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Abstract
It has been conjectured by Fino and Vezzoni that a compact complex manifold
admitting both a compatible SKT and a compatible balanced metric also admits a
compatible Kähler metric. Using the shear construction and classification results for
two-step solvable SKT Lie algebras from our previous work, we prove this conjecture
for compact two-step solvmanifolds endowed with an invariant complex structure
which is either (a) of pure type or (b) of dimension six. In contrast, we provide two
counterexamples for a natural generalisation of this conjecture in the homogeneous
invariant setting. As part of the work, we obtain further classification results for
invariant SKT, balanced and Kähler structures on two-step solvable Lie groups. In
particular, we give the full classification of left-invariant SKT structures on two-step
solvable Lie groups in dimension six.

1 Introduction

Hermitian geometry has been a very active field of study for several decades. His-
torically, most focus has been on Kähler manifolds and many important results have
been obtained for these manifolds, including several severe topological restrictions
in the compact case. These topological restrictions show that most compact com-
plex manifolds do not admit a Kähler structure and this has led to rising interest in
generalisations of Kähler manifolds. In particular, two types of non-Kähler Hermi-
tian manifolds (M, g, J, σ ) have intensively been investigated, namely strong Kähler
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with torsion (SKT) and balanced manifolds, which are characterised by dJ ∗dσ = 0
or δgσ = 0, respectively. If M has real dimension 2n, then the balanced condition is
equivalent to d(σn−1) = 0.

Interest in SKT manifolds stems from various sources. First of all, these manifolds
are precisely those almost Hermitian manifolds for which there exists a compatible
connection ∇B with totally skew-symmetric torsion T B that, when considered as a
three-form, is closed. It is because of this property that they occur in physics in the
context of supersymmetric theories, see for example [19, 22, 32]. Secondly, any Her-
mitian conformal class on a compact complex surface contains an SKT metric [20],
a property which is no longer true in higher dimensions. Moreover, any compact
even-dimensional Lie group admits a left-invariant SKT structure [23, 31].

Balanced metrics are of interest since they occur naturally on several types of
complex manifolds: for example, any unimodular complex Lie group [1] admits a
compatible left-invariant balanced metric and any compact complex manifold which
is bimeromorphic to a compact Kähler manifold admits a compatible balanced met-
ric [2]. Furthermore, they are an important ingredient in the Strominger system from
physics [9, 18].

The SKT and balanced conditions for a fixed Hermitian structure are known to be
mutually exclusive in the sense that any compatible metric g on a complex manifold
(M, J ) which is both SKT and balanced has to be Kähler [3]. More generally, Fino
and Vezzoni conjectured

Conjecture 1.1 ([14, Problem 3], [15, Conjecture]) Any compact complex manifold
(M, J ) which admits a compatible SKT metric and admits a compatible balanced
metric also admits a compatible Kähler metric.

This conjecture has been confirmed in some special cases, including twistor spaces
of compact anti-self-dual Riemannian manifolds [35], non-Kähler manifolds belong-
ing to the Fujiki class C [7] and for left-invariant complex structures on compact
semi-simple Lie groups [11, 28]. We will extend the latter result to all compact
even-dimensional Lie groups in Theorem 4.1.

We define nil- and solvmanifolds to be manifolds of the form M = �\G, with G

nilpotent or solvable, respectively, and � a discrete subgroup. This definition includes
non-compact examples such as G itself and by [24] is broad enough to cover all
compact manifolds with a transitive action of a nilpotent group, but excludes certain
examples with a solvable group action such as the non-orientable Klein bottle. One
says that a complex structure J on �\G is invariant if it pulls-back to a left-invariant
complex structure on G. Now Conjecture 1.1 has been proved for all compact nil-
manifolds with invariant complex structure (by [15] combined with [5]), and for
the following classes of compact solvmanifolds with invariant complex structure:
six-dimensional solvmanifolds with holomorphically trivial canonical bundle [14],
almost Abelian solvmanifolds [12], Oeljeklaus-Toma manifolds [27], regular com-
plex structures on non-compact semi-simple Lie groups [21], and special types of
invariant metrics on almost nilpotent solvmanifolds for which the associated Lie
algebra has a nilradical with one-dimensional commutator [13].
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Actually, compactness of �\G implies that G is unimodular, and in all of the
above cases of �\G with invariant J the results are proved by just considering all
left-invariant structures on G. This is possible since [10, 34] showed that once J

is left-invariant, any compatible SKT or balanced metric on compact �\G may be
averaged to a left-invariant metric of the same type. Hence, the following question
has a positive answer for these Lie groups G.

Question 1.2 Let G be a unimodular Lie group with a left-invariant complex
structure J . If (G, J ) admits a left-invariant compatible SKT metric and admits a
left-invariant compatible balanced metric, does (G, J ) also admit a left-invariant
compatible Kähler metric?

In this paper, we consider Question 1.2 for G two-step solvable. We have imposed
that all the metrics considered be left-invariant, since any solvable group admits a
Kähler metric, see Proposition 4.2, however this metric is not necessarily invariant.

We will give two examples of two-step solvable Lie groups to show the condition
of unimodularity is necessary. In particular, Examples 4.4 and 4.16 are the first known
examples of Lie groups with left-invariant complex structure admitting both left-
invariant SKT metrics and left-invariant balanced metrics, without admitting left-
invariant Kähler metrics. As these examples are not unimodular, they do not give
counterexamples to Conjecture 1.1.

In contrast, we give a positive answer to Question 1.2 for all two-step solvable Lie
groups G endowed with an invariant complex structure J in the following situations:
(a) J is of pure type, (b) G is of dimension 6. Here “pure type” means one of three
summands in a natural decomposition of the Lie algebra g vanishes. Writing g′ =
[g, g] for the derived algebra, we have the following pure types: (I) g′ ∩ Jg′ = 0,
(II) g′ = Jg′, (III) g′ + Jg′ = g.

Our approach, is to build on our study [17] of SKT structures on two-step solvable
Lie groups. The individual cases are proved in Theorems 4.3, 4.10 and 4.14 for the
three pure types. For the six-dimensional case we first complete the classification of
SKT structures on two-step solvable Lie groups in Theorem 4.7 and then apply this
to Question 1.2 in Theorem 4.17.

From the remarks on averaging above, we then get

Main result Let �\G be a compact two-step solvmanifold and with an invariant
complex structure J . Then Conjecture 1.1 holds if either G is six-dimensional, or
(�\G, J ) is of pure type.

The paper is organised as follows. Definitions from Hermitian geometry, the
notions of pure type, our approach to two-step solvable Lie algebras via the shear
construction, and notation for concrete Lie algebras are summarised in Section 2. We
then derive some general results for two-step solvable Lie algebras, in the case that
they have either a balanced structure Section 3.1, or a Kähler structure Section 3.2, in
the latter case obtaining more detailed information than the general structural results
of [8]. Then in Section 4, we prove the main theorems of the paper, as described
above. One consequence is an explicit list of two-step solvable Kähler Lie algebras
in dimension six, see Corollary 4.21.
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2 Preliminaries

2.1 Non-Kähler Hermitian Geometry

First, we recall the basic definitions. We write (M, J ) for a complex manifold, so J

is an integrable complex structure. A metric g is compatible with J if g(J · , J · ) =
g( · , · ), and then the triple (M, g, J ) is called a Hermitian structure. We write σ :=
g(J · , · ) for the fundamental two-form.

Definition 2.1 A Hermitian manifold (M, g, J ) of dimension 2n is

(i) Kähler if dσ = 0,
(ii) balanced if d(σn−1) = 0,

(iii) strong Kähler with torsion (SKT) manifold if dJ ∗dσ = 0.

The following result is given in [3, Remark 1].

Proposition 2.2 Let (M, g, J ) be a Hermitian manifold which is both balanced and
SKT. Then (M, g, J ) is a Kähler manifold.

Next, consider a simply connected Lie group G which admits a cocompact discrete
subgroup � and consider the compact manifold M := �\G. Any left-invariant tensor
field on G may be pushed down to a tensor field on M . The resulting tensor fields
on M are said to be invariant.

By using averaging one has the following result of [10] and [34].

Proposition 2.3 Suppose M := �\G is a compact manifold that is the quotient of a
simply connected Lie group G by a discrete subgroup �.

Suppose J is an invariant complex structure on M . If (M, J ) admits a compatible
metric that is balanced or SKT, then it also admits a compatible invariant balanced
or SKT metric, respectively.

Now consider left-invariant structures on the simply connected Lie group G

directly and identify them with the corresponding structures on the associated Lie
algebra g. We may then also speak of Hermitian, balanced or SKT Lie algebras.
Throughout we will assume g �= 0 and write dim g = 2n for the dimension of g
over R.

Definition 2.4 We say a complex Lie algebra (g, J ) with derived algebra g′ = [g, g]
is of

(1) pure type I if g′ is totally real, i.e. g′ ∩ Jg′ = 0,
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(2) pure type II if g′ is complex, i.e. g′ = Jg′, and
(3) pure type III if g = g′ + Jg′.

If one of these conditions hold, we simply say that (g, J ) is of pure type.
When there is a compatible Hermitian metric g, we introduce the following vector

subspaces. We set g′
J = g′ ∩Jg′ to be the maximal complex subspace of the derived

algebra g′ = [g, g]. Moreover, we let g′
r be the orthogonal complement of g′

J in
g′ and then define Vr := g′

r ⊕ Jg′
r . Note that this direct sum is not orthogonal in

general. Observe that now

g′ + Jg′ = g′
J ⊕ Vr

and define VJ to be the orthogonal complement of g′ + Jg′ in g. We then have a
vector space orthogonal direct sum decomposition

g = g′
J ⊕ Vr ⊕ VJ . (2.1)

of g by spaces that are preserved by J . We define s, r, � ∈ N by

2s := dim(g′
J ), 2r := dim(Vr), 2� := dim(VJ )

and use this notation throughout the article. Note that so s + r + � = n and that
these numbers depend only on (g, J ), and not on the metric g, since 2r = dim(Vr) =
dim(g′ + Jg′) − dim(g′

J ) = dim(g′ + Jg′) − 2s and � = n − r − s.
Then we have (g, J ) is of pure type I, II or III, if g′

J = 0, Vr = 0 or VJ =
0, respectively. This is equivalent to there being at most two non-zero summands
in (2.1). Note that non-zero Abelian algebras can not be of pure type III.

2.2 Complex Shears ofR2n

One can construct every two-step solvable algebra as a shear of the Abelian Lie alge-
bra R

2n. Although the shear construction is defined for arbitrary manifolds, we will
just need the version for Lie groups and algebras as presented in [17]. The moti-
vating example is as follows. Let H, P, K be simply connected Lie groups with
dim(H) = dim(K) and whose associated Lie algebras are related by surjective Lie
algebra homomorphisms h ← p → k with Abelian kernels. We then have two
Abelian Lie algebras âP , aP of the same dimension, and two Lie algebra extensions
of the form

h � p ←↩ aP and âP ↪→ p � k.

The Lie algebra p and the shear algebra k may constructed from certain “shear data”
on h: two Abelian Lie algebras aH and aP , a Lie algebra monomorphism ξ : aH → h,
a two-form ω ∈ 
2h∗ ⊗ aP on h with values in aP , a representation η ∈ h∗ ⊗
Hom(aP ) and a Lie algebra isomorphism a : aH → aP , with certain compatibility.
The vector space p is then h ⊕ aP and the Lie bracket is specified by [X, Y ]p :=
[X, Y ]h − ω(X, Y ), [X, Z]p := η(X)(Z), for X, Y ∈ h and Z ∈ aP , and that aP is
an Abelian ideal. Writing ρ : aP → p = h ⊕ aP for the natural inclusion, the map

◦
ξ : aH → p,

◦
ξ := ξ + ρ ◦ a
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is a Lie algebra monomorphism and
◦
ξ(aH ) is an ideal in p. The shear algebra k is

then the quotient p/
◦
ξ(aH ). As vector spaces, h is a summand of p = h ⊕ aP and is

isomorphic the shear algebra k = p/
◦
ξ(aH ) via the projection. In this way, tensors on

h may be transferred to tensors on k.
For studying two-step solvable algebras, we may take h = R

N Abelian, a = aH =
aP a subalgebra of h = R

N , ξ = inc, the inclusion map, and a = ida, see [17]. The
remaining shear data is ω ∈ 
2h∗ ⊗ a and η ∈ h∗ ⊗ Hom(a). Compatibility gives
η(X)(Z) = −ω(X, Z) for X ∈ h, Z ∈ a and ω|
2a∗ = 0. Thus a and ω determine
the entire shear data.

Definition 2.5 A pair (a, ω) consisting of a subspace a of RN and a two-form ω ∈

2(RN)∗ ⊗ a with ω|
2a = 0 is called pre-shear data (on R

N ).

Now suppose that N = 2n. As R2n is Abelian any J ∈ End(R2n) with J 2 = −id
defines an (integrable) complex structure. Combining [17, Lemmas 2.1 and 3.1] and
[16, Proposition 2.5] gives

Proposition 2.6 Let J be a complex structure on the Lie algebra R
2n and let (a, ω)

be pre-shear data on R
2n. Then the shear (g, Jg) of (R2n, J ) is a Lie algebra g

endowed with a complex structure Jg if and only if

A(ω(ω( · , · ), · )) = 0, J ∗ω = ω − J ◦ J .ω, (2.2)

where J .ω = −ω(J · , · )−ω( · , J · ) andA is anti-symmetrisation. Moreover, every
two-step solvable Lie algebra g with a complex structure Jg may be obtained in this
way.

Definition 2.7 Pre-shear data (a, ω) on (R2n, J ) that satisfies (2.2) will be called
complex shear data.

To describe certain consequences of (2.2), we need some further notation. On R
2n,

let (a, ω) be pre-shear data and let J be a complex structure. Any compatible metric g

on R
2n then makes (R2n, g, J ) into a Kähler Lie algebra.

Set aJ := a ∩ Ja, and let ar be the orthogonal complement of aJ in a. Put Ur :=
ar ⊕ Jar and let UJ be the orthogonal complement of a + Ja = aJ ⊕ Ur in R

2n.
For each X ∈ a, we define

AX := ω(JX, · )|a ∈ End(a)

and decompose AX according to the splitting a = aJ ⊕ ar as

AX = KX + GX + HX + FX

∈ End(aJ ) ⊕ Hom(aJ , ar ) ⊕ Hom(ar , aJ ) ⊕ End(ar ).

We have associated bilinear maps f : ar ⊗ ar → ar and h : ar ⊗ ar → aJ given by

f (X, X̂) := FX(X̂), h(X, X̂) := HX(X̂).
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Moreover, for each Z ∈ UJ , we set

BZ := ω(Z, · )|a ∈ End(a).

Lemma 2.8 On the Abelian Lie algebra R2n, let (g, J ) be a Kähler structure and let
(a, ω) be complex shear data. Then

(i) GX = 0 for all X ∈ ar ,
(ii) [J, KX] = 0 for all X ∈ ar ,

(iii) f is symmetric,
(iv) for all X, X̂ ∈ ar , we have

ω(JX, J X̂) ∈ aJ and ω(JX, J X̂) = J (h(X, X̂) − h(X̂, X)),

(v) for all X̃, X̂ ∈ ar and all Z̃, Ẑ ∈ UJ , we have

[A
X̃
, A

X̂
] = 0 = [A

X̃
, B

Z̃
] = [B

Z̃
, B

Ẑ
] and [K

X̃
, K

X̂
] = 0.

Moreover,
ωr(JZ, JX) = ωr(Z, X),

where ωr is the part of ω that takes values in ar .

Proof Parts (i)–(iv) and the final part of (v) may be found in [17, Lemma 3.3]. The
rest of part (v) follows from the first equation in (2.2) evaluated on one element of a
and two elements of Jar ⊕UJ , and from the fact that the endomorphism AX is block
upper triangular by part (i).

Finally, we recall the following result from [17, Lemma 3.1].

Lemma 2.9 On the Abelian Lie algebra R
2n, let (g, J ) be a Kähler structure and

let (a, ω) be complex shear data. Then the shear (g, gg, Jg) of (R2n, g, J ) is an SKT
Lie algebra if and only if

A
(
g(J ∗ω( · , · ), ω( · , · )) + 2g(J ∗ω(ω( · , · ), · ), · )) = 0, (2.3)

where A is anti-symmetrisation.

Remark 2.10 In the rest of the article, when we consider a two-step solvable (almost)
Hermitian Lie algebra (g, gg, Jg), we will regard it as being obtained by appropriate
pre-shear data (a, ω) from a flat Kähler structure (g, J ) on R

2n. The identification of
g = R

2n as vector spaces, identifies gg with g and Jg with J . Note that this also gives
−ω = [ · , · ]g and that g′ = Imω. We can then without loss of generality identify a

with g′.

2.3 Lie Algebra Notation

When we need to specify concrete Lie algebras, we will often use Salamon’s nota-
tion [29]. If e1, . . . , en is a basis for g with dual basis e1, . . . , en, then dei(ej , ek) =
−ei([ej , ek]) and the algebra is specified by listing the differentials (de1, . . . , den),
but writing for example 3(e1 ∧ e2 − e4 ∧ e6) = 3(e12 − e46) as 3.(12 − 46).
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Table 1 Notation for certain Lie algebras

g dim differentials

affR 2 (0, 21)

h3 3 (0, 0, 21)

r′3,λ 3 (0, λ.21 + 31,−21 + λ.31) λ � 0

r4,μ,λ 4 (0, 21, μ.31, λ.41) 0 < |λ � |μ � 1

r′4,μ,λ 4 (0, μ.21, λ.31 + 41,−31 + λ.41) μ > 0

g
α,β,γ

5,17 5 (0, α.21 + 31,−21 + α.31, α � 0, γ �= 0

β.41 + γ .51,−γ .41 + α.51)

g
α,β,γ,δ

6,11 6 (0, α.21, β.31 + 41,−31 + β.41, αδ �= 0

γ .51 + δ.61,−δ.51 + γ .61)

N
α,β,γ,δ

6,1 6 (α.15 + β.16, γ .25 + δ.26, αβ �= 0, (γ, δ) �= (0, 0)

35, 46, 0, 0)

N
α,β,γ

6,14 6 (α.15 + β.16, 26, αβ �= 0

γ .35 − 45, γ .45 + 35, 0, 0)

In Table 1, we use this notation to list the Lie algebras of this article that have
standard names, with notation coming from [4, 6, 25, 26, 33].

3 Balanced and Kähler Geometry

3.1 Balanced Lie Algebras

Lemma 3.1 Let (g, J ) be a flat Kähler structure on the Lie algebra R2n with associ-
ated Kähler form σ . Then the shear (g, gg, Jg) of (R2n, g, J ) by complex shear data
(a, ω) is balanced if and only if

A
(
σ(ω( · , · ), · ) ∧ σn−2

)
= 0. (3.1)

Proof Since ξ = inc : a → R
2n and a = ida, [16, Corollary 3.11] implies

dgσ
n−1
g = dR2nσ n−1 − (ξ ◦ a−1 � σn−1) ∧ ω = −(n − 1) (inc � σ) ∧ ω ∧ σn−2

= −(n − 1)A
(
σ(ω( · , · ), · ) ∧ σn−2

)
.

So (g, gg, Jg) is balanced, i.e. dgσ
n−1
g = 0, if and only if (3.1) holds.

Proposition 3.2 Let (g, g, J ) be a Hermitian two-step solvable Lie algebra and write
g = g′

J ⊕ Vr ⊕ VJ as in (2.1). Then (g, J ) is balanced if and only if

tr(ad(Z)) = 0
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for all Z ∈ VJ , and there exist unitary bases X1, . . . , X2r of (Vr , g, J ) and Z1, . . . ,

Z2� of (VJ , g, J ) such that the element

C =
r∑

i=1

[X2i−1, X2i] +
�∑

j=1

[Z2j−1, Z2j ] (3.2)

is orthogonal to g′
J and satisfies

tr(ad(X)) = −σ (C, X) ,

for any X ∈ Vr .

Proof Fix unitary bases Y1, Y2 = JY1, . . . , Y2s of (g′
J , g, J ), X1, . . . , X2r of

(Vr , g, J ) and Z1, . . . , Z2� of (VJ , g, J ). We have to check (3.1) for all combina-
tions of 2n − 1 vectors from the basis Y1, . . . , Y2s , X1, . . . , X2r , Z1, . . . , Z2� of g.
There are thus three cases, corresponding to omitting one basis vector W from g′

J ,
Vr or VJ .

First, if we omit W ∈ {Z1, . . . , Z2�} ⊂ VJ , we can relabel our bases, so W = Z2�

and put Z = Z2�−1. Then (3.1) only has non-zero contributions when each of the pure
σ factors in σn−1 is evaluated on pairs A, JA. This implies that contributions from
Z are only from terms where it is one of the arguments of the factor σ(ω( · , · ), · ).
But Im(ω) ⊥ VJ , so Z is an argument of ω and the only contributions to (3.1) are

0 =
s∑

j=1

σ(ω(Z, Y2j−1), Y2j ) − σ(ω(Z, Y2j ), Y2j−1)

+
r∑

k=1

σ(ω(Z, X2k−1), X2k) − σ(ω(Z, X2k), X2k−1)

=
s∑

j=1

g(ω(Z, Y2j−1), Y2j−1) + g(ω(Z, Y2j ), Y2j )

+
r∑

k=1

g(ω(Z, X2k−1), X2k−1) + g(ω(Z, X2k), X2k)

= tr(ω(Z, · )) = −tr(ad(Z)).

For the next case, W = X2r is omitted and we put X = X2r−1. As before, the
only contributions are from inserting X and two J -linearly dependent vectors into
σ(ω( · , · ), · ). Noting that ω|
2a = 0 and Im(ω) ⊥ VJ , one computes

0 =
s∑

j=1

σ(ω(X, Y2j−1), Y2j ) − σ(ω(X, Y2j ), Y2j−1)

+
r−1∑

k=1

σ(ω(X, X2k−1), X2k) − σ(ω(X, X2k), X2k−1)

+σ

(
r−1∑

k=1

ω(X2k−1, X2k) +
�∑

k=1

ω(Z2k−1, Z2k), X

)
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=
2s∑

p=1

g(ω(X, Yp), Yp) +
2r−2∑

q=1

g(ω(X, Xq), Xq) + σ(−C + [X, W ], X)

= −tr(ad(X)) + g([X, W ], W) − σ (C, X) + g(J [X, W ], X)

= −tr(ad(X)) − σ(C, X).

Finally, for W = Y2s , Y = Y2s−1, we need to have Y as the final argument of
σ(ω( · , · ), · ), and the first two arguments need to be J -dependent vectors from
Vr ⊕ VJ . So (3.1) on these vectors reduces to

0 = −σ(C, Y ) = g(C, JY ),

giving C is orthogonal to g′
J .

Remark 3.3 The proof shows that if the conditions of Proposition 3.2 hold for one
pair X1, . . . , X2r and Z1, . . . , Z2� of unitary bases, then they hold automatically for
all such pairs.

Remark 3.4 Proposition 3.2 allows us to recover the classification of certain bal-
anced Hermitian Lie algebras in [12]. For this, let (g, g, J ) be a 2n-dimensional
almost Abelian Hermitian Lie algebra, meaning that there is a codimension 1 Abelian
ideal. For simplicity, let us just consider the generic case when dim(g′) = 2n − 1.
With more effort the methods also apply to dim(g′) < 2n − 1. Under this additional
assumption, (g, g, J ) is of pure type III with dim(g′

J ) = 2n − 2 and dim(g′
r ) = 1.

Choose X ∈ g′
r of norm one and consider AX = ω(JX, · ) ∈ End(g′). By

Lemma 2.8, there exist a ∈ R, v ∈ g′
J and A ∈ gl(g′

J , J ) such that

AX =
(

a v

0 A

)

with respect to the splitting g′ = g′
r ⊕ g′

J . By Proposition 3.2, (g, g, J ) is balanced
if and only if

a + tr(A) = tr(ad(JX)) = −σ([X, JX], JX) = g(aX, X) = a

and [X, JX] = v is orthogonal to g′
J . But v ∈ g′

J , so we have balanced if and only
if tr(A) = 0 and v = 0, which coincides with [12].

For unimodular Lie algebras tr(ad(X)) = 0 for all X ∈ g, so Proposition 3.2
simplifies as below and Remark 3.3 holds in this context.

Corollary 3.5 Let (g, g, J ) be a unimodular Hermitian two-step solvable Lie
algebra. Then (g, J ) is balanced if and only if C = 0 in (3.2).

Note that in Proposition 3.2, the restriction of g to g′
J plays no role.

Corollary 3.6 Let (g, g, J ) be a two-step solvable balanced Lie algebra. If g̃ is
another metric compatible with (g, J ) satisfying (g′

J )⊥g = (g′
J )⊥g̃ and g|(g′

J )⊥g =
g̃|(g′

J )⊥g̃ , then g̃ is balanced too.
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3.2 Kähler Lie Algebras

Lemma 3.7 Let (g, J ) be a flat Kähler structure on the Lie algebra R2n with associ-
ated Kähler form σ . Then the shear (g, gg, Jg) of (R2n, g, J ) by complex shear data
(a, ω) is Kähler if and only if

A(σ (ω( · , · ), · )) = 0. (3.3)

Proof Similar to the proof of Lemma 3.1, [16, Corollary 3.11] implies

dgσg = −A(σ (ω( · , · ), · ))
and so that (g, gg, Jg) is Kähler, i.e. dgσg = 0, if and only if (3.3) holds.

We first note some general consequences of (3.3).

Lemma 3.8 When the shear in Lemma 3.7 is Kähler, we have

ω(UJ , UJ ) = 0, ω(Jar , Jar ) = 0 and h = 0.

Furthermore, there exist a complex unitary basis Y1, . . . , Ys of aJ , a real orthonormal
basis X1, . . . , Xr of ar , one-forms α1, . . . , αs ∈ a∗

r on ar , and λ1, . . . , λr ∈ R such
that

KX(Yj ) = −αj (X)JYj , f (Xk, Xm) = −δkmλkXk

for all X ∈ ar , Z ∈ UJ , j ∈ {1, . . . , s} and k, m ∈ {1, . . . , r}.

Proof Inserting Z1, Z2 ∈ UJ , which is orthogonal to a, and W ∈ a + Ja into (3.3)
yields

0 = σ(ω(Z1, Z2), W),

and so ω(Z1, Z2) = 0, giving ω(UJ , UJ ) = 0. Next, observe that for X̂, X̃ ∈ ar ,
the endomorphisms K

X̃
, K

X̂
∈ End(aJ ) are complex and commute by Lemma 2.8.

Inserting Ỹ , Ŷ ∈ aJ and JX ∈ Jar into (3.3) yields

0 = σ(KX(Ỹ ), Ŷ ) + σ(Ỹ , KX(Ŷ )),

meaning that KX ∈ sp(aJ , σ ). But KX is complex, so KX ∈ u(aJ , g, J ). It follows,
that the KX are simultaneously complex diagonalisable with imaginary eigenvalues.
In particular, there exists a complex unitary basis Y1, . . . , Ys of (aJ , g) and one-forms
α1, . . . , αs ∈ a∗

r on ar such that

KX(Yj ) = −αj (X)JYj

for all X ∈ a and all j ∈ {1, . . . , s}. Next, (3.3) evaluated on Y ∈ aJ , X̃ ∈ ar and
J X̂ ∈ Jar shows

0 = σ(Y, H
X̂
(X̃)) = σ(Y, h(X̂, X̃)),

so h = 0. Lemma 2.8 gives ω(J X̃, J X̂) = J (h(X̃, X̂) − h(X̂, X̃)) = 0, and hence
ω(Jar , Jar ) = 0. Finally, putting X̄, J X̃, J X̂ ∈ ar in (3.3) gives

0 = −σ(f (X̃, X̄), J X̂) + σ(f (X̂, X̄), J X̃) = −g(f (X̃, X̄), X̂) + g(f (X̂, X̄), X̃).
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However f is symmetric by Lemma 2.8, we get that g(f ( · , · ), · ) is totally symmet-
ric. In particular, all endomorphisms FX are symmetric. Since these endomorphisms
commute by Lemma 2.8, we have a common orthonormal basis X1, . . . , Xr of (ar , g)

of eigenvectors for all FX. Now

span(Xj ) � FXi
(Xj ) = f (Xi, Xj ) = f (Xj , Xi) = FXj

(Xi) ∈ span(Xi)

for all i, j ∈ {1, . . . , r} implies the existence of λ1, . . . , λr ∈ R such that

f (Xi, Xj ) = −δij λjXj

for all i, j ∈ {1, . . . , r}.

It seems hard to solve (3.3) in full generality, so we now restrict to a certain sub-
class, namely those two-step solvable Kähler Lie algebras (g, g, J ) with [Jg′, g′

J ] =
g′

J . Note that this class includes those of pure type I. Moreover, it also includes alge-
bras of pure type III, i.e. with VJ = 0, since by Lemma 3.8 we have [Jg′

r , Jg
′
r ] = 0

and h = 0 and so must have [Jg′, g′
J ] = g′

J in order for g′ to be the commutator
ideal.

When [Jg′, g′
J ] = g′

J , the form of BZ , Z ∈ VJ , simplifies and allows for a
classification. The condition [Jg′, g′

J ] = g′
J is equivalent to αj �= 0 for all j =

1, . . . , r . Moreover, for any Z ∈ UJ , the endomorphisms BZ commute with AX for
all X ∈ ar by Lemma 2.8. As AX has imaginary non-zero eigenvalues on aJ and real
eigenvalues on ar , we get that BZ preserves the splitting a = ar ⊕ aJ . Using this
property, we will obtain:

Theorem 3.9 Let (g, g, J ) be an almost Hermitian Lie algebra. Then (g, g, J ) is a
two-step solvable Kähler Lie algebra (g, g, J ) with [Jg′, g′

J ] = g′
J if and only if

Jg′
r ⊥ g′

r and there exist a complex unitary basis Y1, . . . , Ys of g′
J , an orthonormal

basis X1, . . . , Xr of g′
r , non-zero one forms α1, . . . , αs ∈ (g′

r )
∗ \ {0}, one-forms

β1, . . . , βs ∈ V ∗
J and non-zero real numbers λ1, . . . , λr ∈ R \ {0} such that the only

non-zero Lie brackets (up to anti-symmetry and complex linear extension on g′
J ) are

given by

[JX, Yj ] = αj (X)JYj , [Z, Yj ] = βj (Z)JYj , [JXk, Xk] = λkXk

for j ∈ {1, . . . , s}, k ∈ {1, . . . , r}, X ∈ g′
r and Z ∈ VJ .

For the proof, we first need the following result.

Lemma 3.10 Let V be 2n-dimensional vector space endowed with a Hermitian
structure (g, J ) and denote by σ the associated fundamental two-form. Suppose
A1, A2 ∈ sp(V , σ ) satisfy [A1, A2] = 0 and A1 + JA1J + JA2 − A2J = 0. Then
we have A1, A2 ∈ u(V , g, J ).

Proof For i = 1, 2, decompose Ai = AJ
i + AJ−

i into the sum of its J -invariant
part AJ

i and its J -anti-invariant part AJ−
i . Then AJ

i ∈ u(V , g, J ), and AJ−
i is

symmetric with respect to g.
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Now

0 = A1 + JA1J + JA2 − A2J = J [A1, J ] − [A2, J ] = 2JAJ−
1 − 2AJ−

2 ,

so

AJ−
2 = JAJ−

1 .

Moreover, the J -invariant part of 0 = [A1, A2] yields

0 = [AJ
1 , AJ

2 ] + [AJ−
1 , AJ−

2 ] = [AJ
1 , AJ

2 ] − 2JAJ−
1 AJ−

1 .

Since AJ
1 ∈ u(V , g, J ), there exists a basis of V consisting of vectors v ∈ V with

AJ
1 v = cv and AJ−

1 Jv = −cv for some c ∈ R. For such a vector v, we obtain

g(Jv, [AJ
1 , AJ

2 ]v)

= g(Jv, AJ
1 AJ

2 v) − g(Jv, AJ
2 AJ

1 v) = −g(AJ
1 Jv, AJ

2 v) − c g(Jv, AJ
2 Jv)

= c g(v, AJ
2 v) − c g(Jv, JAJ

2 v) = c g(v, AJ
2 v) − c g(v, AJ

2 v) = 0.

Hence,

0 = g(Jv, JAJ−
1 AJ−

1 v) = g(v, AJ−
1 AJ−

1 v) = g(AJ−
1 v, AJ−

1 v) = ‖AJ−
1 v‖2.

This shows AJ−
1 = 0 and so also AJ−

2 = JAJ−
1 = 0, finishing the proof.

Lemma 3.11 If the shear in Lemma 3.7 is Kähler and for eachZ ∈ UJ ,BZ preserves
the splitting a = aJ + ar , then the Yj in Lemma 3.8 may be chosen so that BZ(Yj ) =
−βj (Z)JYj , for all j , for some βj ∈ U∗

J .

Proof Write BZ = bZ+cZ with bZ ∈ End(aJ ) and cZ ∈ End(ar ). Then [bZ, bJZ] =
0 and [bZ, KX] = 0 for all X ∈ ar . Moreover, the second equation in (2.2) yields

bJZJ (Y ) = J ∗ω(JZ, JY ) = ω(Z, Y ) + J (ω(JZ, Y ) + ω(Z, JY ))

= bZ(Y ) + JbJZ(Y ) + JbZJ (Y )

for all Y ∈ aJ , and so

bZ + JbZJ + JbJZ − bJZJ = 0.

Inserting Z, Ỹ , Ŷ , where Ỹ , Ŷ ∈ aJ , into (2.2) gives

0 = σ(bZ(Ỹ ), Ŷ ) + σ(Ỹ , (bZ(Ŷ )),

so bZ ∈ sp(aJ , σ ). Thus, we deduced from Lemma 3.10 that bZ ∈ u(aJ , g, J ).
Lemma 2.8 gives that all bZ commute pairwise and with all KX, X ∈ ar , and the
result follows.

Proof of Theorem 3.9 Using shear data, let Z ∈ UJ be given. As we argued before
Theorem 3.9, BZ preserves the subspaces aJ and ar , so we may apply Lemma 3.11
to get the Yj , αj and βj . The hypothesis [Jg′, g′

J ] = g′
J implies that each αj is

non-zero.
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Next, by Lemma 2.8, we have ωr(JZ, JX) = ωr(Z, X) = cZ(X) for any Z ∈
UJ , X ∈ ar . Hence,

0 = A(σ (ω( · , · ), · ))(JZ, J X̃, J X̂) = σ(cZ(X̃), J X̂) − σ(cZ(X̂), J X̃)

= g(cZ(X̃), X̂) − g(cZ(X̂), X̃),

and cZ is symmetric. Since all cZ commute pairwise and with all FX, X ∈ ar , by
Lemma 2.8, there is a common eigenbasis X1, . . . , Xr of g′

r for all these operators.
Moreover, by Lemma 3.8, there exist λ1, . . . , λr ∈ R with

f (Xj , Xk) = FXj
(Xk) = −δjkλkXk .

Next,

0 = A(σ (ω( · , · ), · ))(Z, Xj , JXj ) = σ(cZ(Xj ), JXj ) − σ(ω(Z, JXj ), Xj )

= g(cZ(Xj ), Xj ) + σ(cJZ(Xj ), Xj ) = g(cZ(Xj ), Xj )

for any j ∈ {1, . . . , r} since cJZ(Xj ) ∈ span(Xj ). As cZ(Xj ) ∈ span(Xj ), we get
cZ(Xj ) = 0 and hence cZ = 0. So ωr(UJ , Jar ) = 0 as well. Hence, f : ar×ar → ar

has to be surjective in order to have Im(ω) = ar and thus λj �= 0 for all j = 1, . . . , r .
Next, inserting Xj , Xk, JXk for j, k ∈ {1, . . . , r} with j �= k into (3.3) yields

0 = A(σ (ω( · , · ), · ))(Xj , Xk, JXk) = −σ(f (Xk, Xk), Xj ) = λkg(JXk, Xj ).

Since λk �= 0 and trivially g(JXk, Xk) = 0 holds, this implies Xk ⊥ Jar , so ar ⊥
Jar .

We now have all the claimed properties except that ω(Z, JX) = 0 for Z ∈ UJ ,
X ∈ ar . However, we already showed that ω(Z, JX) ∈ aJ . Moreover, inserting
Z, JX, Y into Lemma 3.7 for Y ∈ aJ , X ∈ ar and Z ∈ UJ yields

0 = A(σ (ω( · , · ), · ))(Z, JX, Y ) = σ(ω(Z, JX), Y ).

Thus, ω(Z, JX) = 0 for all X ∈ ar , Z ∈ UJ , which completes the proof.

For the three different pure types we arrive at the classification below.

Corollary 3.12 Let (g, g, J ) be a 2n-dimensional almost Hermitian Lie algebra that
is two-step solvable. Then we have the following.

(I) (g, g, J ) is Kähler of pure type I if and only if Jg′ ⊥ g′, and there exists an
orthonormal basis X1, . . . , Xr of g′ and λ1, . . . , λr ∈ R \ {0} such that the
only non-zero Lie brackets (up to anti-symmetry) are given by

[JXj , Xj ] = λjXj

for j = 1, . . . , r .
(II) (g, g, J ) is Kähler of pure type II if and only if there exists a complex unitary

basis Y1, . . . , Ys of g′ and non-zero one-forms β1, . . . , βs ∈ V ∗
J such that the

only non-zero Lie brackets (up to anti-symmetry and complex-linear extension)
are given by

[Z, Yj ] = βj (Z)JYj

for j ∈ {1, . . . , s} and Z ∈ VJ .
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(III) (g, g, J ) is Kähler of pure type III if and only if Jg′
r ⊥ g′

r , and there exist
a complex unitary basis Y1, . . . , Ys of g′

J , an orthonormal basis X1, . . . , Xr

of g′
r , non-zero one-forms α1, . . . , αs ∈ (g′

r )
∗ \ {0} on g′

r and non-zero real
numbers λ1, . . . , λk ∈ R \ {0} such that the only non-zero Lie brackets (up to
anti-symmetry and complex-linear extension) are given by

[JXk, Yj ] = αj (Xk)JYj , [JXk, Xk] = λkXk .

Proof For pure types I and III this is just specialisation of Theorem 3.9. For pure
type II, we have g′

r = 0, so we may use Lemma 3.11.

Remark 3.13 For pure type I this implies (g, J ) ∼= r(affR, J ) ⊕ (R2(n−r), J ) as Lie
algebras with complex structures. Up to change of basis, complex structures on affR
and R

2(n−r) are unique.

4 Compatibility of Balanced and SKTMetrics

We now consider the question of Lie groups or Lie algebras with a complex structure
that admit both a compatible balanced metric ĝ and a compatible SKT metric g̃.
We will say that a complex structure J is SKT, balanced or Kähler if it admits a
compatible metric that is SKT, balanced or Kähler, respectively.

We first consider some general results for compact groups and for solvable
groups in Section 4.1. Thereafter, we will focus on two-step solvable Lie algebras,
considering each pure type in turn, and then specialising to the six-dimensional case.

4.1 General Results

Theorem 4.1 Let J be a left-invariant complex structure on a compact Lie group G.
Then J is SKT, but is balanced only if G is Abelian, in which case it is also Kähler.

The special case when G is also semi-simple was proved in [11, 28].

Proof Existence of the SKT metric was given in [23, 31].
Now suppose that G is not Abelian. It is sufficient to assume G is connected. Note

that g = R
k ⊕ k for some semi-simple Lie algebra k of compact type. It follows that

there is a finite cover of G by the group T k × K , where K is compact, connected
and simply connected with Lie algebra k, and it is sufficient to consider the case
G = T k × K . By [30, Theorem in (3.2)] there is a Cartan subgroup N of G and
holomorphic fibration π : G → G/N with G/N projective. Note that N = T k ×
N1, with N1 a Cartan subgroup of K . Let Y be a complex submanifold of G/N of
complex codimension one, and put X = π−1(Y ). Then X = T k × (X ∩ K) and is of
real codimension two. In particular, for the fundamental class [X] ∈ Hn−2(X) of X

and any generator c ∈ Hm(K,Z) ∼= Z, where m = dim K , we have c � [X] = 0.
On the other hand, the Whitehead Theorems imply that H 1(K) = 0 = H 2(K), so

by duality Hm−1(K) = 0 = Hm−2(K). Writing 2n = k + m = dim G, the Künneth
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formula gives H 2n−2(G) = ⊕2
s=0 Hk−2+s(T k)⊗Hm−s(K) = Hk−2(T k)⊗Hm(K).

If σ is the two-form of a balanced metric, we have d(σn−1) = 0, so [σn−1] = b⊗R c

for some b ∈ Hk−2(T k). But now 0 <
∫
X

σn−1 = (b ⊗ c) � [X] = b � (c �

[X]) = 0, which is a contradiction. Thus if J is balanced, then K = {e} and G is
Abelian. But then J is a left-invariant complex structure on a torus and so admits a
compatible Kähler metric.

Now let us show that invariance of the Kähler metric is necessary in Question 1.2.

Proposition 4.2 Let G be a simply connected solvable Lie group and let J be a left-
invariant complex structure on G. Then (G, J ) admits a compatible Kähler metric.

Proof By the theorem in [30, (1.3)], there is a discrete subgroup � of G such that
�\G is biholomorphic to an open subset V of C

n. Now C
n, and hence V , car-

ries a compatible Kähler metric that we may pull back under the natural projection
π : G → �\G ∼= V ⊆ C

n to get a compatible Kähler metric on (G, J ).

4.2 Pure Type I

Pure type I gives g′
J = 0, so g′ is totally real.

Theorem 4.3 Let (g, J ) be a unimodular two-step solvable Lie algebra g with com-
plex structure J of pure type I that is SKT and is balanced. Then g is Abelian and so
J is Kähler.

Proof of Theorem 4.3 Without unimodularity, the structure of the SKT algebras is
given in [17, Theorem 5.5]: g ∼= r affR ⊕h, for some nilpotent Lie algebra h. But h is
unimodular and affR is not, so g is unimodular if and only if r = 0. [17, Theorem 5.5]
now gives that g = h is two-step nilpotent. As J is SKT, is balanced and g is two-step
nilpotent, [15, proof of Theorem 1.1] shows that (g, J ) is Kähler.

Next, we provide an example that shows that the unimodular condition in
Theorem 4.3 is necessary, and hence is also necessary in Question 1.2.

Example 4.4 Let g = affR ⊕ h3 ⊕R. Then g is a non-unimodular two-step solvable
Lie algebra with a basis e1, . . . , e6 for which (up to anti-symmetry) the only non-zero
Lie brackets are

[e1, e2] = e2 and [e3, e4] = e5.

Let J be the almost complex structure with Je2i−1 = e2i for i = 1, 2, 3. Thus (g, J )

is a direct sum of (affR, J1) and (h3 ⊕ R, J2). For the dual basis e1, . . . , e6 the non-
zero differentials are de2 = −e12 and de5 = −e34. Then J1 is integrable, and for
J2 the (1, 0)-forms are spanned by α1 = e3 − ie4 and α2 = e5 − ie6. As dα1 = 0
and dα2 = −e3 ∧ e4 = i

2α1 ∧ α1 is of type (1, 1), we have that J2, and hence J , is
integrable. Moreover, g′ = span(e2, e5) is totally real, so (g, J ) is of type I.
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Let g̃ be the metric on g for which e1, . . . , e6 is an orthonormal basis. Then g̃ is
compatible with J , and the associated fundamental two-form is

σ̃ = e12 + e34 + e56.

We now find that
dJ ∗dσ̃ = −dJ ∗e346 = de345 = 0,

so g̃ is an SKT metric.
Next, let ĝ be the metric on g for which e1 − e6, e2 + e5, e6, −e5, e3, e4 is an

orthonormal basis. Since this basis is unitary, ĝ is compatible with J . Moreover, a
dual basis is given by e1, e2, e1+e6, e2−e5, e3, e4 and so the associated fundamental
form σ̂ is given by

σ̂ = e12 + (e1 + e6) ∧ (e2 − e5) + e34 = 2e12 − e15 − e26 + e34 + e56.

We now have

d(σ̂ 2) = 2σ̂ ∧ dσ̂ = 2σ̂ ∧ (−e134 + e126 − e346)

= 2(e12346 − e13456 + e12346 − 2e12346 + e13456) = 0,

and hence that ĝ is balanced.
However, g �∼= r affR ⊕ R

6−2r for any r ∈ {1, . . . , 3}, so by Corollary 3.12(I),
(g, J ) does not admit any compatible Kähler metric.

4.3 Pure Type II

Pure type II means that g′ is complex. We will first classify two-step solvable SKT
Lie algebras (g, g, J ) of pure type II up to some remaining “nilpotent” equations
and give a full classification if g′ is of codimension two. The latter case was the
remaining open case in our classification of the six-dimensional two-step solvable
Lie algebras admitting an SKT structure in [17, Theorem 7.1] and so we complete
this classification here in Theorem 4.7.

We begin by deriving some consequences for the form of the endomorphisms BZ .

Lemma 4.5 Let (g, g, J ) be a two-step solvable SKT Lie algebra of pure type II.
Then there exists a complex unitary basis Y1, . . . , Yr of g′ = g′

J and one-forms
α1, . . . , αr ∈ V ∗

J such that for any Z ∈ VJ , the endomorphism ad(Z)|g′ ∈ End(g′
J )

is complex and satisfies
[Z, Yj ] = αj (Z)JYj

for all j ∈ {1, . . . , r}.

Proof Working with shear data, choose Z ∈ UJ and set B1 := BZ , B2 := BJZ . Then
[B1, B2] = 0 by the first equation in (2.2). Moreover, the second equation in (2.2)
yields

B2J (Y ) = ω(JZ, JY ) = ω(Z, Y ) + J (ω(Z, JY ) + ω(JZ, Y ))

= B1(Y ) + JB1J (Y ) + JB2(Y ),

for all Y ∈ a, so
B1 + JB1J + JB2 − B2J = 0.
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Next, inserting Ỹ , Ŷ ∈ a and Z, JZ into (2.3) yields

0 = −g(ω(JZ, J Ỹ ), ω(JZ, Ŷ )) + g(ω(JZ, J Ŷ ), ω(JZ, Ỹ )) − g(ω(Z, J Ỹ ), ω(Z, Ŷ ))

+g(ω(Z, J Ŷ ), ω(Z, Ỹ )) + g(ω(Jω(Z, Ỹ ), Z), Ŷ ) − g(ω(Jω(Z, Ŷ ), Z), Ỹ )

+g(ω(Jω(JZ, Ỹ ), JZ), Ŷ ) − g(ω(Jω(JZ, Ŷ ), JZ), Ỹ )

= −g(B2J (Ỹ ), B2(Ŷ )) + g(B2J (Ŷ ), B2(Ỹ )) − g(B1J (Ỹ ), B1(Ŷ ))

+g(B1J (Ŷ ), B1(Ỹ )) − g(B1JB1(Ỹ ), Ŷ ) + g(B1JB1(Ŷ ), Ỹ )

−g(B2JB2(Ỹ ), Ŷ ) + g(B2JB2(Ŷ ), Ỹ )

= −g
(
(C(B1) + C(B2)) Ỹ , Ŷ

)
+ g

(
Ỹ , (C(B1) + C(B2)) Ŷ

)
,

where C(B) := BT BJ + BJB. We conclude that C(B1) + C(B2) is required to be
g-symmetric.

For i = 1, 2, decompose B = BJ +BJ− into its J -invariant part BJ and into its J -
anti-invariant part BJ− and then for A ∈ {J, J−} decompose BA := BA++BA− into its
g-symmetric part BA+ and its g-skew-symmetric part BA− . Then the g-skew-symmetric
part of C(B) is

1
2 (C(B) − C(B)T ) = 1

2

(
BT BJ + BJB + JBT B + BT JBT

)

= 1
2

(
BT (BJ + JBT ) + (BJ + JBT )B

)

= BT J (BJ+ − BJ−− ) + J (BJ+ − BJ−− )B

= J
(

2(BJ+)2 − 2(BJ−− )2 + [BJ+ − BJ−− , BJ− + BJ−+ ]
)

.

(4.1)

Note that this has trace

2tr((BJ+)2) − 2tr((BJ−− )2) = 2(‖BJ+‖2 + ‖BJ−− ‖2),

since for BT = εB, ε = ±1, and any orthonormal basis E1, . . . , E2s of a, we have

tr(B2) =
2s∑

j=1

g(B2Ej , Ej ) = ε

2s∑

j=1

g(BEj , BEj ) = ε‖B‖2.

Thus for C(B1) + C(B2) to be g-symmetric we must have BJ
i,+ = 0 = BJ−

i,− for

i = 1, 2. But then Bi = BJ
i,− + BJ−

i,+ which lies in sp(a, σ ). Consequently, we may

apply Lemma 3.10 to deduce that we actually have Bi ∈ u(a, g, J ), so BJ−
i,+ = 0.

Then (4.1) gives that C(B1) + C(B2) is g-symmetric.
Thus BZ ∈ u(a, g, J ) for Z ∈ UJ . But by Lemma 2.8 gives that all BZ commute

pairwise, so these complex endomorphisms of (a, J ) are simultaneously diagonalis-
able with only imaginary eigenvalues. This is the assertion of Lemma 4.5

In the case that g′ is of codimension two, there are no further conditions to be
satisfied, cf. [17, §7.2]. Hence

Corollary 4.6 Let (g, g, J ) be an almost Hermitian Lie algebra. Then (g, g, J )

is a two-step solvable SKT Lie algebra of pure type II for which g′ is of
codimension two if and only if there is a complex unitary basis Y1, . . . , Ys of
(g′, g, J ), elements Z1, Z2 ∈ g spanning a two-dimensional complement to g′,
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and (a1,1, a1,2), . . . , (a1,s , a2,s) ∈ R
2 \ {(0, 0)} such that (up to anti-symmetry and

complex-linear extension) the only non-zero Lie brackets are given by

[Zk, Yj ] = ak,j JYj ,

for k = 1, 2 and j = 1, . . . , s.

Proof Choose Z ∈ VJ \ {0}. Then Z, JZ is a basis for VJ and hence the union of
the images of ad(Z)|g′ and ad(JZ)|g′ spans g′. As [Z, JZ] ∈ g′ and g′ is Abelian,
we can find Ỹ , Ŷ ∈ g′ such that Z1 = Z + Ỹ , Z2 = JZ + Ŷ has [Z1, Z2] = 0. The
result now follows from Lemma 4.5 with a1,j = αj (Z) and a2,j = αj (JZ).

If g is six-dimensional, one deduces that g admits a dual basis e1, . . . , e6 whose
differentials are given either by

(25, −15, 46, −36, 0, 0), (4.2)

when (ak,j ) is of rank two, or by

(25, −15, λ.45, −λ.35, 0, 0) for some λ ∈ (0, 1], (4.3)

when (ak,j ) has rank one. In the first case, the Lie algebra is isomorphic to 2r′3,0

and in the second case to g
0,0,λ
5,17 ⊕ R. This covers the remaining equations in [17,

Theorem 7.1] and we have

Theorem 4.7 A six-dimensional two-step solvable Lie algebra g admits an SKT
structure if and only if it is one of the algebras explicitly listed in [17, Corollary 4.8,
Theorems 4.10, 7.5 and 7.1] or it is one of the algebras in (4.2) or (4.3).

Returning to Corollary 4.6, we see from the fact that ad(Z + Y )|g′ = ad(Z)|g′ for
all Z ∈ VJ and Y ∈ g′, that the SKT condition only depends on g|g′ .

Corollary 4.8 Let (g, g, J ) be a two-step solvable SKT Lie algebra of pure type II
such that g′ is of codimension two in g. If g̃ is another Hermitian metric on (g, J )

with g̃|g′ = g|g′ , then g̃ is also SKT.

Thus, we obtain the desired result in the codimension two case:

Corollary 4.9 Suppose (g, J ) is a two-step solvable Lie algebra with a complex
structure of pure type II such that g′ is of codimension two. If J is SKT and is
balanced, the J is also Kähler.

Proof Let g̃ be the SKT metric and ĝ the balanced metric. Write V̂J for the orthog-
onal complement of g′ with respect to ĝ. Define a new metric g on g by declaring g′
to be g-orthogonal V̂J and setting

g|g′ = g̃|g′ , g|
V̂J

= ĝ|
V̂J

.
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Then g is compatible with (g, J ) and both balanced by Corollary 3.6 and SKT by
Corollary 4.8. Thus, g is Kähler by Proposition 2.2.

Next, we consider the general case of two-step solvable SKT Lie algebras and give
a full classification of these, up to some “nilpotent terms”. This will be sufficient to
obtain the generalisation of Corollary 4.9.

Theorem 4.10 Let (g, g, J ) be a two-step solvable almost Hermitian Lie algebra of
pure type II. Then (g, g, J ) is SKT if and only if there exists a complex unitary basis
of Y1, . . . , Ys of (g′, g, J ) and, for some m ∈ {0, . . . , s}, one-forms α1, . . . , αm ∈
V ∗

J \ {0}, numbers z1, . . . , zm ∈ C, complex (1, 1)-forms ϕm+1, . . . , ϕs ∈ 
1,1V ∗
J

and complex (2, 0)-forms ψm+1, . . . , ψs ∈ 
2,0V ∗
J such that

s∑

k=m+1

ϕk ∧ ϕk − ψk ∧ ψk = 0,

the two forms ϕk + ψk , k = m + 1, . . . , s, are linearly independent, and the only
non-zero Lie brackets (up to anti-symmetry and complex-linear extension) are given
by

[Z, Yj ] = αj (Z) JYj , j = 1, . . . , m, (4.4)

[Z, W ] =
m∑

j=1

zj (αj ∧ J ∗αj )(Z, W) Yj +
s∑

k=m+1

(ϕk + ψk) (Z, W) Yk (4.5)

for all Z, W ∈ VJ .

In the above, we have used complex notation, so (x + iy)Z = xZ + yJZ, etc.

Proof Use Lemma 4.5 to choose a complex unitary basis Y1, . . . , Ys so that (4.4)
holds, with α1, . . . , αm non-zero, and [Z, Yk] = 0, for k > m. Using shear data,
define

ν := ω( · , · )|
2UJ
∈ 
2U∗

J ⊗ a = 
2U∗
J ⊗ aJ .

In complex notation, we may write ν = ∑s
j=1 νjYj with νj ∈ 
2U∗

J ⊗ C. The first
equation of (2.2) yields

0 =
∑

cyclic

ω(ω(Z1, Z2), Z3) =
∑

cyclic

ω

⎛

⎝
s∑

j=1

νj (Z1, Z2)Yj , Z3

⎞

⎠

=
m∑

j=1

∑

cyclic

αj (Z3)νj (Z1, Z2)JYj =
m∑

j=1

(αj ∧ νj )(Z1, Z2, Z3)JYj ,

for all Zk ∈ UJ . Hence, there exist complex one-forms ζj ∈ U∗
J ⊗ C, for j =

1, . . . , m, such that

νj = αj ∧ ζj . (4.6)
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Evaluating (2.3) on Z1, Z2, Z3 ∈ UJ and some Y ∈ span(Yj , JYj ) gives

0 =
∑

cyclic

g(ω(JZ1, JZ2), ω(Z3, Y )) + g(ω(JZ3, JY ), ω(Z1, Z2))

+g(ω(Jω(Z1, Z2), JZ3), Y ).

=
∑

cyclic

s∑

k=1

−g
(
J ∗νk(Z1, Z2)Yk, αj (Z3)JY

) + g
(
αj (JZ3)Y, νk(Z1, Z2)Yk

)

−g (αk(JZ3)νk(Z1, Z2)Yk, Y )

= −
∑

cyclic

αj (Z3)g
(
J ∗νj (Z1, Z2)Yj , JY

)
. (4.7)

This holds trivially for j > m. For j � m it gives
(
αj ∧ J ∗αj ∧ g(J ∗ζj ( · )Yj , JY )

)
(Z1, Z2, Z3) = 0.

Taking Y = Yj and then Y = JYj we get that αj ∧ J ∗αj ∧ J ∗ζj = 0. So ζj ∈
span(αj , J

∗αj ) and νj = −zjαj ∧ J ∗αj for some zj ∈ C.
In complex notation the second equation of (2.2) is J ∗νj = νj − i J .νj . This says

that the (0, 2)-part of νj vanishes. For j � m, we already have that νj is type (1, 1).
For j > m, we write νj = −ϕj − ψj with ϕj type (1, 1) and ψj type (2, 0).

Now the only remaining equation to satisfy is (2.3) evaluated on 
4UJ . In this
case, only the first term of (2.3) contributes, since Im(J ∗ω) = a ⊥ UJ , so we have

0 = A(g(J ∗ω( · , · ), ω( · , · )))|
4UJ
=

s∑

j=1

Re(J ∗νj ∧ νj ))

=
s∑

k=m+1

Re
(
(ϕk − ψk) ∧ (ϕk + ψk)

)
=

s∑

k=m+1

ϕk ∧ ϕk − ψj ∧ ψj ,

and the claimed result.

As the metric on VJ plays no role in Theorem 4.10, we get the following version
of Corollary 4.8 in arbitrary codimension.

Corollary 4.11 Let (g, g, J ) be a two-step solvable SKT Lie algebra of pure type II.
If g̃ is another Hermitian metric on (g, J ) with g̃|g′ = g|g′ and g′⊥g̃ = g′⊥g , then g̃

is SKT too.

Moreover, we may also change an SKT metric on a two-step solvable SKT Lie
algebra of pure type II in such a way that Theorem 4.10 holds with z1 = · · · = zk =
0.

Proposition 4.12 Let (g, g, J ) be a two-step solvable SKT Lie algebra of pure
type II. Then (g, J ) admits a compatible SKT metric g̃ with

g′ = [ṼJ , g′] ⊕ [ṼJ , ṼJ ]
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as a Hermitian orthogonal direct sum, where ṼJ is the g̃-orthogonal complement
of g′.

Proof We use the notation from Theorem 4.10. Define an injective R : VJ → g by

R(Z) := Z + r(Z), where r(Z) =
k∑

j=1

(αj − iJ ∗αj )(Z)zjYj .

As αj − iJ ∗αj is type (1, 0), we have that R is complex linear, so ṼJ := R(VJ ) is a
J -invariant complement to g′ in g. We get a Hermitian metric g̃ on g by declaring g′
to be to be g̃-orthogonal to ṼJ , letting g̃ be g on g′ and setting g̃|

ṼJ
:= (R−1)∗(g|VJ

).
For Z ∈ VJ and Y ∈ g′, we have [R(Z), Y ] = [Z + r(Z), Y ] = [Z, Y ], so

[R(Z), Yj ] = iαj (Z) Yj for j � m and [R(Z), Yk] = 0 for k > m. Moreover, we
have

[r(Z), W ] + [Z, r(W)] =
m∑

j=1

(αj − iJ ∗αj )(Z)zj [Yj , W ]

+(αj − iJ ∗αj )(W)zj [Z, Yj ]

=
m∑

j=1

((αj − i J ∗αj ) ∧ αj )(Z, W)zjJYj

= −
m∑

j=1

(zj αj ∧ J ∗αj )(Z, W) Yj .

So

[R(Z), R(W)] = [Z, W ] + [r(Z), W ] + [Z, r(W)]
=

s∑

k=m+1

(ϕk+ψk) (Z, W) Yk =
s∑

k=m+1

(
ϕ̃k+ψ̃k

)
(R(Z), R(W)) Yk,

where ϕ̃k = (R−1)∗ϕk and ψ̃j = (R−1)∗ψj . We may now apply Theorem 4.10, to
conclude that g̃ is SKT. The non-vanishing of the αj , j = 1, . . . , m, gives [ṼJ , g′] =
span(Y1, . . . , Ym), and the linear independence of ϕ̃k +ψ̃k , k = m+1, . . . , s, implies
[ṼJ , ṼJ ] = span(Ym+1, . . . , Ys), so these two spaces are orthogonal.

These preparations now allow us to prove

Theorem 4.13 Let (g, J ) be a unimodular two-step solvable Lie algebra g with
complex structure J of pure type II that is SKT and is balanced. Then (g, J ) is Kähler.

Proof Let g̃ be an SKT metric and ĝ be a balanced metric, both compatible with
(g, J ). By Proposition 4.12, we may assume that g′ splits as an g̃-orthogonal direct
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sum of the complex spaces [ṼJ , g′] and [ṼJ , ṼJ ]. Let V̂J be the ĝ-orthogonal com-
plement to g′. Then there is a complex vector space isomorphism R : ṼJ → V̂J of
the form R(Z) = Z + r(Z) with r : ṼJ → g′ complex linear.

We define a new metric g on g by requiring g′ to be g-orthogonal to ṼJ , putting
g to be g̃ on g′ and letting g on ṼJ be R∗(ĝ|

V̂J
). This metric g is Hermitian and, by

Corollary 4.11, SKT.
To show that g is also balanced, recall Proposition 3.2, which for pure type II

implies the existence of a (ĝ, J )-unitary basis Ẑ1, . . . , Ẑ2� of V̂J with

Ĉ =
�∑

j=1

[Ẑ2j−1, Ẑ2j ] = 0.

Defining Zj ∈ ṼJ by Zj = R−1(Ẑk), we get a unitary basis for (ṼJ , g, J ). Let
C = ∑�

j=1[Z2j−1, Z2j ] which lies in [ṼJ , ṼJ ] ⊂ g′. As g′ is the g-orthogonal direct

sum of [ṼJ , ṼJ ] and [ṼJ , g′], we have for Y ∈ [ṼJ , ṼJ ], that

0 = g
(
Y, Ĉ

)
=

�∑

j=1

g(Y, [R(Z2j−1), R(Z2j )])

=
�∑

j=1

g(Y, [Z2j−1, Z2j ]) + g(Y, [Z2j−1, r(Z2j )]) + g(Y, [r(Z2j−1), Z2j ])

=
�∑

j=1

g(Y, [Z2j−1, Z2j ]) = g(Y, C).

We conclude that C = 0. As g is unimodular, Corollary 3.5 implies that g is also
balanced. By Proposition 2.2, we learn that g is Kähler.

4.4 Pure Type III

Pure type III means that VJ = 0, so g = g′ + Jg′.

Theorem 4.14 Let (g, J ) be a unimodular two-step solvable Lie algebra g with
complex structure J of pure type III. Then (g, J ) cannot be both SKT and balanced.

For the proof, we first need to recall some facts on two-step solvable SKT Lie
algebras from our previous paper. In particular [17, Proposition 3.8 and Corollary 4.4]
give:

Lemma 4.15 Let (g, g, J ) be a two-step solvable SKT Lie algebra. Then:

(1) There exists a complex unitary basis Y1, . . . , Ys of g′
J and complex-valued one-

forms ξj ∈ (g′
r )

∗ ⊗ C such that

[JX, Yj ] = ξj (X) Yj

holds for all X ∈ g′
r and all j ∈ {1, . . . , s}.
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(2) If g = g′ + Jg′, then there exists an X0 ∈ Jg′
r such that

[X0, X] − X ∈ g′
J

for all X ∈ g′
r .

Proof of Theorem 4.14 Suppose on the contrary that (g, J ) admits a Hermitian met-
ric g̃ that is SKT and a Hermitian metric g that is balanced. As usual g′

r is the
g-orthogonal complement of g′

J in g′ and Vr = g′
r ⊕ Jg′

r . Write g′
r̃ for the

g̃-orthogonal complement of g′
J in g′, and put Vr̃ = g′

r̃ ⊕ Jg′
r̃ .

Corollary 3.5 gives a (g, J )-unitary basis X1, . . . , X2r of Vr with

C =
r∑

k=1

[X2k−1, X2k] = 0. (4.8)

As g = g′
J + g′

r̃ + Jg′
r̃ , we may write each X ∈ Vr as X = Ỹ + W̃ + J X̃ with

Ỹ ∈ g′
J and W̃ , X̃ ∈ g′

r̃ .
By Lemma 4.15(a) there is a complex unitary basis Y1, . . . , Ys of (g′

J , g̃, J ) and
ξ1, . . . , ξs ∈ (g′

r̃ )
∗ ⊗ C such that

[X, Yj ] = [J X̃, Yj ] = ξj (X̃) Yj

for each j ∈ {1, . . . , s} and X ∈ Vr . Inserting now X = X2k−1, JX = X2k, Y =
Yj , JY into the version of (2.3) for the SKT metric g̃, and writing z = ξj (X̃), w =
ξj ( ˜JX), yields

0 = −g̃([JX, JY ], [JX, JY ])+g̃([JX, JJY ], [JX, Y ])+g̃([JJX, JY ], [X, JY ])
−g̃([JJX, JJY ], [X, Y ]) + g̃([J [X, JX], JY ], JY )

−g̃([J [X, JX], JJY ], Y ) − g̃([J [X, Y ], JJX], JY )

+g̃([J [X, JY ], JJX], Y ) + g̃([J [JX, Y ], JX], JY )

−g̃([J [JX, JY ], JX], Y )

= −2g̃(wY, wY) − 2g̃(zY, zY )+g̃([J [X, JX], JY ], JY )+g̃([J [X, JX], Y ], Y )

−2g̃(z2Y, Y ) − 2g̃(w2Y, Y )

= −2(zz + Re(z2) + ww + Re(w2)) + g̃([J [X, JX], JY ], JY )

+g̃([J [X, JX], Y ], Y )

= −4(Re(z)2 + Re(w)2) + g̃([J [X, JX], JY ], JY ) + g̃([J [X, JX], Y ], Y )

= −4(Re(ξj (X̃2k−1))
2 + Re(ξj (X̃2k))

2)

+g̃([J [X2k−1, X2k], JYj ], JYj ) + g̃([J [X2k−1, X2k], Yj ], Yj ).

Summing over k and using (4.8), we get

0 =
r∑

k=1

(
Re(ξj (X̃2k−1))

2 + (Re(ξj (X̃2k))
2
)

.

Thus, Re(ξj (X̃t )) = 0 for all t , so Re(ξj (X̃)) = 0 for all X ∈ Vr and all j .
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Note that

tr(ad(X)|g′
J
) =

s∑

j=1

g̃([X, Yj ], Yj ) + g̃([X, JYj ], JYj )

=
s∑

j=1

2g̃(ξj (X̃)Yj , Yj ) = 2
s∑

j=1

Re(ξj (X̃)) = 0.

As Im(ad(X)) ⊆ g′ = g′
J ⊕ g′

r̃ , the unimodularity of g gives for X ∈ Vr that

0 = tr(ad(X)) = tr(ad(X)|g′
J
) + tr(ad(X)|g′

r̃
) = tr(ad(X)|g′

r̃
).

By Lemma 4.15, there exists an X̃0 ∈ Jg′
r̃ with

[X̃0, X̃] − X̃ ∈ g′
J

for any X̃ ∈ g′
r̃ . Write

X̃0 = X0 + Y0

for X0 ∈ Vr and Y0 ∈ g′
J . Then ad(Y0) = 0 on g′ and

0 = tr(ad(X0)|g′
r̃
) = tr(ad(X̃0)|g′

r̃
).

Choosing a g̃-orthonormal basis S̃1, . . . , S̃r of g′
r̃ , we have

0 = tr(ad(X̃0)|g′
r̃
) =

r∑

k=1

g̃([X̃0, S̃k], S̃k) =
r∑

k=1

g̃(S̃k, S̃k) = dim(g′
r̃ ).

Thus g′
r = 0 and g = g′ + Jg′ = g′, contradicting that g is solvable.

We end this section by providing an example that the unimodular condition in
Theorem 4.14 is necessary, and which also supports the need for this condition in
Question 1.2.

Example 4.16 Let g be the six-dimensional Lie algebra with basis e1, . . . , e6 whose
dual basis e1, . . . , e6 has differentials given by

(−15 + 16, −25 + 26, 2.(35 + 46), 2.(36 + 45), 0, 0),

which is isomorphic to N
−1/2,−1/2,0,0
6,1 . Consider the almost complex structure J on g

given by Je1 = e2, Je3 = e5, Je4 = e6. Then J is integrable, so defines a complex
structure on g. We have g′ = span(e1, . . . , e4) and g′ + Jg′ = g.

Consider the metric g̃ on g for which e1, . . . , e6 is orthonormal. Then g̃ is
compatible with J and the associated fundamental two-form σ̃ is

σ̃ = e12 + e35 + e46.

A direct computation yields dJ ∗dσ̃ = 2dJ ∗(e12∧(e5−e6)) = 2d(e12∧(e3−e4)) =
0, so g̃ is SKT.

Next, consider the metric ĝ for which e1, e2, e3, e5, e3 +e4, e5 +e6 is an orthonor-
mal basis. Since this basis is unitary, ĝ is compatible with J . As e1, e2, e3 − e4,



M. Freibert, A. Swann

e5 − e6, e4, e6 is the dual of the above basis, the associated fundamental two-form σ̂

is given by

σ̂ = e12 + (e3 − e4) ∧ (e5 − e6) + e46 = e12 + e35 + 2e46 − e36 − e45.

One computes

d(σ̂ 2) = 2σ̂ ∧ dσ̂ = 4σ̂ ∧ (e12 ∧ (e5 − e6) + e456) = 0,

so ĝ is a balanced metric.
Thus, (g, J ) is a two-step solvable Hermitian Lie algebra of pure type III that is

SKT and is balanced.
We claim that (g, J ) is not Kähler. For contradiction, suppose g is a compatible

Kähler metric. Let g′
r be the orthogonal complement of g′

J = span(e1, e2) in g′.
Then Jg′

r is a complement of g′ = span(e1, . . . , e4) in g and so it has to contain a
vector of the form e5 + W for some W ∈ g′. Moreover, by Corollary 3.12(III), one
has tr(ad(V )|g′

J
) = 0 for any V ∈ Jg′

r . However, ad(e5 + W)(ei) = [e5, ei] = ei

for i = 1, 2 and so tr(ad(e5 + W)|g′
J
) = 2, a contradiction.

4.5 Dimension 6

We can now consider general unimodular six-dimensional two-step solvable Lie
algebras g endowed with a complex structure J .

Theorem 4.17 Let g be a six-dimensional unimodular two-step solvable Lie algebra
endowed with a complex structure J . If (g, J ) is SKT and is balanced, then it is also
Kähler.

Theorems 4.3, 4.13 and 4.14 give the result when (g, J ) is of pure type. However,
in dimension 6, if (g, J ) is not of pure type, then we have dim(g′

J ) = 2, dim(g′
r ) =

1 and dim(VJ ) = 2. The SKT Lie algebras of this type are described in detail in
[17, Theorem 7.5]. There are three cases, but they share common properties, so that
the following holds.

Proposition 4.18 Let (g, g, J ) be a six-dimensional two-step solvable SKT Lie alge-
bra which is not of pure type. Then there exist Y ∈ g′

J , X ∈ g′
r and Z ∈ VJ ,

all non-zero, such that ad(Z), ad(JZ) preserve g′
J and are complex-linear on that

space. Additionally there exist (b0, b1, b2, b3) ∈ R
4\{0} and z0, z1, z2, w0, . . . , w5 ∈

C, with

b0b3 + b2
1 + b2

2 = 0, Re(zi) = −δibi/2, for i = 0, 1, 2 and some δi ∈ {0, 1},
and with z0 = 0 implying b0 = b1 = b2 = 0, such that the only non-zero Lie brackets
(up to anti-symmetry and complex-linear extension) are given by

[JX, Y ] = z0Y, [Z, Y ] = z1Y, [JZ, Y ] = z2Y,

[JX, X] = b0X + w0Y, [Z, X] = b1X + w1Y, [JZ, X] = b2X + w2Y,

[Z, JX] = −b2X + w3Y, [JZ, JX] = b1X + w4Y, [Z, JZ] = b3X + w5Y .
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Theorem 4.17 now follows from the following result that does not require g to be
unimodular.

Proposition 4.19 Let g be a six-dimensional Lie algebra endowed with a complex
structure J such that (g, J ) is not of pure type. If (g, J ) is SKT and is balanced, then
it also Kähler.

Proof We use the notation of Proposition 4.18. Moreover, let g̃ be a compatible
balanced metric on g, write Ṽr for the g̃-orthogonal complement of g′

J in g′ + Jg′
and ṼJ for the g̃-orthogonal complement of g′ + Jg′ in g.

Choose a g̃-unit vector X̃ ∈ Ṽr ∩ g′. Then X̃ has the form

X̃ = μ0X + Ỹ

for some μ0 ∈ R \ {0} and Ỹ ∈ g′
J . We may also find a g̃-unit vector Z̃ ∈ ṼJ of the

form
Z̃ = μ1Z + μ2JX + μ3X + Ŷ

with μ1 ∈ R \ {0}, μ2, μ3 ∈ R and Ŷ ∈ g′
J . Proposition 3.2 has C = [X̃, J X̃] +

[Z̃, J Z̃] and implies

tr(ad(J X̃)) = −σ̃ (C, J X̃) = −g̃([X̃, J X̃] + [Z̃, J Z̃], X̃). (4.9)

We have tr(ad(JX)) = 2Re(z0) + b0 = (1 − δ0)b0 and hence

tr(ad(J X̃)) = μ0tr(ad(JX)) = μ0(1 − δ0)b0.

On the other hand, X̃ is g̃-orthogonal to g′
J , so

g̃([X̃, J X̃] + [Z̃, J Z̃], X̃)

= g̃([μ0X, μ0JX] + [μ1Z + μ2JX + μ3X, μ1JZ − μ2X + μ3JX], X̃)

= g̃
((−b0(μ

2
0 + μ2

2 + μ2
3) + μ2

1b3 − 2μ1μ2b1 − 2μ1μ3b2
)
X, X̃

)

= 1
μ0

(−b0(μ
2
0 + μ2

2 + μ2
3) + μ2

1b3 − 2μ1(μ2b1 + μ3b2)
)

.

Putting these expressions in to (4.9) times μ0, we get

b0(δ0μ
2
0 + μ2

2 + μ2
3) − μ2

1b3 + 2μ1(μ2b1 + μ3b2) = 0. (4.10)

Recall that b0b3+b2
1+b2

2 = 0. If b0 = 0, then b1 = b2 = 0, so (4.10) gives b3 = 0,
which contradicts (b0, b1, b2, b3) being non-zero. Thus b0 �= 0. Now multiplying
(4.10) by b0 gives

0 = b2
0(δ0μ

2
0 + μ2

2 + μ2
3) + (b2

1 + b2
2)μ

2
1 + 2μ1b0(μ2b1 + μ3b2)

= b2
0δ0μ

2
0 + (μ1b1 + μ2b0)

2 + (μ1b2 + μ3b0)
2.

As μ0 �= 0, we thus have

δ0 = 0, μ1b1 + μ2b0 = 0 and μ1b2 + μ3b0 = 0.

Using this, and since the structure equations give tr(ad(Z)) = (1 − δ1)b1 and
tr(ad(JZ)) = (1 − δ2)b2, one computes

tr(ad(Z̃)) = μ1tr(ad(Z)) + μ2tr(ad(JX)) = μ1(1 − δ1)b1 + μ2b0
= −δ1μ1b1 = 2μ1Re(z1),
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and similarly tr(ad(J Z̃)) = −δ2μ1b2 = 2μ1Re(z2). By Proposition 3.2, we must
have tr(ad(Z̃)) = tr(ad(J Z̃)) = 0, so Re(zi) = 0 for i = 1, 2. Write zj = icj , for
some cj ∈ R, j = 0, 1, 2.

Putting X̂ := X + (w0/(1 − ic0))Y , one computes that

[J X̂, Y ] = ic0Y, [J X̂, X̂] = b0X̂.

Note that, since b0 �= 0, we must have c0 = −iz0 �= 0. Noting that

[Z, X̂] = b1X̂ + ŵ1Y and [JZ, X̂] = b2X̂ + ŵ2Y,

for some ŵ1, ŵ2 ∈ C, the Jacobi identity yields

0 = [Z, [J X̂, X̂]] + [J X̂, [X̂, Z]] = [Z, b0X̂] − [J X̂, b1X̂ + ŵ1Y ]
= b0b1X̂ + b0ŵ1Y − b0b1X̂ − ic0ŵ1Y = (b0 − ic0)ŵ1Y .

As b0 �= 0, we conclude that ŵ1 = 0. Similarly, we obtain ŵ2 = 0. Thus, setting

Ž := Z − b1

b0
J X̂ − b2

b0
X̂,

one easily checks that

[Ž, X̂] = 0, [J Ž, X̂] = 0, [Ž, Y ] = ic̃1Y, [J Ž, Y ] = ic̃2Y,

for some c̃1, c̃2 ∈ C and that [Ž, J Ž] ∈ g′
J . Moreover, we check that

[Ž, J X̂] = w̃Y, [J Ž, J X̂] = ŵY,

for certain w̃, ŵ ∈ C. Then, the vanishing of the Nijenhuis tensor NJ on (Ž, X̂)

yields ŵ = iw̃. Hence, setting

Ẑ := Z̃ + w̃

ic0
Y,

one calculates
[Ẑ, J X̂] = [J Ẑ, J X̂] = 0.

Furthermore, [Ẑ, J Ẑ] ∈ g′
J so the Jacobi identity yields

0 = [Ẑ, [J Ẑ, J X̂]] + [J Ẑ, [J X̂, Ẑ]] + [ ˆJX, [Ẑ, J Ẑ]] = ic0[Ẑ, J Ẑ],
and we conclude that [Ẑ, J Ẑ] = 0.

Thus, denoting the basis Y, JY, X̂, J X̂, Ẑ, J Ẑ of g by e1, . . . , e6, the differentials
of the dual basis e1, . . . , e6 are given by

(−c0.24 − c̃1.25 − c̃2.26, c0.14 + c̃1.15 + c̃2.16, b0.34, 0, 0, 0).

The metric g for which e1, . . . , e6 is orthonormal is Hermitian for J with associated
two-form σ = e12 + e34 + e56. But dσ = 0, so (g, g, J ) is Kähler.

Remark 4.20 From the proof of Proposition 4.19, one deduces that the 6-dimensional
two-step solvable Lie algebras which admit a Kähler structure of non-pure type are
given by

(−24, 14, a.34, 0, 0, 0), (−25, 15, 34, 0, 0, 0)
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for a > 0, with the second case occurring exactly when (c̃1, c̃2) �= 0. The algebras in
the family are almost Abelian and isomorphic to r′4,a,0 ⊕ R

2. The second algebra is
isomorphic to r′3,0 ⊕ affR ⊕ R.

From Remark 4.20 and Corollary 3.12 we deduce

Corollary 4.21 The six-dimensional two-step solvable Lie algebras admitting a
Kähler structure are the following ones:

N
α,β,0
6,14 (αβ �= 0), g

α,0,0,δ
6,11 (αδ �= 0), g

0,0,λ
5,17 ⊕ R (λ ∈ (0, 1]), r′4,a,0 ⊕ R

2 (a > 0),

r′3,0 ⊕ r′3,0, r′3,0 ⊕ affR ⊕ R, r′3,0 ⊕ R
3, 3affR, 2affR ⊕ R

2, affR ⊕ R
4, R

6.

Proof By Remark 4.20, r′4,a,0 ⊕ R
2 for a > 0 and r′3,0 ⊕ affR ⊕ R are precisely the

six-dimensional two-step solvable Lie algebras admitting a Kähler structure which
are not of pure type.

For pure type I, Corollary 3.12(I) gives that the algebras are kaffR ⊕ R
6−2k for

k ∈ {0, . . . , 3}.
For pure type II, we use Corollary 3.12(II). This gives (a) for dim(g′

J ) = 2, the
algebra

(−23, 13, 0, 0, 0, 0),

which is r′3,0 ⊕ R
3 and (b) for dim(g′

J ) = 4, one of

(−25, 15, −46, 36, 0, 0), (−25, 15, −λ.45, λ.35, 0, 0)

for λ ∈ (0, 1], which are r′3,0 ⊕ r′3,0 and g
0,0,λ
5,17 ⊕ R, respectively.

Finally, for pure type III, Corollary 3.12(III) gives (a) for dim(g′
J ) = 2 the

algebras
(−25 − c.26, 15 + c.16, a1.35, a2.46, 0, 0)

for some a1, a2 ∈ R \ {0}, c ∈ R, which are isomorphic to N
α,β,0
6,14 for certain α, β ∈

R \ {0}, and (b) for dim(g′
J ) = 4, the algebras

(−26, 16, −c.46, c.36, a.56, 0)

for certain a, c ∈ R \ {0}, which are isomorphic to g
α,0,0,δ
6,11 for α, δ ∈ R \ {0}.

Funding Open Access funding enabled and organized by Projekt DEAL.

Declarations

Conflict of Interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.
0/.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


M. Freibert, A. Swann

References

1. Abbena, E., Grassi, A.: Hermitian left invariant metrics on complex Lie groups and cosymplectic
Hermitian manifolds. Boll. Un. Mat. Ital A (6) 5(3), 371–379 (1986)

2. Alessandrini, L., Bassanelli, G.: Metric properties of manifolds bimeromorphic to compact kähler
spaces. J. Differential Geom. 37, 95–121 (1993)

3. Alexandrov, B., Ivanov, S.: Vanishing theorems on Hermitian manifolds. Differential Geom. Appl.
14(3), 251–265 (2001)

4. Andrada, A., Barberis, M.L., Dotti, I.G., Ovando, G.P.: Product structures on four dimensional
solvable Lie algebras. Homology Homotopy Appl. 7(1), 9–37 (2005)

5. Arroyo, R.M., Nicolini, M.: SKT structures on nilmanifolds. Math. Z. 302(2), 1307–1320 (2022)
6. Bianchi, L.: Sugli spazi a tre dimensioni che ammettono un gruppo continuo di movimenti. Mem.

Mat. Fis. Ital. Sci. Serie Terza 11, 267–352 (1898)
7. Chiose, I.: Obstructions to the existence of kähler structures on compact complex manifolds. Proc.

Amer. Math. Soc. 142(10), 3561–3568 (2014)
8. Dorfmeister, J.: Homogeneous kähler manifolds admitting a transitive solvable group of automor-
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