{: SCISPACE

formerly Typeset

@ Open access « Journal Article - DOI:10.1002/ZAMM.19910710109

Compatibility Conditions at Corners between Walls and Inflow Boundaries for Fluids
of Maxwell Type — Source link (4

Michael Renardy

Institutions: Virginia Tech

Published on: 01 Jan 1991 - Zamme-zeitschrift Fur Angewandte Mathematik Und Mechanik (WILEY-VCH Verlag)

Related papers:

« Laminar Non-Newtonian Flow in an Annulus with Porous Walls

» Flow between Two Co-Axial Tubes near the Entry

« Laminar Non-Newtonian Flow through a Porous Annulus

» The Effect of Permeability on the Slow Motion of a Porous Sphere in a Viscous Liquid

« Slow Steady Flow of an Idealized Elastico-viscous Liquid through a Cone with a Source/Sink at the Vertex

Share thispaper: @ ¥ M ™

View more about this paper here: https:/typeset.io/papers/compatibility-conditions-at-corners-between-walls-and-inflow-
1eafwmc4nn


https://typeset.io/
https://www.doi.org/10.1002/ZAMM.19910710109
https://typeset.io/papers/compatibility-conditions-at-corners-between-walls-and-inflow-1eafwmc4nn
https://typeset.io/authors/michael-renardy-7gxun9f52h
https://typeset.io/institutions/virginia-tech-1qdxqc03
https://typeset.io/journals/zamm-zeitschrift-fur-angewandte-mathematik-und-mechanik-3ezhsw7v
https://typeset.io/papers/laminar-non-newtonian-flow-in-an-annulus-with-porous-walls-55cio0lha5
https://typeset.io/papers/flow-between-two-co-axial-tubes-near-the-entry-4kqyhr7qpg
https://typeset.io/papers/laminar-non-newtonian-flow-through-a-porous-annulus-zbv4ni5jig
https://typeset.io/papers/the-effect-of-permeability-on-the-slow-motion-of-a-porous-2o5t6zod20
https://typeset.io/papers/slow-steady-flow-of-an-idealized-elastico-viscous-liquid-587jc67gyc
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/compatibility-conditions-at-corners-between-walls-and-inflow-1eafwmc4nn
https://twitter.com/intent/tweet?text=Compatibility%20Conditions%20at%20Corners%20between%20Walls%20and%20Inflow%20Boundaries%20for%20Fluids%20of%20Maxwell%20Type&url=https://typeset.io/papers/compatibility-conditions-at-corners-between-walls-and-inflow-1eafwmc4nn
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/compatibility-conditions-at-corners-between-walls-and-inflow-1eafwmc4nn
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/compatibility-conditions-at-corners-between-walls-and-inflow-1eafwmc4nn
https://typeset.io/papers/compatibility-conditions-at-corners-between-walls-and-inflow-1eafwmc4nn

COMPATIBILITY CONDITIONS AT CORNERS
BETWEEN WALLS AND INFLOW BOUNDARIES
FOR FLUIDS OF MAXWELL TYPE

By

Michael Renardy

IMA Preprint Series # 537
June 1989



COMPATIBILITY CONDITIONS AT CORNERS
BETWEEN WALLS AND INFLOW BOUNDARIES
FOR FLUIDS OF MAXWELL TYPE

MICHAEL RENARDY¥*

Abstract. We prove an existence and uniqueness result for steady flows of fluids with differential
constitutive laws of Maxwell type. The flows under consideration are small perturbations of plane Poiseuille
flow, and the shear rate in the basic Poiseuille flow is assumed to be sufficiently small. The problem is
posed on a rectangular domain, which has an inflow boundary and an outflow boundary. The main issue of
interest is the nature of compatibility conditions which the data must satisfy in order to avoid singularities
of the solution at the corners between the inflow boundary and the walls.

Wir zeigen einen Existenz- und Eindeutigkeitssatz fir stationdre Stromungen von Flissigkeiten mit
differentiellen konstitutiven Gleichungen vom Maxwell’schen Typ. Die hier untersuchten Strémungen
sind kleine Storungen einer ebenen Poiseuillestromung, und es wird angenommen, dafl die Scherrate in
der ungestérten Poiseuillestromung hinreichend klein ist. Das Problem ist gestellt in einem rechteckigen
Gebiet, wobei die Flussigkeit durch eine Seite hinein- und durch die gegeniiberliegende Seite hinausfliefit.
Das Interesse konzentriert sich in erster Linie auf Kompatibilititsbedingungen, welche die Daten des
Problems erflillen miissen, um Singularititen an den Ecken zwischen der Seite, durch die die Flussigkeit
hineinstromt, und den Wanden zu vermeiden.

Hoka3bIBaloTcs CyIIeCTBOBaHWE M €IMHCTBEHHOCTh CTAllMOHAaPHBIX Te4YeHUN >KUi-
KocTel, BBITIONHAOWUX AuddepeHIinalbHoe KOHCTUTYTHUBHOEe ypaBHeHMe MakcBes-
OBCKOro Tumna. VMayuyaemnle TedeHUS BO3MYUIAIOT OCHOBHOe TeyeHue [lyaseisisi, U cko-
pocTh aToro TedyeHus I1yaseitsisa npepnosiaraercs Majoi. [Ipobaema cTaBuTCA Ha IPSIMO-
YT OJIbHOM 0BJIaCTH; dKUAKOCTb BXOAUT Yepe3 OAHY U3 CTOPOH M YXOOUT Yepe3 CTOPOHY,
HaXO[SAIIYIOCS HAanpoTUB. VIHTepec cOCpeNoOTOYNBAaETCS Ha YCJIOBUSI COBMECTHMOCTH,
KOTOpBIe KpaeBble YCJIOBUS IOJIXKHbI BLIMOJHSATD, YTOOBI pellleHUe 65110 HECUHTYISIPHOE
B Yyrojlax Me>XJly CTOPOHOI BXO[Ia M CTE€HKaMH.

Key words. Maxwell fluids, steady flow, behavior at corners, compatibility conditions

AMS(MOS) subject classifications. 35L80, 35M05, 76A10

1. Introduction. In [4], the author established an existence and uniqueness result
for small perturbations of uniform flow of a Maxwell fluid transverse to a strip. For two
space dimensions, it was shown that a well-posed problem is obtained if one prescribes the
velocities at the inflow and outflow boundaries, and the diagonal components of the extra
stress at the inflow boundary. The inflow value of the off-diagonal component of the extra
stress can be determined as part of the solution.

In simulations of practically relevant flows, inflow boundaries typically join onto walls at
a 90 degree angle. This raises the new issue which singularities might arise at such corners
or which compatibility conditions should be imposed in order to avoid singularities. In
contrast to reentrant corners, the corners between inflow boundaries and walls are generally
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regarded as “harmless” in numerical simulations, and the results of this paper provide some
mathematical justification for this belief.

The construction of solutions in [4] is based on an iteration method, which alternates
between solving a Stokes-type problem and determining the extra stresses by integration
along streamlines. For the function spaces, one can use H? for velocities and H? for
stresses. In the present paper, we reexamine the iteration procedure in the case where
the inflow boundary joins onto a wall. It is found that if the prescribed data satisfy
appropriate compatibility conditions, then it is still possible to carry out the iteration in
the same function spaces. Hence singularities at the corner are very weak. In particular,
stresses and velocity gradients remain bounded.

2. Formulation of the problem. The equations under study are the balance of
momentum

(1) p(v-V)v=divT-Vp+f,

the incompressibility condition

(2) divv =0,

and a constitutive relation of Maxwell type,

(3) (v- V)T + AT = gM(Vv 4+ (Vv)T) + g(Vv, T).

The tensor-valued function g is assumed to be smooth and g and its first derivatives are

assumed to vanish when the arguments are zero.

Remark. For simplicity, we shall assume that a constitutive relation of the form (3)
holds in two dimensions, with T being a 2 X 2-matrix. In general, T13 and T3 can be
shown to vanish in purely two-dimensional motions, but even if the constitutive law in
three dimensions has the form (3), the equation for T35 does not necessarily decouple from
the rest. If it does not, then in the following we would also have to prescribe inflow data
for T33 and require that they satisfy appropriate compatibility conditions. Otherwise, the
analysis carries over without changes.

We consider two-dimensional flow in the domain @ = (0,L) x (0,1). The flow moves
from left to right and the boundaries y = 0, 1 are walls where the no-slip boundary condition
holds. We consider perturbations of a Poiseuille flow given by

(4) p=P=—Ge, v=V(y) = (U(y),0), T=TM(y) = (?E?@Jjg g((;)?)

If G > 0 is sufficiently small, the implicit function theorem can be used to determine U(y)
and II(y) as a solution of (1)-(3) (with f = 0). To first order in G one obtains the Newtonian
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solution: U(y) = gy(1—y)+ O(G?), T = O(G?), T(y) = G(5 —y) + O(G?), T = O(G?).
The Poiseuille flow given by (4) is perturbed by allowing a small body force f and by
perturbing the boundary conditions. We use the following notation for the perturbations:

(5) g=p—P,u=v-V(y), S=T-I(y).

In components, we shall write

(6) u=(uv), S= (‘7’_ ;)

The boundary conditions which we prescribe, in addition to the no-slip condition at the
walls, are as follows:

u=ug(y), v="1vo(y), o =00(y), v="(y), at z =0,

(7) u =ui(y), v=r1y(y), at = = L.

Incompressibility requires that

(8) /01 uo(y) dy = /01 u1(y) dy.

We are concerned with restrictions on the data that are needed to avoid corner sin-
gularities. Some restrictions on the velocities are obvious. In order to have continuity of
velocity, we need

(9) Uo(O) = Uo(l) = ’U()(O) = Uo(l) = ul(O) = U,l(l) = ’Ul(O) = ’01(1) =0.
Moreover, continuity of velocity gradients and the incompressibility constraint require that
(10) vp(0) = vp(1) = v3(0) = vy (1) = 0.

For further use, we note that formally we can compute all second derivatives of velocities
at the corners in terms of the data. We obtain, for example

v22(0,0) =0, uzy(0,0) = —v,,(0,0) = —vy(0), v44(0,0) = —uz;(0,0) =0,

(1) 13,/(0,0) = uf(0).
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Since the velocity vanishes at the corner, the term (v- V)T disappears in (3). Hence we
can compute the stresses in terms of the velocity gradients. Moreover, after differentiating
(3) with respect to z and y, we can compute the first derivatives of the stresses. In order
to obtain regular solutions, we shall therefore have to assume that g, vy and their first
derivatives take on the right values at the corners.

To formulate a precise result, we need to introduce some function spaces. Let H®
denote the usual Sobolev spaces. In addition, for any non-negative integer n, we define
Hf+1/2(0, 1) to be the set of all those functions u € H"t1/2(0, 1) such that the nth deriva-
tive (") has limiting values & and 3 at the endpoints in the sense that

1/2 1
(12) / s u™(y) - af? dy < oo, / (1) ™ (y) = B dy < oo.
0 1/2

This space is closely related to the space H (?0+ /2 defined in [3], which is obtained if the
boundary values of u and its first n derivatives are restricted to vanish. In addition,
we shall need the following weighted Sobolev spaces. Let H[(0,1) be the space of all
functions which are of class H™ on any compact subinterval of (0,1) and such that there
exist constants ag, ..., ap—1 and By, ..., fn—1 for which

1/2 1
/ WOWP dy <o, [ 1= dy < oo,
0 1/2

1/2 d n—-1 2
/ yz("‘")“‘u(k) - [Z aiy ] dy < oo,
0

! i} . d* 3 112
(13) // (1 - )2 M) (y) o > s -w[ dy<oo k=0,1,m -1,
1/2 i=0

Moreover, let Hg ' (0,1) be the space of all functions in H"~1(0,1), which satisfy all the
conditions in (13) except the first two, and let HZ %(0,1) be the space of all functions
in H"~2(0,1), which satisfy (13) for k¥ < n — 2. We note that H? and H*'/? are both
continuously embedded in Hg' ~1. The former is clear from the definition; for the latter,
see Remark 11.8 on page 70 of [3]. We denote the norm in H® by |- ||s (it will be clear
from context whether we are dealing with functions defined on (0,1) or (0,L) x (0,1)).
The norms in Hn+1/2 H}, HY and Hg are denoted by || - |lnt1/2,% || - lln,ws || - ln,s and
“ “n,&-

The main result is as follows:



THEOREM. Let G be chosen sufficiently small and let € be sufficiently small relative
to G®/2. Assume that the data satisfy the following smallness hypothesis:

I€ll2 + [lwolls /2 + llvolls/2,s + wallssz + llvills/2 + looliz,w + [v0llz.w <e,

(14) lloo + 2nvgllis + [1v0 — 201 < Ge.

Moreover, assume that the prescribed velocities satisfy the compatibility conditions (8)-
(10) and that oy and -y and their first derivatives assume compatible values at the end-
points in the sense described above. Then there exists a solution of (1)-(3) which assumes
the given boundary data and has the regularity u € H®, S € H%, ¢ € H2. Except for an
arbitrary constant in the pressure, this solution is the only one which has small norm.

We could of course make the second part of (14) superfluous by adjusting the size of €.
However, we obtain a somewhat sharper result the way the theorem is stated. The terms
occuring in the second part of (14) are the differences between the prescribed stresses
and the values which the stresses would have if the fluid were Newtonian. Since G is
proportional to the Weissenberg number, it is physically reasonable to prescribe stresses
close to the Newtonian ones when G is small.

3. Iterative construction of solution. We use essentially the same iterative pro-
cedure as in [4]. We apply the operation (v - V) 4+ A + (Vv)T to the equation of motion
(1) and we use (3) to substitute for (v - V)T. With ¢ denoting (v - V)p + Ap, we find an
equation of the form

(15) nAAvV — V¢ + h(v, Vv, Viv, T, VT, f, Vf) = 0.

Here h is a complicated nonlinearity which we do not write out explicitly. For the perturbed
quantities defined in (5), equation (15) takes on the form

(16) nAAu — Vo + k(G,y,u,Vu, V*u,S, VS, f, Vf) = 0,
and equation (3) takes the form

(V+u)-V)S+ 1S = gA(Vu+ (Vu)) + r(G,y, S, u, Vu),

(17) r(G,y,S,u,Vu) = —(u- V)II + g(Vu + VV,S + 1I) — g(VV, II).
Here ¥ = ¢ + MGz + GU(y) denotes the perturbation to ¢.
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The iterative construction of the solution alternates between solving the Stokes problem
(16) and integrating (17) for the stresses. At each step of the iteration, we first determine
a new velocity field from

nAAU™! — Vit 4 k(G y, u”, Vu®, Vu®, 8", VS™, f, VE) = 0,

div u™*t! =0,

u"t = UO(y)a v = vO(y)a at ¢ =0, utl = ul(y), v = vl(y) at z = L,

(18) u™t! =™ =0 at y=0,1.
We then determine a new stress from solving

((V + un+1) . V)Sn+1 + ASH — nA(vun-H + (vun-H)T)

(19) +r(G,y,S™ u*t vuntt),

subject to the initial conditions

(20) o™ = oo(y), 7" =(y), at = =0,

and an initial condition for 7"*! which is determined by taking the curl of (1)

(21) pcurl (V+u™) - V)u™t! 4 (u"t!. V)V) = curl div S**! 4 curl f, at 2 = 0.

It will be explained later how (21) is used to find an initial condition for 7™*1.

As in [4], the proof is based on establishing that, for an appropriate choice of 6,
the mapping (u®,S") — (u™*!,S™*1) as defined above is a contraction in a complete
metric space. We choose § sufficiently large relative to €/ VG, but small relative to G.
The complete metric space in which we show convergence of the iteration is the set Z =
{(u,8) | ||ulls +[|S]]2 < 6}, equipped with the metric ||ul|z + ||S||;. We first show that this
space is mapped into itself by the iteration. In the following, we particularly emphasize
those steps where the argument differs from [4]. The main issues are the presence of corners
in the boundary (for the Stokes part of the iteration) and the vanishing velocity at the
walls (leading to a degeneracy of the hyperbolic equation (19)).
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4. Solution of Stokes problem. Let us assume that (u®,S") lies in Z. We first
consider the solution of the Stokes problem (18). The following estimate holds:

(22) lu™Hls < C(lIkllx + luolls/z + llvolls 2 + llutlls/z + flvalls/2).

We note that ||k||; can be estimated by a constant times € + §(e + G + §), and hence the
right hand side of (22) is small relative to 6. The estimate (22) follows from the results in
Chapter 7 of [2]. Since we have assumed the compatibility conditions (9) and (10) at the
corners, we need only check that the equation

(23) sinh (ZA) = £A

T

has no roots in the strip —2 < Im A < 2, other than the obvious roots 0 and +i. We set
A = s 41t in (23) and compare real and imaginary parts. Since both sides of (23) are odd
functions of A, we need only consider ¢ > 0. We obtain

TN us . T T
(24) cos(at) smh(§s) = *s, s1n(§t) cosh(gs) = &t.

One easily sees that ¢ = 2 is impossible and t = 0 or ¢t = 1 yields s = 0. Moreover, it
follows from the second equation in (24) that for 0 < ¢ < 2 only the plus sign is possible
on the right hand sides. For 1 < ¢t < 2, this implies that the terms in the first equation
of (24) have opposite signs and hence cannot be equal. If 0 < t < 1, then sin(5t) > ¢,
and hence the left hand side in the second equation of (24) is always bigger than the right
hand side.

By the trace theorem, it is clear that the right hand side of (22) is an upper bound for
the H'/2-norm of the second derivatives of u"*! on the inflow boundary z = 0. For future
use, we actually need to estimate the norm of the second derivatives in H i/ 2 We have
Uyy = Uy, Vyy = Vg, and these are in H. & by assumption. Moreover, because of the bound-
ary condition at the walls, we have u,,, vy, € H'((0,L); L3(0,1)) N L2((0, L); H}(0,1)),
and hence their traces lie in the interpolation space Hé({ %(0,1) (see [2]). Finally, the in-
compressibility condition implies that ugzy = —vyy, Vgy = —Ugs.

Remark. It is of interest to what extent the analysis here might be generalizable to
other flow problems; in particular, what angles at the corner might be accommodated. For
a general angle w, the analogue of (23) is sinh(wA) = A sinw. One obtains H? velocities
as long as this equation has no roots (other than 0 and +£7) in the strip —2 <Im A < 2.
Numerical solutions show that this is the case if the angle is less than approximately 126
degrees (see [1]). It is probable that H3-velocities are not really needed; one would have
to work in fractional order spaces to avoid this. The minimum one would expect to need
is H2*? for velocities and H*? for stresses (§ > 0); in that case any convex angle can be
allowed.



5. Inflow boundary condition for the shear stress. We next consider the deter-
mination of an inflow boundary condition for 7»*!. A rearrangement of (21) yields

pcurl ((V +u™t). V)ut! 4 (u™* . V)V) — curl f

52 2rntl  GRpntl
25 — Tl+1 _ n+1 _
(25) A AN iy = ey
Moreover, from (19) we find
o™l 1 +1 007! Qunt?
— _n - n+1 In\
Oz U+ unt? ( Oy oA Ox
+r11(G,y’Sn+l,un+1,vun+l)),
67n+1 1 bl a7n+l avn+1
= — — Ay 42
Oz U + untl ( Jy v Oy
+T22(G, Y, Sn+1a un+1 ) Vun+1 )) 9
orntl 1 40! oumtt  gyntl
— _,n - n+1 by
Oz U+u"+1( T X Oy + Oz )

(26) +r12(G,y’Sn+l,un+l’vun+l ))3

We differentiate the last equation once more with respect to z and obtain

gtrntl 1 Juntt grntl
o2 U +untl Oz Oz
1 o+l §rntl orntl 92yuntl  §ypntl
+U + untl <— or Oy A Oz A Oz 0y + O0x? )
a vn+l 627_n+1
9 il n+1 n+1 n+1 _ .
( 7) +8$T12(Gay’s yu ,Vll )) U+Un+1 ayax

We substitute (26) for 6’;:1, a‘:;:l and az;:l in (27) and then substitute (26) and
(27) into (25). In this way, we obtain a second order ordinary differential equation for
77+ which needs to be solved. We first determine the values of 7”*! and its derivatives

at the corners. Recall that the velocities vanish at the corners, and hence (19) implies that

(28) =AS™ 4 pA(Vut! 4 (VT 4 1(G,y, S, um Y, Vurt) = 0.
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This equation determines the value of S™*! at the corners. By assumption, the values of
oo and 7y are chosen consistent with (28) and we must seek 7®+! such that its values at
the corners are also given by (28). By differentiating (19) with respect to z and y, we
formally obtain the following identities at the corners:

gsnH 0 n+1 n+1\T 0 n+l . ntl +1
(29) AT £ A (VU 4 (TuT) 4 Sor(Gy, 8™ u, Va0,
(_a_U_ N aun-l-l )asn+l _ _Aasn+1
Oy Jy or Oy
a n+1 n+1IN\T a n41 n41 n+1
(30) AT (Tum)T) 4 (G, ™, Tt

We can now compute 9S™*! /9z from (29) and then 8S™1!/dy from (30). It was assumed
that the values of o) and 7, at the corner are compatible with this procedure, and we shall
seek 7"*! such that 87™%! /8y is also compatible. We note that by applying I'Hospital’s
rule to the right hand side of (26), we obtain equation (30). Hence the determination of
the derivatives of S™*! from (29) and (30) is consistent with (26). We now seek an inflow
value for 77*! in the form 77*! = #7*! 4 74, where 7y is a given function (e.g. a third
degree polynomial) such that 7y and its derivative assume compatible boundary values.
Since Ty is given entirely in terms of the data, its size is of order e. We seek 7"*! in the
space HZ o = {r € H | 7(0) = 7'(0) = 7(1) = 7'(1) = 0}.

Before we proceed further, we need some simple properties of the weighted Sobolev
spaces defined in the previous section. We state these properties as a lemma.

LEMMA.
a) H§(0,1) is a Banach algebra.
b) HL(0,1) is a Banach algebra.
c) The operator of differentiation is continuous from H(0,1) into H*~1(0,1).

d) Let U be a continuously differentiable function on [0,1] which has simple zeros at the
endpoints and is positive in the interior. Let d(y) = min(y,1 — y). Assume that

“‘/1/2 S L gt [y ay < oo
L Y uT Ty Y)Y YT To) Y

12 U —yU'\2 ! U+(1—-y)U'\2

Let

(32) K(U) = Va+Vb+e, c:rlxol:al)]c(dg/) +\d(%).ZUID.
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Let Hg 4 be the subspace of all functions in Hg which vanish at the endpoints. Then

the mapping ¢ — ¢/U is continuous from H} , into H! 6 with norm bounded by a
g $,# w

constant times £(U).

e) There is a constant C such that for any function u € Hf+1/2(0, 1) and any G > 0 there
exists 4 € H**! with

. . C
(33) [u—tllns < CGllullnt1/2,+ and [[E]n41,0 < 5”u|1n+1/2,*-

We remark that for (31) to hold it is sufficient that U’ is Holder continuous. We sketch
the proof of the lemma. First we show that H}(0,1) is continuously imbedded in C(0,1).
From the definition it is clear that H] is the direct sum of the space of linear functions and
the space {¢ € HL (0,1) | d(y)~/2¢ € L*(0,1), d(y)/?¢' € L?(0,1)}. If 4 is in this latter
space, then, by the Cauchy-Schwarz inequality, ¢¢' € L!(0,1) and hence ¢2 € C(0,1). A
fortiori, Hy is also imbedded in C(0,1). Parts a and b of the lemma follow easily. Part
c of the lemma is obvious from the definitions. For part d, we first decompose H. é, 4 s
X +Y, where X is the space of all third degree polynomials which vanish at the endpoints
0and 1, and Y = {¢ € H'(0,1) | d(y)~%/%¢ € L*(0,1), d(y)~'/?¢' € L*(0,1)}. We note
that (¢/U) = ¢'/U — ¢U'JU?. If ¢ lies in Y, it follows that ¢/U lies in H), with norm

bounded by ¢||¢||ly. If ¢ lies in X, we can write it in the form ¢(y) = ay+By? —(a+B8)y> =
2a+B8)(1-y)— Ba+28)(1—y)? + (a+ B)(1 - y)*. We then obtain

1/2 1/2 / !
[ gt o [

1/2 9 1/2 I\ 2
2 “1(Y 1 2 1 yU
_ Yy _ LI L
(34) 0‘/0 y (U U'(O)) dy+°‘/0 y(U U2) v+

A similar calculation holds for the interval (1/2,1). The integrals on the right hand side
of (34) are bounded by a and b, respectively, and the terms indicated by dots involve only

integrals of bounded functions. This completes the proof of d. For part e, we use the fact
that, in the notation of [5],

H:}:_H(O’ 1) = W2n+1((0’ 1)? p_l’p2n+l) + P2n+1(0’ 1)7

H:+1/2(0, 1) = W2n+l/2((0a 1)7 1,p2n+1) + P2”+1(0’ 1)’

(35) Hg(0,1) = W2((0,1), p, p°" 1) + Pan41(0,1),

where P,,41(0,1) denotes the space of polynomials of degree 2n + 1. Using the results
of Chapter 3 in [5], we therefore find that H, +1/2 g equal to the interpolation space
[H3*t, HgYy )2, and part e follows immediately.
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We are now in a position to discuss the various terms occuring in (25). The left hand
side does not depend on 7! and its norm in HY can be estimated by a constant times
e+ (G +v)v, where we set v = |[u"|[5/5 . + [|[Vu™ |3/« +[|VZu™ |1 /2 .. Using parts
a,c and d of the lemma, we find that the mapping

~n 82 n n
(36) Frtl am_ay(7 gty

where the right hand side is given by (26), is smooth from HZ, ; into HJ. Moreover, we
obtain the estimate

o2
I Bma_y (7n+1 - Un+1)||0,w < Cr(U + u"+1) ((G +e)e+ G(v + |l7~'"+1 s +¢€)

(37) A s + ).

Here we have taken into account the second part of (14) and the explicit form of r as given

by (17). We note that (U + u™*!) is of order 1/G.

We next use part e of the lemma to construct 7)'*! such that

aurtl  Guntl .
H’?( ay + oz ) —T0o— N +1”1,$ < CGV)

(38) 77 a0 < Gl + ).

From (28)-(30), it follows that the corner values of 79 — 7( 8“6";1 + a”;:l) and its first

. . . 1 .
derivative are bounded by a constant times Ge, and hence we can choose 7'1"+ in such

a way that 77! and its derivatives vanish on the boundaries and (38) still holds. Let

Pt = #4122+l Uging (26), we obtain the estimate

orntl atl a1 atl Suntt  Gynt!
1755w < CR(U + ™) (el e + 7 —n(=5— + =5 s
(39) FG+ 74 15 + €+ (v + 7+ a5 + €7

We note that
ountl  Gyrntl

n+1l
|7 n( 59 + =5

Mis SCGv+ |3 s,
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(40) 17" 2,0 < Cle + —) + 7 2w

Moreover, we can split dr"1!/dz in the form

orntl A s+l n+1
(41) 9z U +untl X

and the remainder term y"1! satisfies the estimates

X" 11,0 < Cr(U + u"“)(ellT"+1 2w+ G(v + 17"+ s + €) + (v + 7" s + 6)2>a

(42) X" s < ORU+u™) (el s+ (G v+ 7+ 1 s+ )+ 77+ o, +6))

We can now discuss the terms on the right hand side of (27). We obtain

1 aun-}-l aTn+l n+1 32 n+1
” n41 ”0 wt Il n+1 IlO,w
U+u Oz Oz U+u 0z 0y

07’"“
(43) < C—H 11,
Moreover, we find
avn+l aTn+l 32un+1 a2vn+l
_ _ /\ n+1 /\
”U+un+1( e S A el o)

a n+1 n+1 n+1 g n+1 n+1
mr1a(Gyy, 8™ w L V)| < (vl g + I o

)

8sn +1
(44) F0 4 (G vt e [FH L) + e+ 17 1w+ 15— llos))-

Equation (25) now assumes the form

37_;+1 A? n+1
Oy? (U 4 unt1)? 2

n+1

= w

(45)

and if we assume that € << G, v << G and ||[7"*!||; § << G, then the above estimates
yield, after a straightforward calculation,

(46) o™ M ow < C(— += + || 2 2w + (14 —)ll 2 s + GHTz Hlo,)-
Let A" denote the expression on the left hand side of (45). The following lemma holds.

12



LEMMA. The operator A is bijective from H?, o onto H?. Moreover, an estimate of
the form

1 1
(47) 7.0+ 7l s + g5 l7llo.e < CllATlo,

holds.
To prove the lemma, we first derive some energy estimates. We consider the equation

AT = w and, to simplify notation, we set U = U + u™t1. We multiply the equation by
Ur" /G, and obtain after an integration by parts

1 77 2
U A
48 "2 _ I2d_/
( ) /O‘GIT| GU|T| Y ;

Next we multiply the equation by —7/ GU and obtain

1 1 ' A2 9 1 0[ , 1 1
49 —_— + — dy — = d Z—/ —_— dy.
Wy [ sl sty [ oy = [ ser ay

Using the Cauchy-Schwarz inequality, we find

(50) l/ < r[n,a)]<|U |(/01 G;}3IT2| dy)l/2 (/01 %IT'V dy)l/2.

The first term on the right hand side of (50) is of order G and hence small. The estimate
(47) now follows immediately. Hence A is injective and has closed range. To show that
the range is dense, we approximate U by a sequence of analytic functions U™. Let A™ be
the corresponding operator. If w has compact support in (0, 1), the behavior of solutions
of A™7 = w near the endpoints of the interval can be described by Frobenius’ theory and

7'7' dy—/ —wT" dy.

7'7' dy

it is easy to show that there is a unique solution in HZ ;. Hence A™ has dense range and
since an energy estimate like the one above holds uniformly in m, it follows that A is onto.

The lemma in conjunction with the implicit function theorem and the estimate (46)
now yields the existence of a unique small solution of (45) and hence of (25). In addition,
we obtain the following estimate for the inflow value of 77*1:

(51) 77+ a0 < C(5 + %

)<C(—+6)

For the last inequality we have taken into account the bound for v obtained in Section 4.

6. Determination of stresses. We now have inflow values for all stress components,
which we can use to solve equation (19). Using (26), (27) and the analogue of (27) for

13



the other stress components, we can also compute the inflow values of 9S™*!/dz and
9?8"+1/92? at the inflow boundary. It is not hard to verify that

" asn—{-l a?sn+1
(52) 1" 2,0 + I ll1w + 55— llo,w < C(— + 6).

Since the velocity field is Lipschitz continuous, (19) can be solved uniquely by inte-
gration along characteristics. We need to derive estimates for the solution. The following
discussion is limited to formal energy estimates; a rigorous justification is easily obtained
by approximating the data and coefficients by smoother functions and passing to the limit.
We multiply (19) by S™*! and integrate. This yields

1 L
)\/ / |S™ 1|2 dz dy
o Jo

+3 [ OO+ LS dy- 5 [ O+ 00800 dy

1 pL
(53) =/ / nA(Vu™ +(Vu"tHT) . 8" 4 p(@,y, 8™, u™t, Vurth) s 8™ dg dy.
0 Jo

After differentiating (19) with respect to = and y, analogous energy estimates can be
derived for derivatives of S"*!. We note that on the left hand side of (53) the second
integral is positive and can be discarded in the estimates and the third integral can be

estimated in terms of the inflow data. By combining (53) with the analogous equations
for derivatives, one obtains

(54) 18" |2 < C(\/E(é +8) + v+ Gv + [S"l2) + (v + 8™ |2)*).

Here the first term on the right results from the inflow values of S®*! and its derivatives
and the remaining terms result from the terms on the right hand side of (19). After taking
account of the relative sizes of €, v, § and G, (54) simplifies to

(55) IS+ l2 < C(— +8VG).

\/_

The quantity on the right is small relative to 6. This concludes the proof that the iteration
maps Z into itself.

7. Contraction estimates. To show that the mapping defined by the iteration is a
contraction on Z, one derives estimates similar to those above for the differences between

14



the iterates. Since no essentially new ideas are involved, we shall not give a complete
derivation, but only show one step. By taking differences, we obtain from (19)

((V +um). D)(S™1 = 87) + A(8™ —87) = ((u" — u™) - V)S"

+pA(V(u™ —u®) + (V! —um))T)

(56) +r(G,y,S™ !, ut Vut!) — r(G,y,S", u, Vu"),
Using the same energy estimates as in Section 6 above, we find
(57)
gsn+! os™
18" —-8™|x < C(\/EHSHI(O, -)—S8™(0, ')Hl,w+\/5||'—am—(0, ')—-87(0,')Ho,w+|l7“h3||1)-

Here rhs stands for the right hand side of (56). We obtain

Irhslly < € (1S™ (™" = u|ly + [ju™*+* = "

(58)  H(G+ 8™ 2 + [IS™ |2 + lu™ s + [Ju”{ls)(IS™ ! — 8™}y + [lu*! ~ U"Ilz))-

Using the a priori bounds for ||S™||; and ||[u™||3 which have already been derived, we find

n+1 n
8™+~ 8" < C(VEIS™(0,) = 70, ) + VEI T2 (0,) - 2 (0, o0
(59) Fum*t = w4+ (G + 6™ - 87|y ).

In a similar fashion, we obtain estimates analogous to those of Sections 4 and 5. The
contraction property follows by combining those estimates.
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