workflow of
COMPASS. We achieve this by using yeast proteins, digested with trypsin, labeled with
isobaric stable isotope tags, and mixed in known ratios. We used TMT 6-plex tags to label
peptides mixed in ratios of 1: 1: 1.5: 2: 3: 5. The peptides were analyzed by LC–MS/MS
utilizing a data-dependent top-10 HCD method, with all spectra acquired in the orbitrap.
Analysis by COMPASS yielded 9,931 target PSMs and 5,832 unique target peptides at a 1%
peptide FDR, translating to 917 target proteins at a 1% protein FDR.

Accuracy and precision of quantitation can be evaluated by plotting the intensity of reporter
tags on opposite axes, as shown for all 9,931 accepted PSMs in Figure 3. The slope (m) of
each series represents the accuracy, while the coefficient of determination (R2) represents
the precision. For PSMs, depicted in Figure 3a, the slopes for mixing ratios of 1, 1.5, 2, 3,
and 5 had errors of −3.7%, −1.4%, +2.4%, +2.3%, and −0.3%, respectively. We note that
this level of accuracy was achieved even without any tag intensity normalization, meaning
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that any imprecision in mixing amounts are reflected in these errors. The coefficients of
determination were 0.977, 0.983, 0.982, 0.981, and 0.985, indicating excellent precision.

Precision and accuracy of the quantitative analysis improves even further at the protein
level, as shown for all 917 identified proteins in Figure 3b. By summing peptide quantitation
data, results are weighted according to their abundance, which tends to correlate well with
its reliability. The slopes for mixing ratios of 1, 1.5, 2, 3, and 5 had errors of −2.5%, +0.6%,
+1.9%, +7.3%, and −2.2%, respectively. The precision was significantly higher at the
protein level, with coefficients of determination of 0.999 for all series.

This dataset was also searched by the TPP using the same two precursor mass search types
and search algorithms for comparison. Again, COMPASS performed favorably, in this case
identifying the most PSMs and unique peptides across all analyses, and only slightly fewer
proteins. TPP’s Libra and COMPASS’s TagQuant/ProteinTagQuant produced quantitation
of similar quality.

3.4 Large-scale datasets
COMPASS has been used in multiple large-scale proteomic studies. In one study, 3,908
yeast proteins were identified at a 1% FDR, utilizing digestion with five different enzymes,
fractionation by strong cation exchange (SCX) chromatography, and triplicate LC–MS/MS
analysis [43]. In another study, human embryonic stem cells have been quantitatively
compared to induced pluripotent stem cells and their somatic precursors, yielding 7,962
proteins at a 1% FDR, 6,179 of which were quantified by iTRAQ 4-plex [44]. Finally, in an
investigation of environmental stress response, 2,973 yeast proteins were identified at a 1%
FDR, of which 1,373 were quantified in biological triplicate with TMT 6-plex over a 240
minute time course following treatment with 0.7 M NaCl [45].

3.5 Software availability
All of the software described here—both as a Microsoft Windows installer and full source—
code is available at http://www.chem.wisc.edu/~coon/software.php#compass. It is licensed
under the GNU General Public License version 3.

4 Concluding remarks
The development of software for the analysis of mass spectral data from biological samples
can present significant challenges. Complete analysis requires attention to many important
components, many of which are not widely available. Our aim is to distribute an open-
source companion platform for OMSSA, COMPASS, to facilitate typical proteomic analysis
functions so that users can freely utilize a modern, competitive pipeline that is easy to use.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

COM Component Object Model

COMPASS Coon OMSSA Proteomic Analysis Software Suite

CSV comma-separated values

ETD electron-transfer dissociation

FDR false discovery rate

GUI graphical user interface

HCD higher-energy collision dissociation

ISB Institute for Systems Biology

iTRAQ isobaric tags for relative and absolute quantitation

OMSSA Open Mass Spectrometry Search Algorithm

TMT tandem mass tags

TPP Trans-Proteomic Pipeline

XML extensible markup language
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Figure 1.
Identification and quantitation workflow of COMPASS. Database Maker generates
BLAST-formatted protein databases for OMSSA. DTA Generator converts raw instrument
data to text files for searching with OMSSA. FDR Optimizer performs FDR analysis at the
spectrum/peptide level, followed by protein parsimony and FDR analysis at the protein level
with Protein Herder. For quantitation, the workflow is supplemented by TagQuant, which
performs spectrum/peptide-level quantitation, and ProteinTagQuant, which performs
protein-level quantitation.
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Figure 2.
Comparison of one- (a) versus two-dimensional (b) FDR analysis at the peptide level.
Without high-mass accuracy precursor detection, e-value is the sole discriminant between
correct and incorrect PSMs. As a result, many PSMs with high precursor mass error, and
therefore, less likelihood of being correct, are accepted. The addition of precursor mass
accuracy as a secondary discriminant allows the acceptance of spectra with worse e-values,
giving a higher number of PSMs and unique peptides at the same FDR. In both cases, the q-
value threshold corresponds to slightly better (i.e., lower) e-values for ETD (upper dashed
line) than CAD (lower dashed line).
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Figure 3.
Peptide (a) and protein (b) quantitation for the quantitation dataset. For each of the known
ratios of 1: 1: 1.5: 2: 3: 5, the error between the observed and expected ratio was always less
than 10%, even without any normalization to account for imprecision in sample mixing.
Although the correlation was quite good at the peptide level, with a typical R2 of 0.98,
summing gave superior quantitation at the protein level, with every ratio producing an R2 of
0.999.
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