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Compatibility of Prior Specifications
Across Linear Models
Guido Consonni and Piero Veronese

Abstract. Bayesian model comparison requires the specification of a prior
distribution on the parameter space of each candidate model. In this connec-
tion two concerns arise: on the one hand the elicitation task rapidly becomes
prohibitive as the number of models increases; on the other hand numerous
prior specifications can only exacerbate the well-known sensitivity to prior
assignments, thus producing less dependable conclusions. Within the subjec-
tive framework, both difficulties can be counteracted by linking priors across
models in order to achieve simplification and compatibility; we discuss links
with related objective approaches. Given an encompassing, or full, model
together with a prior on its parameter space, we review and summarize a
few procedures for deriving priors under a submodel, namely marginaliza-
tion, conditioning, and Kullback–Leibler projection. These techniques are
illustrated and discussed with reference to variable selection in linear mod-
els adopting a conventional g-prior; comparisons with existing standard ap-
proaches are provided. Finally, the relative merits of each procedure are eval-
uated through simulated and real data sets.

Key words and phrases: Bayes factor, compatible prior, conjugate prior,
g-prior, hypothesis testing, Kullback–Leibler projection, nested model, vari-
able selection.

1. INTRODUCTION

Model comparison is an important and active area of
research especially from the Bayesian viewpoint; see,
for example, George (1999) and Robert (2001, Chap-
ter 7). In particular, the problem of variable selection
in linear models has received considerable attention;
see the review paper of George (2000) and a few sur-
vey chapters in the book edited by Dey and Rao (2005).
Two critical issues emerge from the very beginning: the
elicitation of prior probabilities for the various models
under consideration and the assignment of prior distri-
butions on the parameter space of each model, which
we simply call priors. In this paper we focus on the
latter.
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Occasionally, when the model space is not large and
detailed prior information is available, subjective prior
elicitation on each model can be carried out; see Garth-
waite and Dickey (1996). More often, however, be-
cause of the potentially very high number of models
under investigation, prior elicitation can represent a
formidable task, and hence practically implementable
procedures have been actively looked for. In the ob-
jective framework (see Berger and Pericchi, 1996b),
a convenient approach is to start with a default, typi-
cally improper, prior under each model, and then to cir-
cumvent the indeterminacy of the normalizing constant
through an intrinsic prior procedure (see also Casella
and Moreno, 2006, for an application to variable se-
lection in linear models). A more general approach,
namely expected posterior prior, is described in Pérez
and Berger (2002).

Outside the purely objective view, pragmatic sim-
plification of the elicitation task in the variable selec-
tion problem has been achieved through hierarchical
mixture priors as in George and McCulloch (1997),
or using an empirical Bayes approach, as in George
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and Forster (2000), and more recently in Yuan and
Lin (2005), or employing a blend of noninformative
and conjugate procedures, as exemplified in Fernán-
dez, Ley and Steel (2001). Recently Liang et al. (2008)
have proposed mixtures of g-priors as an efficient tool
for Bayesian variable selection.

Within the subjective framework, which uses proper
priors, the idea of relating priors across models does
not seem to be pervasive. Notable exceptions are
Dickey (1971) and Poirier (1985), in the context of
linear models; see also the discussion in O’Hagan and
Forster (2004, Sections 11.29–11.31). Neal (2001) in-
troduces the idea of transferring prior information from
a “donor model” to a “recipient model.” His motivation
is primarily pragmatic: priors for complex models are
harder to elicit than those for simple models; accord-
ingly one can try to carefully elicit a prior under a sim-
ple “donor” model and then transfer this information
to a complex “recipient” model. Technically Neal’s
method is similar to, although more general than, the
expected posterior prior of Perez and Berger (2002).
The paper by Dawid and Lauritzen (2001) stands out
as an attempt to discuss, in a general setting, methods
to construct “compatible priors” for nested models us-
ing a variety of strategies. Their motivation is mixed:
on the one hand they state that conceptually there is
no compelling reason to relate priors across models
(since they express subjective opinions conditionally
on a different state of information); on the other hand
such relationships may be highly desirable on prag-
matic grounds (the effort spent in eliciting a prior un-
der a model should somehow be transferred to other
models) and also to achieve some sort of compatibility
in order to lessen the sensitivity of the Bayes factor to
prior specifications.

Following up this comment, we believe that priors
for model comparison deserve to be carefully investi-
gated by the Bayesian community. Traditional priors,
which individually perform quite effectively within a
single model, need not work satisfactorily when col-
lectively employed for comparing models of varying
dimensions. This fact has been informally recognized
at least since Jeffreys, who refrained from using con-
ventional priors for comparing two nested hypotheses;
see also Zellner and Siow (1980) in the framework of
linear models.

In the context of comparing a sharp null hypothesis
H0 versus a composite alternative H , Morris (1987)
argued forcibly for the prior under H to be “centered
around H0”; otherwise the prior under H would be
“wasting away” prior probability mass in regions that

are often too unlikely to be supported by the data, thus
unduly favoring H0, as lucidly spelled out in Casella
and Moreno (2007); see also Consonni and La Rocca
(2008). Carefully extending this argument to several
models would surely be of great value and interest in
order to enhance our understanding of the issue of com-
patibility of priors for model comparison. While this
paper falls short of providing a comprehensive treat-
ment of this point, it nevertheless tries to offer some
guidance for further reflection and research. Specifi-
cally, we try to elucidate the meaning of the term “sub-
model,” or nested model, in order to highlight differ-
ences between a couple of approaches which are im-
plicit in the literature and better understand specific
strategies to relate priors across models. Although the
scope of our considerations is general, we will illus-
trate the main ideas with reference to the problem of
variable selection in linear models.

The structure of the paper is as follows. Section 2
deals with two notions of nested models and discusses
the corresponding parametrization, distinguishing be-
tween nuisance and common parameters. Section 3
deals with strategies to assign priors on parameters of
submodels starting from a prior on the (full) model;
we discuss conditioning and projection (including mar-
ginalization) and propose, in Sections 3.1 and 3.2, two
criteria to evaluate such strategies, which we name
nuisance- and nested-coherence. Section 4 deals with
priors for linear models. Starting with a g-prior under
the full model, a variety of prior specifications on sub-
models is obtained through the procedures described in
Section 3; in particular Section 4.2 contains a discus-
sion of the so-called “information paradox.” Section 5
presents three examples to evaluate the performance
of the various priors under consideration in terms of
model comparison, with special references to sensitiv-
ity issues. Finally, Section 6 provides a few points for
discussion. To ease the flow of ideas, technical aspects
have been relegated to the Appendix.

2. SUBMODELS

2.1 A Preliminary Example

We start by discussing a very simple example with
the aim of presenting the main issues at stake. Consider
the following model:

M : yi = α + βxi + εi, i = 1, . . . , n,

(α,β,σ 2) ∈ � = R × R × R
+
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where, conditionally on σ 2, εi
iid∼ N(0, σ 2). An obvious

submodel, say M∗, removes the predictor, thus chang-
ing the mean structure. However, several instances of
M∗ are available, namely:

M∗
A : yi = α + εi, εi

iid∼ N(0, σ 2);
M∗

B : yi = α + ε∗
i , εi

iid∼ N(0, σ ∗2);
M∗

C : yi = α∗ + εi, εi
iid∼ N(0, σ 2);

M∗
D : yi = α∗ + ε∗

i , ε∗
i

iid∼ N(0, σ ∗2).

Model M∗
A originates in the setting of hypothesis

testing postulating that β = 0 under M; in other words,
M∗

A is equivalent to the hypothesis H ∗ :y ∼ M and
β = 0. As a consequence the parameters α and σ 2 are
“common” to both models, although one might further
distinguish between them, since σ 2 pertains to the er-
ror structure (which is not affected explicitly by the
submodel specification), and thus can be regarded as a
“nuisance” parameter. Model M∗

B originates from the
consideration that the error component in the submodel
might, and perhaps should, be allowed to be different
from that under M. In particular, since one can antic-
ipate a worse fit under M∗

B than under M, one should
have E(σ ∗2) ≥ E(σ 2) or even σ ∗2 ≥ σ 2 (with proba-
bility 1). Model M∗

C originates from the consideration
that the meaning of the intercept is actually quite dif-
ferent under the two models, and so should be distinct
from that under M. On the other hand σ 2 remains the
same, since it is regarded as a “nuisance” parameter. Fi-
nally model M∗

D combines the specific features of M∗
B

and M∗
C , and has no direct link, unlike the previous

versions, to M. For a related discussion on alternative
interpretations of submodels, see Berger and Pericchi
(2001, Section 1.5, “Difficulty 4”).

In an abstract sense, all instances of M∗ above rep-
resent the same submodel, since they share the same
family of distributions. However, the distinctive fea-
tures that we have tried to underline should make it
clear that they are different objects, or perhaps different
ways of looking at the same object. For a given prior π

on (α,β,σ 2) under M, we require a prior, π∗ say, un-
der M∗. We claim that each instance of M∗ naturally
suggests a different procedure to obtain π∗ from π .

Consider first model M∗
A. There are two natural can-

didates for π∗, namely π(α,σ 2) and π(α,σ 2|β = 0),
that is, the marginal and the conditional (on β = 0) dis-
tribution derived from π(α,β,σ 2). The latter might ap-
pear more natural, if the hypothesis-testing interpreta-
tion of M∗

A is strictly adhered to. Note that the two pro-

cedures lead to the same priors if (α,σ 2) is indepen-
dent of β , as it occurs using default priors. For model
M∗

B , instead, no obvious indications are provided for
the specification of π∗(σ ∗2); on the other hand, since
α is “common” to both models, a natural suggestion
would be to take π∗(α) = π(α). Of course the prob-
lem of combining the two marginal distributions into a
joint one remains open. Under model M∗

C a situation
somewhat similar to that under M∗

B obtains, if we in-
terchange the role of the intercept and the variance. Fi-
nally, neither marginalization nor conditioning appears
as obvious recommendations under M∗

D , because no
effective link with M is specified. The next sections
explore these issues in greater generality.

2.2 Nested Models

It could be argued that each of the models M∗ de-
scribed in Section 2 is nested in M. However, we feel
some other clarification is needed.

Consider a model M = {f (·|θ), θ ∈ �}. There seem
to be two interpretations of a nested model M∗ in
the literature, often not clearly distinguished. Both
start from the assumption that it is possible to write
θ = (λ,φ), where λ ∈ � and φ ∈ �, with λ and φ being
variation-independent, so that � = � × � and model
M∗ is identified through the constraint φ = φ0, with
φ0 a fixed value. As suggested by a referee, this setting
covers only the case in which the parameter space �∗
associated with M∗ has dimension strictly smaller than
that of M, and thus it does not account for other inter-
esting nesting situations in which dim(�∗) = dim(�)

(e.g., when �∗ is a restriction of �). However, the
above (λ,φ)-representation is especially useful from
the perspective of “prior assignment” under submod-
els, which is the primary focus of this paper. We de-
scribe these two interpretations below.

S-N (Strongly nested interpretation): The sampling
distribution of y under M∗ is given by f ∗(·|λ),λ ∈ �,
where f ∗(·|λ) = f (·|λ,φ = φ0). This interpretation
can be clarified in terms of the underlying generating
process of y: “If Nature chooses λ ∈ � and φ = φ0,
then the distribution of the observables under M and
M∗ is the same.”

W-N (Weakly nested interpretation): The sampling
distribution of the observations y under M∗ can be
written as f ∗(·|γ ), γ ∈ �, with f ∗(·|γ ) = f (·|λ =
γ,φ = φ0). In this way γ , although structurally equiv-
alent to λ, is distinct from it. Clearly, each distribution
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in M∗ also belongs to M.

Interpretation S-N is rooted in a hypothesis-testing
context, that is, H ∗ :φ = φ0, where the actual objec-
tive of the analysis is verifying whether φ = φ0, other
things being held equal. On the other hand, W-N is
better suited when the objective is model simplifica-
tion, and each model competes against the other ones
according to whatever criterion is deemed to be appro-
priate (e.g., a combination of fit and parsimony, or on
predictive grounds; see, e.g., Gelfand and Ghosh, 1998
and Marriott, Spencer and Pettitt, 2001). With regard
to the example in Section 2.1, M∗

A is the only instance
of M∗ that falls under interpretation S-N. The S-N
view is probably the most pervasive and is regarded
as a natural framework by, for example, Poirier (1985),
O’Hagan and Forster (2004, Section 7.15) and Davi-
son (2003, page 127). It seems implicit in George and
Forster (2000) and other workers mostly interested in
computational aspects, for example, Smith and Kohn
(1996), Nott and Green (2004) and Cripps, Carter and
Kohn (2005). On the other hand, authors like Berger
and Periccchi (1996a) and also Robert (2001, Sec-
tion 7.2) seem to prefer interpretation W-N.

Within the interpretation S-N, consider a collection
of submodels Mk and suppose that, for each Mk , there
exists a reparametrization of M as (δ, ηk,ωk), so that
Mk is identified by ηk = ηk0. Since δ is never involved
in any submodel specification we can regard it as a nui-
sance parameter; on the other hand we call ωk the pa-
rameter common to the pair (M,Mk). In the setting
of variable selection for linear models, the nuisance
parameter is clearly represented by the error variance
σ 2, while common parameters are the regression coef-
ficients that are not set to zero in the submodel specifi-
cation.

We close this section with a caveat that hopefully
will not disconcert the reader. Despite our insistence
on model interpretation and parametric description, we
emphasize that what matters in a Bayesian analysis is
the prior distribution attached to the parameters of the
various models regardless of their formal representa-
tion. The latter, however, may become relevant when
structuring prior specification across models. This is
the topic of the next section.

3. STRATEGIES TO ASSIGN PRIORS ON
PARAMETERS OF SUBMODELS

Within the objective Bayesian framework, the ex-
pected posterior prior (EPP) methodology of Pérez and

Berger (2002) is a method to construct prior distri-
butions for model comparison; see also Neal (2001)
for related concepts. The idea is to start with a prior
distribution under each model, compute its posterior
under “imaginary” observations, and formally average
the posterior through a marginal data distribution that is
common to all models. The method is quite general, but
is especially effective if one starts with a default, pos-
sibly improper, prior under each model. In this way the
EPP method allows to use improper priors for model
comparison through Bayes factors, or posterior model
probabilities, since the indeterminate normalizing con-
stants cancel out. More generally, EPP is a method to
make priors “compatible” across models, through their
dependence on a common marginal data distribution;
thus this methodology can be applied also with subjec-
tively specified (proper) prior distributions.

Although appealing and flexible, implementing the
EPP methodology may be problematic. First of all the
choice of the common distribution is not unique. For
instance, there exist at least two competing choices,
namely that corresponding to the “simplest” model, if
it exists, and that corresponding to the empirical dis-
tribution, which requires the identification of a mini-
mal training sample; see Berger and Pericchi (2004)
for a discussion of potential difficulties associated to
this concept. More importantly, to judge the relative
merits of the above two choices is not straightforward.
A second concern refers to the actual implementation
of the EPP, which may require careful computational
strategies.

A more specific approach is the intrinsic prior
methodology, which has received a great deal of atten-
tion both for hypothesis testing and for model selec-
tion. Again the primary motivation is the use of default
noninformative priors under each model; see Pericchi
(2005) for a review. When several models are enter-
tained the intrinsic method requires a nesting strategy.
One approach, labeled “encompassing from above,”
chooses as benchmark a full model wherein all other
models are nested. In this way, however, the prior un-
der the full model changes in each pairwise compari-
son, thus producing an overall incoherent probabilistic
answer. Yet posterior probabilities can still be formally
defined on the basis of the collection of Bayes factors
of each model relative to the full one; see Casella and
Moreno (2006) for an application to variable selection
in linear models. On the other hand, if the simplest
model (i.e., one being nested within any other model)
is available, an alternative “encompassing from below”
intrinsic prior procedure can be followed, which is
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probabilistically correct; for an application to variable
selection see Moreno and Giron (2007). Notice that the
two alternative encompassing procedures will typically
lead to distinct answers. As with the EPP methodol-
ogy, analytic evaluation of intrinsic priors is typically
very hard and actual implementation of the procedure
requires a good deal of computational ingenuity; see
Casella and Moreno (2005) in the context of contin-
gency tables.

Although the EPP and intrinsic prior methodologies
produce priors that are “related” through a common
underlying marginal data distribution, they do not ex-
plicitly address the issue of prior compatibility across
models. The latter issue is lucidly tackled in Dawid and
Lauritzen (2001), who present several strategies for the
derivation of compatible priors; see also Roverato and
Consonni (2004) in the context of directed graphical
models and Consonni, Gutiérrez-Peña and Veronese
(2007) for general exponential families with a detailed
application to testing the Hardy–Weinberg model in
studies of population genetics.

Starting with a model M = {f (y|λ,φ)} and a joint
distribution π(λ,φ), we briefly review below four
main strategies for prior specification under a nested
model M∗ identified through φ = φ0.

Marginalization (M). This approach is most natural
under interpretation S-N where M∗ = {f ∗(y|λ),λ ∈
�}, so that M and M∗ share the same parameter λ,
and states that πM(λ) = π(λ), where π(λ) is the mar-
ginal of λ under π(λ,φ). Two critical aspects should be
taken into consideration: (i) marginalization does not
explicitly take into consideration the constraint φ = φ0;
in fact it disregards this information by averaging with
respect to the distribution of φ; (ii) on a more tech-
nical side, this procedure is not invariant to repara-
metrization. Consider, for instance, model M of Sec-
tion 2.1, and suppose to recenter the data as xi →
xi − x̄, with x̄ the mean of the xi . The model M be-
comes (α−βx̄)+βxi suggesting the following repara-
metrization: (α,β) �→ (γ, δ), where γ = α − βx̄, and
δ = β . Notice that α and γ are the same quantities un-
der M∗ and so should share the same prior under the
latter model. On the other hand, α and γ are distinct
under M and will have typically different priors, a fea-
ture which will be inherited under M∗ through the pro-
cedure M, thus establishing its lack of invariance.

Usual conditioning (UC). As with M, this procedure
applies more naturally under interpretation S-N, and
states that πUC(λ) = π(λ|φ = φ0), where the right-
hand side is the conditional distribution of λ given
φ = φ0 under π(λ,φ). A clear advantage of UC is that

it incorporates explicitly the information available in
the specification of model M∗, through the constraint
φ = φ0. The major drawback of UC is that it is not in-
variant to the choice of the conditioning function (typ-
ically an event having zero probability) which identi-
fies the submodel. For instance, assume that M is as
in Section 2.1, and that (α,β) are jointly normal with
zero mean, variances σ 2

α , σ 2
β and correlation coeffi-

cient ρ. Then the distribution of α given β = 0 is nor-
mal with zero mean and variance σ 2

α (1 − ρ2). On the
other hand, model M∗ could also be identified through
the constraint ξ = 0, where ξ = β/α. It can be checked
that the conditional distribution of α given ξ = 0 is
no longer normal. This represents an instance of the
Borel–Kolmogoroff paradox.

Jeffreys conditioning (JC). This procedure is a vari-
ation of UC and hence is most appropriate again un-
der interpretation S-N. It was proposed by Dawid and
Lauritzen (2001) to overcome the lack of invariance of
UC. First recall that the density obtained through UC
can be expressed as πUC(θ) ∝ π(θ), θ ∈ �̃∗, where
�̃∗ = {(λ,φ), λ ∈ �,φ = φ0}. Now let H(θ) denote
the Fisher information matrix for θ under M, and
similarly for H ∗(θ) under M∗. Set j (θ) ∝ |H(θ)|1/2,
where |H | is the determinant of H , so that j (θ) is the
Jeffreys prior for θ under M, and define analogously
j∗(θ) under model M∗. The JC density is defined as

π JC(θ) ∝ π(θ)
j∗(θ)

j (θ)
, θ ∈ �̃∗.(1)

Typically, one would re-express the JC density as a
function of λ only, and write π JC(λ) accordingly; we
shall follow this style in the next section. A useful
feature of Jeffreys conditioning is invariance to model
reparametrization, because of the multiplicative term
given by the ratio of the Jeffreys densities. A potential
difficulty with Jeffreys conditioning is that the result-
ing prior π JC(λ) may be improper even though π(θ) is
proper, because of its nonprobabilistic nature.

Kullback–Leibler (KL) projection. This procedure
is part of a more general approach to the construc-
tion of priors on related models based on projection
maps, and is especially appropriate under interpreta-
tion W-N. Consider a model M and a submodel M∗,
parametrized by θ∗ ∈ �∗ for the same observable, and
suppose that each distribution in M has an image in
M∗ through the (projection) map τ :� �→ �∗. Given a
prior π(θ) on �, the prior induced on τ(θ) is called the
τ -projection prior.

For reasons to be specified shortly below, we shall
take τ(θ) as the Kullback–Leibler (KL)-projection of



COMPATIBLE PRIORS FOR LINEAR MODELS 337

θ onto �∗, that is,

τKL
θ (θ) = arg min

θ∗∈�∗ KL(f (·|θ), f ∗(·|θ∗)),

where

KL(p, q) = Ep

(
log

p(X)

q(X)

)

denotes the KL-divergence between the density p and
q relative to a common dominating measure. In this
case we call the resulting prior KL-projection prior, or
KL-prior for short, and denote it with πKL(θ∗), that is,
πKL(θ∗) = πθ

θ⊥(θ∗), where πθ
θ⊥ is the prior on θ⊥ =

τKL
θ (θ) induced from the prior π(θ). KL-priors were

originally presented in McCulloch and Rossi (1992)
to compute Bayes factors; they are applied in Viele
and Srinivasan (2000) to ANOVA models, and in Con-
sonni, Gutiérrez-Peña and Veronese (2007) to a partic-
ular multinomial model. Goutis and Robert (1998) and
Dupuis and Robert (2003) use KL-projection for com-
paring models, but do not rely on the idea of KL-priors.

Notice that KL(p, q) is not symmetric. The intrinsic
discrepancy between p and q , δ(p, q) = min{KL(p,

q),KL(q,p)} (see Bernardo and Rueda, 2002), over-
comes this difficulty. However, we will still use KL(p,

q) because (i) we take p as the encompassing model,
whose validity is not questioned within our approach,
while q is a simplified version of p; from this point
of view taking expectations with respect to p, as in
KL(p, q), appears a sensible procedure; (ii) for regu-
lar nested models (wherein the support is independent
of the parameter), p and q have the same support so
that KL(p, q) is well defined; (iii) the use of δ(p, q),
instead of KL(p, q), adds complexity from an analyti-
cal viewpoint (for a detailed discussion on these points
see Consonni, Gutiérrez-Peña and Veronese, 2007).

From our perspective, a very important feature of
the KL-projection is its invariance to reparametriza-
tion. Thus if η = g(θ) is a reparametrization under
M, then τKL

η (η) = τKL
θ (g−1(η)). Accordingly, prior

assignments based on KL-projection do not depend on
the specific parametrization that is chosen. To illustrate
the KL-procedure, consider the simple linear model M
of Section 2.1 with the submodel specified by M∗

D .
It can be checked that the KL-projection of (α,β,σ 2)

onto the space {(α∗, σ ∗2) ∈ R × R
+} is given by

(α,β,σ 2)⊥ =
(
α + βx̄, σ 2 + β2 1

n

∑
(xi − x̄)2

)

= (α⊥, σ 2⊥),

with some abuse of notation for the latter equality. It
is interesting to remark that the projection correspond-
ing to the variance is given by σ 2 plus a quadratic
term: as a consequence σ ∗2 is stochastically larger, un-
der the KL-prior, than σ 2, whatever the prior on σ 2

under M. This seems to be consistent with the views
of those authors who state that σ ∗2 should perhaps be
larger than σ 2, to account for an anticipated worse fit
of the submodel; see Berger and Pericchi (2001, Sec-
tion 1.5) and Robert (2001, page 349). A similar, al-
though less stringent, view is held by George and Mc-
Culloch (1997) according to whom the expectation of
σ 2 under the smaller model should be larger. The exact
form of the joint KL-prior for (α∗, σ ∗2) is typically un-
available because of the complicated structure of σ 2⊥;
however, we will provide an analytical approximation
in the next section. Alternatively, one could resort to
stochastic simulation since a draw from πKL(·) can be
easily obtained by first generating θ̃ from π(·) and then
calculating τKL

θ (θ̃ ), possibly through numerical meth-
ods.

3.1 Coherence of Procedures With Respect to
Nuisance Parameters

In this section we plan to evaluate the procedures
to construct priors under submodels from the point of
view of coherence with respect to the nuisance para-
meter as defined in Section 2.2.

If δ is a nuisance parameter, then it could be inte-
grated out from the very beginning (see O’Hagan and
Forster, 2004, Sections 3.13–3.14), using a prior under
M. A new integrated model IM would then be ob-
tained, which in turn generates an integrated submodel
IM∗. Let y be a future observation to be forecast. We
say that a procedure is nuisance-coherent if the mar-
ginal distributions of y under submodel M∗ and the
corresponding integrated submodel IM∗ are the same,
that is,

f ∗
M∗(y) = f ∗

IM∗(y).(2)

In other words, integrating out the nuisance parame-
ter “at the beginning” (using π ) or “at the end” (using
the procedure-induced prior) does not make any dif-
ference. If (2) holds, then the predictive distributions
under the two models are equivalent; moreover, the
Bayes factor for the pair (M,M∗) coincides with that
for (IM,IM∗), since fM(y) = fIM(y) by definition
of integrated model.

The following proposition establishes results on
nuisance-coherence for the procedures M, UC and JC.
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PROPOSITION 1. Consider a model M parame-
trized by (λ, δ,φ) with δ a nuisance parameter, and
prior π(λ, δ,φ). Let M∗ be a submodel identified
through φ = φ0. Then:

(i) the UC procedure is nuisance-coherent;
(ii) the M procedure is nuisance-coherent if δ is

conditionally independent of φ given λ under π(λ, δ,

φ);
(iii) the JC procedure is nuisance-coherent if the ra-

tio of the Jeffreys priors relative to the pair (M,M∗) is
proportional to that for the pair (IM,IM∗), provided
the resulting priors are proper.

PROOF. See the Appendix. �
In general nuisance-coherence does not hold for the

KL-procedure; see Section 4.1.3.

3.2 Coherence of Procedures Across Nested
Models

We now address the issue of coherence across a col-
lection of submodels. It is actually enough to consider
only three models. For simplicity of exposition we
shall formulate the problem within interpretation S-N
(see Section 2.2). Specifically, consider the following
models:

M : f (y|λ,φ1, φ2),(3)

M∗ : f ∗(y|λ,φ2) = f (y|λ,φ1 = φ0
1, φ2),(4)

M∗∗ : f ∗∗(y|λ) = f (y|λ,φ1 = φ0
1, φ2 = φ0

2)
(5)

= f ∗(y|λ,φ2 = φ0
2),

so that M∗ is a submodel of M and M∗∗ is a submodel
of M∗ (and so also of M). Let π(λ,φ1, φ2) be the prior
under M, π∗(λ,φ2) that under M∗ and finally π∗∗(λ)

that under M∗∗. For each given procedure to construct
priors on submodels, the prior π∗∗(λ) can be obtained
either with respect to the pair (M,M∗∗), which we
label π∗∗

M (λ), or with respect to the pair (M∗,M∗∗),
which we label π∗∗

M∗(λ).
We say that a procedure is nested-coherent if

π∗∗
M (λ) = π∗∗

M∗(λ).

PROPOSITION 2. Consider the three models de-
scribed in (3)–(5). The M, UC and JC procedures are
nested-coherent.

PROOF. See the Appendix. �
We remark that nested-coherence fails in general for

the KL-procedure as we report in Section 4.1.3 with
reference to linear models.

4. LINEAR MODELS

Consider the general linear model M

y = Xβ + ε,(6)

where y is an n-dimensional vector of observations on
the dependent variable, X an (n × p) matrix of pre-
dictors having rank p, β a p-dimensional vector of re-
gression coefficients and ε an n-dimensional vector of
error terms with ε ∼ N(0, σ 2I ), conditionally on σ 2.
We assume that the constant term is always included
in the model, so that the first column of X is the unit
vector. It is useful to think of (6) as the full model.

If subjective information is limited, we can easily
resort to conventional proper priors such as the con-
jugate normal inverted gamma (NIGa) family; see, for
example, O’Hagan and Forster (2004, Section 11.4).
Specifically, under a NIGa(b,V , d, a) prior, the condi-
tional distribution of β given σ 2 is N(b, σ 2V ) while
the marginal distribution of σ 2 is IGa(d/2, a/2). Here,
N(b,�) denotes a normal distribution with expecta-
tion b and variance matrix �, while IGa(d/2, a/2)

stands for an inverted gamma distribution having ex-
pectation a/(d − 2), d > 2. In many applications, and
especially in econometric analysis, a simplified version
of the NIGa prior is usually considered. The sugges-
tion of Zellner (1986), called g-prior, is to set V =
g(XT X)−1, with g > 0. The choice of g has been
extensively analyzed in several papers, for example,
George and Foster (2000), Clyde and George (2004)
and Fernández, Ley and Steel (2001).

Some authors have raised criticism against the use of
g-priors for model selection (see for a clear exposition
Berger and Pericchi, 2001), and have suggested alter-
native conventional priors, such as the Cauchy prior by
Zellner and Siow (1980), recently discussed in Bayarri
and Garcia-Donato (2007). Liang et al. (2008) propose
to use a prior on the parameter g leading to a mixture
of g-priors, which includes as a special case that by
Zellner and Siow. This prior does not suffer from the
“information paradox” which represents a major draw-
back of g-priors; see Section 4.2. However, we still
employ a g-prior on the full model because of its sim-
plicity and analytical tractability. At any rate the com-
patible priors that we derive under the various submod-
els differ from the g-priors traditionally employed.

We take as prior for (β, σ 2) under M

π(β,σ 2) = NIGa(β, σ 2;b,g(XT X)−1, d, a),(7)

hierarchically specified through

π(β|σ 2) = N(β;b,gσ 2(XT X)−1);
(8)

π(σ 2) = IGa(σ 2;d/2, a/2),
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and refer informally to (7) as the gNIGa prior.
Concerning the choice of E(β) = b, three default op-

tions are

bT
0 = (0, . . . ,0), b̄T = (ȳ,0, . . . ,0), b̂ = β̂,(9)

where β̂ represents the OLS estimate of β under the
full model. In this way the elicitation of the gNIGa
prior reduces simply to choosing the three hyperpara-
meters d, a and g. Possible choices for g are exten-
sively discussed in Fernández, Ley and Steel (2001).
In particular, based on simulation results, they recom-
mend using g = max{n,p2}, so that typically g = n,
because n ordinarily exceeds p2.

4.1 Priors for Submodels

We now review some techniques for prior specifica-
tion under a generic linear submodel. Let Mk repre-
sent a submodel that uses pk predictors with pk < p.
Write X = (Xk

...X\k), where Xk is an (n × pk) matrix.
We assume that each submodel includes the intercept
term, so that the first column of Xk is the unit vector;
for this reason there exist 2p−1 possible models. Let
βT = (βT

k , βT\k) be the partition corresponding to that
of X.

If we adopt interpretation S-N of nested models, we
can write Mk as y = Xkβk + ε, which is equivalent to
the hypothesis Hk :β\k = 0. On the other hand if one
follows interpretation W-N, Mk can be expressed as

y = Xkβ
∗
k + εk,(10)

with εk ∼ N(0, σ 2
k I ), and β∗

k a pk-dimensional vector.
Notice that in this setting each submodel presents a
specific parametric representation, with a distinct β∗

k

and σ 2
k . To simplify the exposition, in the following

we will make use exclusively of representation (10)
which reduces to the S-N case by setting β∗

k = βk and
σ 2

k = σ 2.
It is common practice to “replicate” the gNIGa prior

described in (7), under each Mk , in particular using the
same values of g, d and a. We will show that the UC
and JC procedures, as well as KL based on a conjugate
approximation, lead instead to

πk(β
∗
k , σ 2

k )
(11)

= NIGa(β∗
k , σ 2

k ;b∗
k , gk(X

T
k Xk)

−1, dk, ak),

with model-specific hyperparameters. As a conse-
quence, the marginal distribution of y is an n-dimensio-
nal Student t-distribution and the Bayes factor for

model Mk versus model Ms can be written as

Bks = Cks

{
as + gs

1 + gs

yT Msy

+ 1

1 + gs

(y − Xsb
∗
s )

T

· (y − Xsb
∗
s )

}(ds+n)/2

(12)

·
[{

ak + gk

1 + gk

yT Mky

+ 1

1 + gk

(y − Xkb
∗
k )

T

· (y − Xkb
∗
k )

}(dk+n)/2]−1

;
where

Cks = �(ds/2)(ak)
dk/2�((dk + n)/2)(1 + gs)

ps/2

�(dk/2)(as)ds/2�((ds + n)/2)(1 + gk)pk/2 ,

with Mk = I − Xk(X
T
k Xk)

−1XT
k = I − Pk , where Pk

is the projection matrix onto the column space of Xk .
Accordingly yT Mky represents the residual sum of
squares SSRk of model Mk and similarly for Ms .

Notice that the marginalization procedure does not
lead to the gNIGa prior (11). Indeed, conditionally on
σ 2

k , the variance matrix of β∗
k is given by gσ 2

k [(XT ·
X)−1]kk , where [(XT X)−1]kk is the submatrix of
(XT X)−1 containing the first k rows and k columns,
which is not equal to (XT

k Xk)
−1. This reason, together

with the lack of invariance and of nuisance-coherence
of the marginalization procedure in this case, suggest
to disregard it in our future investigations.

4.1.1 Standard Approach. The conventional prior
that is used in most Bayesian analyses of linear mod-
els assumes that, under Mk , (β∗

k , σ 2
k ) follows a gNIGa

distribution, with hyperparameters (bS
k , g, d, a), where

the superscript S stands for “standard.” Often the prior
on σ 2

k is taken to be improper (d → 0 and a → 0)
and the resulting prior will be denoted with π I(β∗

k , σ 2
k ),

where I stands for “improper.” Standard choices for bS
k

reproduce the default options (9) and can be formally
recovered as bS

k = (XT
k Xk)

−1XT
k Xb. Using results in

Rao and Toutemburg (1999, pages 41–42), it can be
checked that when b = b̂ the corresponding bS

k will co-
incide with the OLS estimate of βk under Mk .

We conclude this section remarking that the stan-
dard approach does not satisfy nuisance-coherence (it
is enough to check that the marginal variance of y un-
der Mk differs from that under IMk); on the other
hand nested-coherence trivially holds.
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4.1.2 Usual Conditioning. The prior for (β∗
k , σ 2

k ) in
this case is given by

πUC
k (β∗

k , σ 2
k ) = π(β∗

k , σ 2
k |β\k = 0)

= π(β∗
k |β\k = 0, σ 2

k )π(σ 2
k |β\k = 0)(13)

= πUC
k (β∗

k |σ 2
k )πUC

k (σ 2
k ).

It can be checked that the UC prior is gNIGa, that is,

πUC
k (β∗

k , σ 2
k )

= NIGa(β∗
k , σ 2

k ;bUC
k ,(14)

gUC
k (XT

k Xk)
−1, dUC

k , aUC
k )

with

bUC
k = bk + (XT

k Xk)
−1(XT

k X\k)b\k,
(15)

gUC
k = g, dUC

k = d + (p − pk),

aUC
k = a + bT\kXT\kMkX\kb\k.(16)

Analogous results were derived in Poirier (1985). No-
tice that under UC the hyperparameters change across
models. In particular dUC

k increases as pk decreases
(the model becomes smaller). George and McCulloch
(1997) also allow different priors for the variance un-
der the various models, although their choice is not
based on formal probabilistic derivations. In their case,
the larger the model, the smaller the expected variance,
which is not necessarily the case under UC. Notice that
if b\k = 0, one obtains E(σ 2

k ) = a/(dUC
k − 2), which

decreases as pk decreases. While this feature may ap-
pear somewhat counterintuitive, it will turn out to have
useful implications as detailed in Section 4.2.

4.1.3 Kullback–Leibler Projection. The following
lemma is instrumental in deriving KL-projections.

LEMMA 3. Consider the linear model M defined
in (6), and the submodel Mk defined in (10). Then

(i) the KL-divergence between M and Mk is given
by

KL(M,Mk) = 1

2σ 2
k

(Xβ − Xkβ
∗
k )T (Xβ − Xkβ

∗
k )

+ n

2

[
σ 2

σ 2
k

− log
(

σ 2

σ 2
k

)
− 1

]
;

(ii)

arg min
β∗

k

KL(M,Mk) = β⊥
k = (XT

k Xk)
−1XT

k Xβ;(17)

(iii) arg minβ∗
k ,σ 2

k
KL(M,Mk) = (β⊥

k , σ 2⊥
k ),

where β⊥
k is defined in (17) and

σ 2⊥
k = σ 2 + Qk(β),(18)

with

Qk(β) = 1

n
βT XT MkXβ

(19)

= 1

n
βT\kXT\kMkX\kβ\k.

PROOF. Point (i) follows specializing to our case
the KL-divergence between two multivariate normal
distributions, given for example in Whittaker (1990,
page 387). Points (ii) and (iii) are obtained by a direct
calculation. �

We now distinguish two cases, namely projection
with respect to β∗

k for given σ 2
k , and projection with re-

spect to both β∗
k and σ 2

k . Consider the former case. This
is appropriate, for instance, when we want to take the
same prior on σ 2

k for all models; in this case we need
only minimize KL(M,Mk) with respect to β∗

k and thus
β⊥

k is given by (17) (for interesting related results, ob-
tained using a predictive point of view, see Ibrahim,
1997, and Celeux, Marin and Robert, 2006).

PROPOSITION 4. Consider the linear model M
specified in (6) with a NIGa(b, g(XT X)−1, d, a) prior
on (β, σ 2) described in (7)–(8) and a submodel Mk

specified in (10). Conditionally on the assumption
that σ 2

k has the same distribution as σ 2, that is,
IGa(d/2, a/2), the KL-prior on (β∗

k , σ 2
k ) is given by

NIGa(β∗
k , σ 2

k ;bKL
k , g(XT

k Xk)
−1, d, a),(20)

with

bKL
k = bk + (XT

k Xk)
−1(XT

k X\k)b\k,(21)

where (bT
k , bT\k) is the decomposition of bT = E(β)T

corresponding to Mk .

PROOF. Recalling that β⊥
k is a linear transforma-

tion of β , it follows immediately that the distribu-
tion of β⊥

k given σ 2
k is normal. Now E(β⊥

k |σ 2
k ) =

(XT
k Xk)

−1XT
k XE(β) = (XT

k Xk)
−1XT

k Xb, and (21)
follows immediately rewriting X = (Xk

...X\k) and
bT = (bT

k , bT\k). Furthermore, Var(β⊥
k |σ 2

k ) = g ×
σ 2

k (XT
k Xk)

−1Wk , where Wk = XT
k PXk(X

T
k Xk)

−1

with P = X(XT X)−1XT . Let now M\k = (I − P\k),
where P\k denote the projection matrix onto the col-
umn space of X\k . Using the equality P = I − M\k +
M\kXk(X

T
k M\kXk)

−1XT
k M\k provided in Searle

(1982, exercise 8, page 269), it follows that Wk = I ,
which gives the result. �
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Consider now the projection with respect to (β∗
k , σ 2

k )

whose corresponding expressions are provided in
point (iii) of Lemma 3. Notice that β⊥

k is unchanged
relative to the previous case; on the other hand σ 2⊥

k ≥
σ 2 since Qk(β) ≥ 0. [This follows because Qk(β) can
be written as wT w with w = MkXβ , using the fact
that Mk is a projection matrix.] As a consequence the
KL-projection variance under Mk will always exceed
σ 2, justifying the intuition that the variance under Mk

should be larger to account for a greater lack of fit. This
case generalizes the simple linear regression example
introduced shortly before Section 3.1.

The KL-prior of (β∗
k , σ 2

k ), that is, that induced
from (7) on (β⊥

k , σ 2⊥
k ), is unfortunately not analyti-

cally available, because of the awkward dependence
of σ 2⊥

k on (β, σ 2). Of course one can easily simu-
late from the KL-prior on (β∗

k , σ 2
k ) using draws from

the gNIGa prior on (β, σ 2) and mapping them into
draws from πKL

k through (β⊥
k , σ 2⊥

k ). However, we
will not follow this course of action and derive an
analytical approximation along the lines described
in Consonni, Gutiérrez-Peña and Veronese (2007).
Essentially, we employ a conjugate prior that mini-
mizes the KL-divergence relative to the true πKL

k . We
call the resulting prior the KL-conjugate approxima-
tion, but for simplicity, we still identify it as πKL

k .
Specifically, we approximate the true KL-prior within
the conjugate gNIGa family, whose hyperparameters
bKL
k , gKL

k , aKL
k , dKL

k are given in the following proposi-
tion.

PROPOSITION 5. Consider the linear model M
specified in (6) with a NIGa(b, g(XT X)−1, d, a) prior
on (β, σ 2) described in (7)–(8) and a submodel Mk

specified in (10). Then the KL-conjugate approxima-
tion prior on (β∗

k , σ 2
k ) is the NIGa(bKL

k , gKL
k (XT

k Xk)
−1,

dKL
k , aKL

k ) where the hyperparameters can be identified
in the following way:

• If b\k = 0, they are the solutions of the following sys-
tem of equations:

bKL
k = bk,(22)

gKL
k = gE(Rk(β,σ 2)),(23)

aKL
k = dKL

k

a

d

1

E[Rk(β,σ 2)] ,(24)

ψ(dKL
k /2) − log(dKL

k /2) = ψ(d/2) − log(d/2)

+ E{log[Rk(β,σ 2)]}(25)

− log{E[Rk(β,σ 2)]},

where Rk(β,σ 2) = (1 +Qk(β)/σ 2)−1, and ψ(α) =
∂
∂α

log(�(α)) is the digamma function.
• If b\k 
= 0, they are approximately the solutions of

the following system of equations:

bKL
k = bk + (XT

k Xk)
−1(XT

k X\k)b\k,(26)

gKL
k = g

E[Rk(β,σ 2)−1] ,(27)

aKL
k = dKL

k

a

d
E[Rk(β,σ 2)−1](28)

and

ψ(dKL
k /2) − log(dKL

k /2)

= ψ(d/2) − log(d/2)(29)

+ 1

2

Var[Rk(β,σ 2)−1]
E[Rk(β,σ 2)−1]2 .

The analytical expressions for E[Rk(β,σ 2)], E[Rk(β,

σ 2)−1] and Var[Rk(β,σ 2)−1] are given in Lemma A.1
in the Appendix.

PROOF. See the Appendix. �
Notice that both the expressions of bKL

k in Proposi-
tions 4 and 5 coincide with that of bUC

k . Furthermore,
(22)–(25), as well as (26)–(29), do not admit a closed-
form solution. Yet, a few results can be established
which we report without proof: dKL

k < d; dKL
k /d → 0

for d → ∞; aKL
k → 0 for d → ∞, whence aKL

k < a

for large d; E(σ−2
k ) = dKL

k /aKL
k < d/a = E(σ−2), as

expected. Finally nested-coherence is satisfied on the
space or regression parameter, while it fails on the vari-
ance space. Moreover it can be established empirically
that nuisance-coherence fails.

4.2 Information Paradox

A major objection to the use of g-priors falls un-
der the heading of Information Paradox; see Liang et
al. (2008) for a recent discussion. Suppose that the
regression model Mk is compared with the “Null”
model M0 having no predictors. Assume the data over-
whelmingly support Mk , that is, ‖βk‖2 = βT

k βk → ∞,
so that the coefficient R2 under Mk tends to 1 and
SSRk = yT Mky → 0. Using a g-prior under both mod-
els with zero expectation for the regression parame-
ters and dk = d , ak = a and gk = g, the Bayes factor
Bk0 of Mk against M0 remains bounded whereas one
would expect it to diverge. However, the paradox does
not necessarily arise if we assume different g-priors
under the two models as implied by the UC and KL-
procedures, as we now show.
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First notice that βT
k βk → ∞ implies also yT y → ∞.

If b = E(β) is independent of the data, for example; b0
in (9), it can be easily checked using (12) that Bk0 is
asymptotic to

(yT Ay)(d0+n)/2

(1/(1 + gk)yT y)(dk+n)/2

with A =
(
I − g0

n(1 + g0)
J

)
,

where I is the identity matrix and J is the matrix with
all elements equal to 1. Since λmin ≤ yT Ay/yT y ≤
λmax, where λmin and λmax are the smallest and largest
eigenvalues of A, it follows that yT Ay = O(yT y)

since λmin > 0. As a consequence the limiting behavior
of Bk0 depends on the hyperparameters d0 and dk de-
duced from the specific compatible procedure. In the
case of UC, we have gUC

k = g and dUC
k = d + (p −

pk) < d + (p − 1) = dUC
0 and thus Bk0 → ∞ so that

the paradox does not arise. However, this result does
not hold for the KL-procedure, since dKL

k > dKL
0 . The

same conclusions can be obtained, using similar argu-
ments, if we assume E(β) = b̄ = (ȳ,0, . . . ,0).

Suppose now E(β) = b̂, that is, the expectation of β

is fully data-dependent. In this case both bUC
k and bKL

k

reduce to the OLS estimate of βk under Mk , that is,
bUC
k = bKL

k = (XT
k Xk)

−1XT
k y, while bUC

0 = bKL
0 = ȳ.

Thus, from (12), Bk0 is asymptotic to

Ck0
(a0 + yT M0y)(d0+n)/2

a
(dk+n)/2
k

(30)

with M0 =
(
I − 1

n
J

)
.

Under the UC procedure, only the hyperparameter aUC
k

can depend on the data y through b̂ [see (15) and (16)],
and we have

aUC
k = a + yT MkX

T\k(XT\kMkX\k)−1XT\kMky

= a + yT (P − Pk)y(31)

= a + yT (Mk − M)y → a,

recalling that bUC\k = β̂\k = (XT\kMkX\k)−1XT\kMky,
and using formula 3.98 on page 42 and Theorem A.45
on page 367 in Rao and Toutemburg (1999). The re-
sult follows noting that yT (Mk −M)y → 0 because the
SSR of M must be less than that of Mk which tends to
zero by hypothesis. Thus Bk0 in (30) trivially goes to
infinity, since Ck0 → constant and yT M0y → ∞, and
there is no paradox.

Under the KL-procedure instead, from (25), (58) and
(59), it appears that the dependence of the hyperpara-
meters on the data happens only through Qk(β̂). Now

Qk(β̂) = 1

n
β̂T XT MkXβ̂ = 1

n
yT PMkPy

= 1

n
yT (P − Pk)y = 1

n
yT (Mk − M)y

which tends to zero as in (31). Accordingly the hyper-
parameters behave as constants in the limit, and thus
also in this case the information paradox does not arise.

5. EXAMPLES

In this section we present three examples in order
to evaluate the performance of the various priors dis-
cussed in Section 4.1. The first one considers the very
simple situation of testing a normal model with a sub-
model M∗ having mean zero: in this way different pri-
ors of σ ∗2 can be more easily compared. Features of
the priors, and their consequences on variable selec-
tion, are then assessed in a more complex simulation
study, and in a real data set (Hald data), frequently an-
alyzed in the literature.

5.1 A Simple Illustration

Consider the two models

M : yi = μ + εi, εi
iid∼ N(0, σ 2),

M∗ : yi = ε∗
i , ε∗

i

iid∼ N(0, σ ∗2),

with i = 1, . . . , n, and assume as a prior for (μ,σ 2) un-
der M the following gNIGa: π(μ|σ 2) = N(μ;0, gσ 2/

n); π(σ 2) = IGa(σ 2;d/2, a/2). If Stn(·;η,�,ν) de-
notes an n-dimensional Student t-distribution with ex-
pectation η, degrees of freedom ν and variance matrix
ν�−1/(ν − 2), ν > 2, the marginal density of y is

f (y) = Stn

(
y;0,

d

a

(
I − g/n

1 + g
J

)
, d

)
.

The submodel M∗ only requires a prior on σ ∗2.
The Standard, UC and KL-procedures lead to pri-
ors πS, πUC and πKL for σ ∗2 which are all of type
IGa(d∗/2, a∗/2). Specifically, one obtains

(dS = d, aS = a);
(32)

(dUC = d + 1, aUC = a).

We consider also the typical improper prior on σ 2

given by π I(σ 2) ∝ σ−2 which can be formally ob-
tained from πS setting d = 0, a = 0. Consider now the
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FIG. 1. Posterior probability of M for hyperparameters d = 5, a = 1: pKL(M|y) dash thick, pS(M|y) solid thin, pUC(M|y) dash thin,
pI(M|y) solid thick.

KL-prior. A direct computation yields σ 2⊥ = σ 2 +μ2,
which can also be deduced from (18) by setting Pk

equal to the zero matrix since in this case Xk is void, so
that Qk(μ) = μ2. The values of dKL and aKL can be re-
covered from (24) and (25). For illustration, in the fol-
lowing we use three different values of (d, a), namely
(d = 1, a = 1), (d = 5, a = 1), (d = 3, a = 25) lead-
ing respectively to (dKL = 0.93, aKL = 1.42), (dKL =
3.38, aKL = 1.03), (dKL = 2.36, aKL = 29.98).

In order to appreciate the effect of the different
priors, we compute the posterior probability of the

two models M and M∗. In particular assuming prior
odds 1, we have Pr(M|y) = 1/(1 + B∗), where B∗ =
f ∗(y)/f (y) is the Bayes factor of M∗ versus M. No-
tice that f ∗(y) = Stn(y;0, (d∗/a∗)I, d∗) with d∗ and
a∗ depending on the specific procedure. We fix n =
g = 25 and perform a simulation study, generating a
vector ε from a multivariate standard normal distribu-
tion, and set y = μιn +ε, where ιn is the n-dimensional
unit vector. In Figures 1 and 2 the posterior probability
of M is plotted as a function of μ. Notice that the min-
imum of the curves does not occur at μ = 0, because

FIG. 2. Posterior probability of M for hyperparameters d = 3, a = 25: pKL(M|y) dash thick, pS(M|y) solid thin, pUC(M|y) dash thin,
pI(M|y) solid thick.
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the generated errors in the simulation had a negative
mean of about −0.5. Ideally the posterior probability
curve should reach a minimum close to zero for μ ≈ 0
and then increase rapidly as μ moves away from zero.
When d = a all curves overlap to a large extent. Differ-
ences emerge for unequal a and d with the curves cor-
responding to π I and πS occupying intermediate posi-
tions, while those associated to πKL and πUC represent
“extreme” curves. A strong sensitivity of πUC and πKL

is apparent and in particular when a is greater than d ,
πUC favors M∗ most strongly, while πKL favors M
(and conversely when d is greater than a). For a > d ,
the curve corresponding to πS is somewhat flatter than
that under π I.

We now consider the problem of model comparison
from a predictive viewpoint as described in Gelfand
and Ghosh (1998); see also Marriot, Spencer and Pettitt
(2001). In the simple case corresponding to squared er-
ror loss, each model Mk is assigned a score D(k) made
up of two parts: an error sum of squares component
G(k) and a predictive variance component P (k),

D(k) = c

c + 1
G(k) + P (k), c > 0,(33)

where

G(k) =
n∑

i=1

(
μ

(k)
i − yi

)2
,

P (k) =
n∑

i=1

σ
2 (k)
i ;

μ
(k)
i = E(k)(yi,rep|y),

σ
2 (k)
i = Var(k)(yi,rep|y).

In the above setting yT = (y1, . . . , yn) are the data,
while yi,rep represents a future replicate observation
(the number of replicates being equal to that of the
data). Model selection is achieved through a minimiza-
tion of D(k) for a given choice of c. The term P (k)

represents a penalty which aims at discouraging mod-
els that either strongly underfit or overfit the data, be-
cause in both cases predictive variances will tend to
be inflated. Since our objective is to compare the per-
formances of the various priors under model M∗ we
simply need to evaluate D∗ for each distinct prior.

Consider first μ∗
i . This is

μ∗
i = E∗(yi,rep|y) = E∗[E∗(yi,rep|y,σ 2∗)|y]
= E∗[E∗(yi,rep|σ 2∗)|y] = 0,

since under M∗ each observation has expectation zero,
conditionally on σ 2∗. As a consequence D∗ = P ∗ +

∑n
i=1 y2

i , and thus only the term P ∗ matters for com-
parison purposes. Now

σ 2∗
i = Var∗(yi,rep|y) = E∗[Var∗(yi,rep|y,σ 2∗)|y]

= E∗(σ 2∗|y) = a∗
n

d∗
n − 2

, d∗
n − 2 > 0,

since under each prior the posterior distribution of
σ ∗2

i is IGa(d∗
n/2, a∗

n/2), with d∗
n = d∗ + n, and a∗

n =
a∗ + ∑n

i=1 y2
i . In conclusion the predictive criterion

of Gelfand and Ghosh (1998) suggests to base model
comparison on P ∗ = na∗

n/(d∗
n − 2).

From (32), it is immediate to conclude that P UC <

P S so that πUC supports M∗ more than πS. On the
other hand, since dKL < d it follows that P KL > P S

whenever aKL > aS (calculations show that this oc-
curs for moderate values of d , specifically d < 5.45); in
other words the KL-prior would tend to favor M∗ less
than πS. These conclusions are broadly in accord with
the curves describing P(M|y) depicted in Figures 1
and 2.

5.2 Simulation Study

As a second example, we consider a simulation study
along the lines presented in George and McCulloch
(1993), Raftery, Madigan and Hoeting (1997) and Fer-
nández, Ley and Steel (2001). We consider p = 6 pre-
dictors, the constant plus (X1, . . . ,X5) and n = 30
observations. Let Zj , j = 1, . . . ,5 be independent n-
dimensional vectors, whose components are indepen-
dent standard normal variables, and set

X1 = Z1, X2 = Z2, X3 = Z3,

(X4,X5) = (X1,X2)(0.3 0.7)T (1 1) + (Z4,Z5).

In this way there is a correlation between the first two
predictors and the last two. We generate the response y

according to three different models:

M1 :y = C + 2.5ε,(34)

M2 :y = C + 2X1 − X3 + 1.5X5 + 2.5ε,(35)

M3 :y = C + 2X1 − X3 + X4 + 1.5X5 + 2.5ε,(36)

where C is a fixed constant and the n elements of ε

are independent standard normal variables. In particu-
lar, the case in which the data were generated from M1
was analyzed in a frequentist way by Freedman (1983).
He showed that, under this “null model,” standard vari-
able selection procedures, such as stepwise regression,
may lead to misleading results, for example, retaining a
subset of predictors with a highly significant F -statistic
and reasonably high R2.
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TABLE 1
Frequency of correct identification of the true model Mi (i = 1,2,3) with g = n = 30 for various compatible priors and different choices of

(d, a) and E(β)

πKL πS πUC π I

d a b0 b̄ b̂ b0 b̄ b̂ b0 b̄ b̂ b0 b̄ b̂

M1 true model
0 0 0.60 0.56 0.54
1 1 0.24 0.40 0.24 0.56 0.54 0.52 0 0 0.76
1 10 0.08 0.24 0.48 0.64 0.56 0.56 0.32 0.26 0.64
5 5 0.26 0.44 0.24 0.50 0.50 0.48 0.06 0.06 0.86

10 1 0.34 0.48 0.30 0.40 0.36 0.36 0 0 0.96
10 50 0.04 0.06 0 0.56 0.54 0.52 0.46 0.42 0.60

M2 true model
0 0 0.46 0.56 0.60
1 1 0.70 0.60 0.66 0.48 0.58 0.60 0.68 0.68 0.32
1 10 0.70 0.66 0.64 0.42 0.54 0.58 0.58 0.62 0.56
5 5 0.68 0.60 0.68 0.58 0.60 0.62 0.64 0.64 0.18

10 1 0.66 0.52 0.60 0.62 0.64 0.66 0 0 0.02
10 50 0.66 0.68 0.68 0.50 0.58 0.60 0.58 0.62 0.58

M3 true model
0 0 0.26 0.38 0.54
1 1 0.64 0.44 0.66 0.26 0.42 0.54 0.68 0.68 0.26
1 10 0.74 0.54 0.52 0.24 0.36 0.05 0.30 0.42 0.54
5 5 0.54 0.32 0.50 0.40 0.54 0.56 0.64 0.64 0.04

10 1 0.22 0.16 0.66 0.56 0.56 0.60 0 0 0
10 50 0.74 0.56 0.60 0.34 0.48 0.54 0.50 0.54 0.52

In order to compare the different priors, we con-
sider the Bayes factor for each submodel versus the
full model with six predictors (including the constant)
for 50 simulated data sets and report the frequency of
times in which the highest Bayes factor is associated
to the correct model (i.e., the model which has gen-
erated the data). We fix g = n and for each choice of
E(β), namely b0, b̄, b̂ [see (9)] check the robustness of
the various priors to the choice of the hyperparameters
(d, a) of the inverse-gamma distribution on σ 2 (each
time leaving unchanged the values of the predictors).

We can summarize our results, which are in part re-
ported in Table 1, as follows:

(i) πUC appears to be the least robust prior relative
to the various choices of E(β) and (d, a); this is con-
sistent with the fact that the marginal of the data under
πUC is more peaked on its expectation; see the discus-
sion in Section 5.1. Its frequency of correct model iden-
tification can reach very low values especially when d

exceeds a, in accord with the fact that as d increases
relative to a larger models receive greater support un-
der πUC; see Figure 1. To provide an explanation of
this phenomenon, consider the Bayes factor Bk of the

submodel Mk versus the full model M. If the prior un-
der Mk is obtained through UC, then calculations show
that

Bk = π(β\k = 0|y)

π(β\k = 0)
,(37)

where π(β\k = 0|y) and π(β\k = 0) are respectively
the marginal posterior and prior density of β\k , evalu-
ated at the value 0. The expression (37) for Bk is known
as “Savage’s density ratio”; see, for example, O’Hagan
and Forster (2004, Section 7.16). Now if the data are
at least moderately more informative than the prior, the
numerator will be essentially dominated by the like-
lihood, and thus will be fairly robust to prior specifi-
cations, while this does not clearly occur for the de-
nominator. In particular, if d increases relative to a, the
distribution of σ 2 tends to concentrate on smaller val-
ues, so that the marginal of β\k becomes more peaked
around the mode (which coincides with 0 under b0 or
b̄), thus lowering Bk , and supporting M more than Mk .

(ii) πKL is reasonably robust and shows good per-
formance, save when the generating model corre-
sponds to the “null model” M1 and a is large (this
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is in accord with the fact exhibited in Figure 2 that for
large a bigger models are preferred under πKL).

(iii) πS and π I exhibit a relatively similar behavior,
as already remarked in the previous section, and have a
better performance than the other priors at identifying
the “null model.”

Overall, the frequency of correct model identifica-
tion is comparable, or even superior, to similar investi-
gations carried out in a Bayesian framework, although
using different model choice criteria and different pri-
ors; see Marriot, Spencer and Pettitt (2001).

5.3 Hald Data

Our third example involves the Hald data, often an-
alyzed in the literature, in order to evaluate model se-
lection procedures; see, for instance, Draper and Smith
(1981). It consists of 13 observations on one response
variable with four predictors. A specific feature of this
data set is represented by the strong correlation be-
tween X1 and X3 and between X2 and X4. We consider
all the possible 16 models in which the constant term
is always included.

A detailed subjective Bayesian analysis of this data
set has been performed in Laud and Ibrahim (1995,
1996) and Ibrahim (1997), especially in terms of prior
specification. We follow Laud and Ibrahim (1995) and
fix a prior on (β, σ 2) under the full model which
is a NIGa(b̃, g(XT X)−1,25,125) with E(β) = b̃ =

(XT X)−1XT η, where η is a subjective prediction for
y given by η = (79,77,104,90,99,108,105,73,93,

111,88,115,113). We also report the value γ =
1/(g + 1), which represents a weight on the prior
guess η. Notice that the choice of d = 25 and a = 125
implies E(σ−2) = 0.2 and Pr(σ−2 < 0.5) ≈ 0.95.

Table 2 summarizes the results of a Bayesian analy-
sis using the conventional value g = n = 13, as well as
g = 9 (Ibrahim’s choice) which correspond to weights
γ = 0.07, respectively 0.10, representing weak prior
information. Moreover we consider two choices for
E(β), namely b̄ and b̃. We do not report explicitly re-
sults for E(β) = b0 because posterior model probabil-
ities are relatively more diffuse and no subset of mod-
els emerges as a clear winner. The column π Ibr reports
the results obtained in Ibrahim (1997) which assumes
a fixed σ−2 = 0.2. The highest probability is given to
model {1,2} under all priors, save for πKL that indi-
cates a slight preference for more complex models, for
example, {1,2,4} for g = 13. Overall there is broad
agreement with standard frequentist model selection
procedures as reported in Laud and Ibrahim (1995, Ta-
ble 1).

We also performed a sensitivity analysis (not re-
ported here) with respect to γ (0.01 ≤ γ ≤ 0.95) for
the two choices E(β) = b0, respectively b̃, in order to
make a comparison with the results of Tables 2 and 3
of Ibrahim (1997). The results are appreciably sensitive
to the choice of b0 or b̃, although this fact is definitely

TABLE 2
Posterior probability of top four models with g = n = 13 (γ = 0.07) and g = 9 (γ = 0.1) for various compatible priors and different choices

of E(β); in first column is Ibrahim’s results

πKL πS πUC π I

Model π Ibr b̄ b̃ b̄ b̃ b̄ b̃ b̄ b̃

g = 13
{1,2} 0.175 0.203 0.340 0.290 0.276 0.293 0.329 0.271
{1,4} 0.221
{1,2,3} 0.181 0.227 0.145 0.207 0.167 0.211 0.112 0.213
{1,2,4} 0.184 0.234 0.151 0.220 0.174 0.223 0.114 0.229
{1,3,4} 0.169 0.174 0.127 0.155 0.147 0.146 0.153

Total 0.709 0.838 0.763 0.872 0.764 0.873 0.776 0.866

g = 9
{1,2} 0.272 0.217 0.210 0.310 0.262 0.238 0.268 0.294 0.248
{1,4} 0.171 0.165 0.219
{1,2,3} 0.215 0.157 0.230 0.143 0.215 0.171 0.222 0.111 0.219
{1,2,4} 0.214 0.156 0.216 0.143 0.209 0.171 0.217 0.111 0.213
{1,3,4} 0.164 0.173 0.163 0.153 0.157 0.159

Total 0.865 0.701 0.829 0.761 0.852 0.733 0.864 0.735 0.839
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less manifest for the prior π Ibr (under which, however,
σ 2 is assumed fixed). Overall it is confirmed that the
choice of b0 is the least satisfactory, as it tends to shift
posterior model probability toward “extreme” models,
such as the null or full model, when γ approaches ei-
ther boundary. On the other hand, under b̃ the results
are fairly insensitive to the choice of γ as far as the
identification of the top model is concerned, which is
usually {1,2}, and either {1,2,3} or {1,2,4}. In partic-
ular πKL exhibits a high stability, with respect to γ , of
the posterior probability mass on the top model which
always contains three predictors.

The Hald data have been also analyzed in a Bayesian
objective framework, in particular by Berger and Peric-
chi (1996b) using intrinsic Bayes factor, and by Casella
and Moreno (2006) and Moreno and Giron (2007) us-
ing intrinsic priors. The models they identify are es-
sentially those exhibited as most probable in Table 2.
However, under their approach, model {1,2} receives a
posterior probability in excess of 50%. Based on an ob-
jective predictive approach, Barbieri and Berger (2004)
develop a theory for model choice. They show that the
optimal model is not necessarily the highest posterior
probability model, but rather the “median probability
model.” For the Hald data the latter is represented by
{1,2,4} which, curiously, is also the model with the
highest posterior probability under the KL-prior with
g = n; see Table 2.

6. DISCUSSION

For a given proper prior on the parameter space of
a full model, we reviewed and analyzed procedures
for the specification of prior distributions on the pa-
rameter space of a collection of submodels. We pre-
sented two interpretations of nested models, in order
to explicate more naturally the rationale of each proce-
dure. In particular, we investigated four methods for the
specification of a compatible prior under a submodel,
namely marginalization, usual and Jeffreys condition-
ing and Kullback–Leibler projection. Next, each pro-
cedure was evaluated from two perspectives, nuisance-
and nested-coherence. Given a full linear model with
a normal inverted gamma g-prior on the parameters,
we considered the problem of variable selection, and
applied the above procedures for the construction of
priors under each submodel Mk . For completeness we
also considered, for each Mk , a g-prior on the re-
gression parameters combined with an inverted gamma
(d, a) distribution on σ 2

k , labeled πS, as well as a con-
ventional improper prior on σ 2

k , identified with π I.

Three examples were used to illustrate the behavior
of the various procedures for prior specification, lead-
ing to the conclusions that results are quite sensitive
to the choice of the hyperparameters. Overall the im-
proper prior π I performs comparably to the standard
prior πS, when d and a are similar. The usual con-
ditioning prior πUC, despite its theoretically attractive
coherence properties exhibited in Propositions 1 and 2,
shows remarkable sensitivity to the choice of the hy-
perparameters, oscillating between highly simple and
complicated models. The Kullback–Leibler projection
prior exhibits a performance which is comparable or
superior to that of πS when using the OLS estimate as
prior expectation on β , provided that the true model is
not very close to the “null” model with no predictors.
This is consistent with the general attitude of the KL-
prior to favor more complex models.

When the goal of model choice is prediction, one
might consider orthogonalizing the matrix of predic-
tors, as in Clyde, DeSimone and Parmigiani (1996). In
this case a g-prior on the regression coefficient under
the full model admits a diagonal variance matrix. As
a consequence the M, UC and KL-procedures would
generate the same prior under each submodel Mk con-
ditionally on σ 2

k ; yet they would imply distinct priors
for the variance. We remark, however, that this ap-
proach cannot be implemented in a variable selection
problem, where the focus is on the original predictors.

Consistency of the posterior distribution on model
space under different choices of the hyperparameter g∗

k

in the gNIGa prior (11), with dk = d and ak = a, has
been recently discussed in Fernández, Ley and Steel
(2001). They prove, under mild conditions, that consis-
tency obtains under both the standard and improper pri-
ors πS and π I. Using similar arguments one can prove
that the same result holds for the UC procedure under
b0 and b̄, defined in (9). As far as πKL is concerned the
limiting probability of model Mk is zero provided the
true model is not nested within Mk ; on the other hand
when Mk is moderately larger than the true model this
result may fail, and πKL may lead to choose slightly
overparametrized models.

It is well known that a standard use of g-priors for
variable selection cannot be recommended because it
suffers from the information paradox. However, our
analysis shows that, when g-priors under submodels
are derived using compatibility criteria, the paradox ei-
ther does not arise (UC procedure), or can be avoided
(KL-procedure) through a suitable choice of the initial
hyperparameters.
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Recent contributions in the area of linear models
(see Liang et al., 2008 and Bayarri and Garcia-Donato,
2007), suggest to use a noninformative improper prior
on the nuisance parameter and a proper mixture of
g-priors on the regression coefficients. It would be in-
teresting to apply the methods discussed in this paper
to the latter distribution of the regression coefficients in
order to derive a compatible mixture of g-priors under
the various submodels.

APPENDIX

PROOF OF PROPOSITION 1. Assume that the sam-
pling distribution under model M is {f (y|λ, δ,φ)},
where δ is the nuisance parameter. Then, for a given
prior π(λ, δ,φ), the integrated model IM has sam-
pling distribution f (y|λ,φ) = ∫

f (y|λ, δ,φ)π(δ|λ,

φ)dδ, while the corresponding integrated submodel
IM∗ has density f ∗(y|λ) = f (y|λ,φ = φ0). Let the
prior under IM be πIM(λ,φ) = π(λ,φ), that is, the
marginal distribution of (λ,φ) under π . Consider now
a procedure to construct a prior under a submodel. Let

f ∗
M∗(y)

=
∫ ∫

f ∗(y|λ, δ)π∗
M∗(λ, δ) dλdδ(38)

=
∫ ∫

f (y|λ, δ,φ = φ0)π
∗
M∗(λ, δ) dλdδ

and

f ∗
IM∗(y)

=
∫

f ∗(y|λ)π∗
IM∗(λ) dλ

(39)

=
∫ {∫

f (y|λ, δ,φ = φ0)π(δ|λ,φ = φ0) dδ

}

· π∗
IM∗(λ) dλ,

where π∗
M∗(λ, δ) is the output of the procedure applied

to (M,M∗) starting from π(λ, δ,φ), while π∗
IM∗(λ)

is the output of the procedure applied to (IM,IM∗)
starting from π(λ,φ).

(i) Recall that πUC
M∗(λ, δ) = π(λ, δ|φ = φ0) and con-

sider πUC
IM∗ . We have πUC

IM∗(λ) = πIM(λ|φ = φ0) =
π(λ|φ = φ0). As a consequence we get from (38)

f UC
M∗ (y)

=
∫ {∫

f (y|λ, δ,φ = φ0)π(δ|λ,φ = φ0) dδ

}
(40)

· π(λ|φ = φ0) dλ,

while from (39) we get

f UC
IM∗(y)

=
∫ {∫

f (y|λ, δ,φ = φ0)π(δ|λ,φ = φ0) dδ

}
(41)

· π(λ|φ = φ0) dλ,

and the two densities clearly coincide.
(ii) Recall that πM

M∗(λ, δ) = π(λ, δ). Consider now
πM

IM∗(λ): this is the marginal of πIM(λ, δ); the lat-
ter, however, coincides with the marginal π(λ, δ) under
the prior π(λ, δ,φ) by definition of integrated model.
We therefore obtain πM

IM∗(λ) = πIM(λ) = π(λ). From
(38) we get

f M
M∗(y) =

∫ ∫
f (y|λ, δ,φ = φ0)π(δ|λ)π(λ)dδ dλ,

while from (39) we get

f M
IM∗(y)

=
∫ {∫

f (y|λ, δ,φ = φ0)π(δ|λ,φ = φ0) dδ

}

· π(λ)dλ.

Inspection of f M
M∗(y) and f M

IM∗(y) reveals that if δ is
conditionally independent of φ given λ, the two densi-
ties are equal.

(iii) Recall that

π JC
M∗(λ, δ) ∝ π(λ, δ|φ = φ0)

jM∗(λ, δ)

jM(λ, δ,φ0)
,

where the j -functions are the Jeffreys priors. Passing
to the integrated model we therefore obtain

π JC
IM∗(λ) ∝ πIM(λ|φ = φ0)

jIM∗(λ)

jIM(λ,φ0)
.

Let

h(λ, δ) = jM∗(λ, δ)

jM(λ, δ,φ0)
, g(λ) = jIM∗(λ)

jIM(λ,φ0)
.

Clearly, if h(λ, δ) ∝ g(λ), then f JC
M∗(y) and f JC

IM∗(y)

have a representation as in (40), respectively (41), with
the integrand in each case multiplied by g(λ), and
therefore they must coincide. �

PROOF OF PROPOSITION 2. Start with the M pro-
cedure. Notice that π∗∗

M (λ) = π(λ). On the other hand
π∗∗

M∗(λ) = π∗(λ), where π∗(λ) is the marginal prior
on λ under π∗(λ,φ2); but the latter is under M equal
to π(λ,φ2), whence π∗∗

M∗(λ) = π(λ), thus establishing
the result.
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Consider now the UC procedure. We have π∗∗
M (λ) =

π(λ|φ1 = φ0
1, φ2 = φ0

2). On the other hand

π∗∗
M∗(λ) = π∗(λ|φ2 = φ0

2) = π∗(λ,φ2 = φ0
2)

π∗(φ2 = φ0
2)

= π(λ,φ2 = φ0
2 |φ1 = φ0

1)

π(φ2 = φ0
2 |φ1 = φ0

1)

= π(λ|φ1 = φ0
1, φ2 = φ0

2),

which establishes the result.
Finally consider the JC procedure. We have

π∗∗
M (λ) ∝ π(λ|φ1 = φ0

1, φ2 = φ0
2)

jM∗∗(λ)

j (λ,φ0
1, φ0

2)
.(42)

On the other hand

π∗∗
M∗(λ) ∝ π∗

M(λ|φ2 = φ0
2)

jM∗∗(λ)

jM∗(λ,φ0
2)

,(43)

where π∗
M(λ|φ2 = φ0

2) is proportional to the JC prior
under the M∗ model, evaluated at (φ2 = φ0

2), namely
π∗

M(λ,φ2 = φ0
2), where

π∗
M(λ,φ2) ∝ π(λ,φ2|φ1 = φ0

1)
jM∗(λ,φ2)

j (λ,φ0
1, φ0

2)
.

Substituting into (43), one obtains (42). �
LEMMA A.1. Assume (β, σ 2) ∼ NIGa(b, g(XT ·

X)−1, d, a) and set Rk(β,σ 2) = (1 + Qk(β)/σ 2)−1,
with Qk(β) = βT XT (I − Pk)Xβ/n. Then, given σ 2,
Qk(β)/σ 2 ∼ (g/n)χ2

p−k(δ), with δ = nQk(b)/(gσ 2),

where χ2
p−k(δ) is a chi-squared distribution with (p −

k) degrees of freedom and noncentrality parameter δ.
As a consequence

E[Rk(β,σ 2)−1]
(44)

=
(

1 + g

n
(p − k) + Qk(b)

d

a

)
,

Var[Rk(β,σ 2)−1]
(45)

= 2d

a
Qk(b)

[
Qk(b)

a
+ 2g

n

]
+ 2g2

n2 (p − k).

Furthermore

(i) if b\k = 0, then Rk(β,σ 2) = [1 + (g/n)W ]−1

with W distributed as a (central) χ2
p−k , whence

E[Rk(β,σ 2)] =
(

2g

n

)−(p−k)/2
exp

(
n

2g

)

(46)

· �
(

1 − p − k

2
; n

2g

)
,

where �(α, z) = ∫ ∞
z exp(−t)tα−1 dt is the incomplete

gamma function.
(ii) If b\k 
= 0, then the first-order approximation of

E[Rk(β,σ 2)] given by the delta method is

E[Rk(β,σ 2)] ≈ 1

E[Rk(β,σ 2)−1]
(47)

=
[
1 + g

n
(p − k) + Qk(b)

d

a

]−1

.

PROOF. First of all notice that because X =
[Xk

...X\k] and β = [βT
k

...βT\k]T , we have Qk(β) =
βT XT MkXβ/n = βT\kXT\kMkX\kβ\k/n. Now β\k|σ 2

is distributed according to a N(b\k, gσ 2�\k) with
�\k = (XT\kMkX\k)−1 (see Searle, 1982, Section 10.5),

and consequently (n/g)Qk(β)/σ 2 given σ 2 is distrib-
uted according to a χ2

p−k(δ) distribution, where p − k

are the degrees of freedom and δ = (n/g)Qk(b)/σ 2 is
the noncentrality parameter (see Muirhead, 1982, page
26). Now recalling that the expected value and variance
of a χ2

p−k(δ) distribution are respectively p − k + δ

and 2(p − k) + 4δ, (44) follows immediately from
E[Rk(β,σ 2)−1] = Eσ 2{1 + Eβ|σ 2[Qk(β)/σ 2]}, and
E(1/σ 2) = d/a.

Similarly (45) follows from

Var[Rk(β,σ 2)−1] = Var[Qk(β)/σ 2]
= Varσ

2
[
Eβ|σ 2

(
Qk(β)

σ 2

)]

+ Eσ 2
[
Varβ|σ 2

(
Qk(β)

σ 2

)]

= g2

n2

{
Varσ

2
[
p − k + n

gσ 2 Qk(b)

]

+ Eσ 2
[
2(p − k) + 4

nQk(b)

gσ 2

]}

and Var(1/σ 2) = 2d/a2.

(i) If b\k = 0, then δ = 0, so that W = (n/g)Qk(β)/

σ 2 is distributed as a (central) χ2
p−k . Thus E[Rk(β,

σ 2)] = EW [(1+(g/n)W)−1] whose analytical expres-
sion is given in (46).

(ii) If b\k 
= 0, writing E[Rk(β,σ 2)] = E[1/Rk(β,

σ 2)−1] and recalling that the first-order approximation
gives E(1/W) ≈ 1/(E(W)) for an arbitrary random
variable W , we obtain (47). �

PROOF OF PROPOSITION 5. The NIGa(bk,

gk(X
T
k Xk)

−1, dk, ak) distribution on (β∗
k , σ 2

k ) can be
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written as

π(β∗
k , σ 2

k ) ∝ exp
{
− 1

2σ 2
k

a + bT XT
k Xk

β∗
k

gσ 2
k

− 1

2g

β∗T
k XT

k Xkβ
∗
k

σ 2
k

+ d + p + 2

2
log

(
1

σ 2
k

)}
,

thus it belongs to the exponential family with “canoni-
cal statistics” given by 1/σ 2

k , β∗
k /σ 2

k , β∗T
k XT

k Xkβ
∗
k /σ 2

k

and log(1/σ 2
k ). Applying Theorem 1 of Consonni,

Gutiérrez-Peña and Veronese (2007), it follows that the
KL-divergence between πKL and a NIGa(bk, gk(X

T
k ·

Xk)
−1, dk, ak) distribution is minimized for values

bKL
k , gKL

k , dKL
k and aKL

k which are a solution of the fol-
lowing system:

EKL(1/σ 2
k )

(48)
= ENIGa(1/σ 2

k ),

EKL(β∗
k /σ 2

k )
(49)

= ENIGa(β∗
k /σ 2

k ),

EKL(β∗T
k XT

k Xkβ
∗
k /σ 2

k )
(50)

= ENIGa(β∗T
k XT

k Xkβ
∗
k /σ 2

k ),

EKL(log(1/σ 2
k ))

(51)
= ENIGa(log(1/σ 2

k )),

where EKL denotes expectation w.r.t. the KL-projec-
tion prior induced by the NIGa(β, σ 2;b,g(XT X)−1,

d, a), while ENIGa denotes expectation w.r.t. the
NIGa(β∗

k , σ 2
k ;bKL

k , gKL
k (XT

k Xk)
−1, dKL

k , aKL
k ). Recall-

ing (17) and (18), that is, β⊥
k = (XT

k Xk)
−1XT

k Xβ ,
σ 2⊥

k = σ 2 + Qk(β), we can compute the terms involv-
ing EKL in the previous equations substituting (β∗

k , σ 2
k )

with the corresponding expression of (β⊥
k , σ 2⊥

k ) and
using the prior π(β,σ 2).

First of all recall that if Y is a normal vector with
variance matrix �, then YT AY and CY are stochasti-
cally independent if and only if C�A = 0; similarly
YT AY and YT DY are stochastically independent if
and only if A�D = 0 (with A, C and D being suitable
matrices). It follows that under π and given σ 2, Qk(β)

and β⊥
k as well as Qk(β) and β⊥

k

T
XT

k Xkβ
⊥
k are inde-

pendent; the latter implies that also β⊥
k

T
XT

k Xkβ
⊥
k and

σ 2
k

⊥
are independent, given σ 2. The proof is a straight-

forward calculation.

Consider now (49). The left-hand side is equal to

E

(
β⊥

k

σ 2
k

⊥
)

= Eσ 2
{
Eβ|σ 2

[
1

σ 2 + Qk(β)

]

· Eβ|σ 2[(XT
k Xk)

−1XT
k Xβ]

}

= (XT
k Xk)

−1XT
k XbE(1/σ 2

k ),

while the right-hand side is equal to ENIGa(β∗
k /σ 2

k ) =
bKL
k ENIGa(1/σ 2

k ). Using (48) it follows that

bKL
k = (XT

k Xk)
−1XT

k Xb.(52)

Consider (50). First of all notice that, using (17),

β⊥
k

T
XT Xβ⊥

k = βT XT PkXβ . Thus the left-hand side

can be written, recalling the independence of σ 2
k

⊥
and

β⊥
k

T
XT Xβ⊥

k , given σ 2, as

Eσ 2[Eβ|σ 2
(1/σ 2

k

⊥
)Eβ|σ 2

(βT XT PkXβ)]
= Eσ 2{

Eβ|σ 2[
(1/σ 2

k

⊥
)

· (
tr(σ 2gPkP ) + bT XT PkXb

)]}

= Eσ 2[(kgσ 2 + bT XT PkXb)Eβ|σ 2
(1/σ 2

k

⊥
)]

= kgE[Rk(β,σ 2)] + bT XT PkXbE(1/σ 2
k

⊥
),

where Rk(β,σ 2) = [1 + Qk(β)/σ 2]−1.
The right-hand side is equal to

Eσ 2
k [(1/σ 2

k )Eβ∗
k |σ 2

k (β∗
k

T
XT

k Xkβ
∗
k )]

= Eσ 2
k {(1/σ 2

k )[tr(σ 2
k gKL

k (XT
k Xk)

−1(XT
k Xk))

+ bKL
k

T
(XT

k Xk)b
KL
k ]}

= kgKL
k + bT XT PkXbEσ 2

k (1/σ 2
k ),

substituting the expression of bKL
k given in (52). Equat-

ing the left- and right-hand sides and using (48) we ob-
tain

gKL
k = gE[Rk(β,σ 2)].(53)

Consider (51). The left-hand side can be written
as E[log(1/σ 2)] + E[log(Rk(β,σ 2))] with E[log(1/

σ 2)] = �(d/2) − log(a/2), where �(α) = ∂
∂α

·
log(�(α)) is the digamma function. The right-hand
side is equal to �(dKL

k /2) − log(aKL
k /2) and thus we

obtain

�(d/2) − log(a/2) + E[log(Rk(β,σ 2)]
(54)

= �(dKL
k /2) − log(aKL

k /2).
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Assume now that b\k = 0 and consider last (48).
First notice that the left-hand side can be written as
E[Rk(β,σ 2)/σ 2], while the right-hand side is equal to
dKL
k /aKL

k . Since, from Lemma A.1, Rk(β,σ 2) is inde-
pendent of σ 2 when b\k = 0, (48) becomes

E(1/σ 2)E[Rk(β,σ 2)] = dKL
k /aKL

k ,(55)

which implies

aKL
k = dKL

k

a

d

1

E[Rk(β,σ 2)] .(56)

Substituting (56) into (54) we obtain

�(dKL
k /2) − log(dKL

k /2)

= �(d/2) − log(d/2) + E{log[Rk(β,σ 2)]}(57)

− log{E[Rk(β,σ 2)]}.
Consider now the case b\k 
= 0. In order to obtain an

explicit expression of (53), we use the approximation
of E[Rk(β,σ 2)] given in (47), so that

gKL
k ≈ g

E[R−1
k (β, σ 2)]

(58)
= g

[1 + g/n(p − k) + Qk(b)d/a] .
Furthermore, we can still use (55) as an approxima-

tion of (48) to the first order. Thus we have

aKL
k ≈ dKL

k

a

d

1

E[Rk(β,σ 2)]
≈ dKL

k

a

d
E[R−1

k (β, σ 2)](59)

= dKL
k

a

d

[
1 + g

n
(p − k) + Qk(b)

d

a

]
,

using (47).
Using the first approximation of (59), formula (57)

still holds in an approximate way.
Finally (57) reduces to

�(dKL
k /2) − log(dKL

k /2)

≈ �(d/2) − log(d/2) − 1

2

Var([Rk(β,σ 2)])
E[Rk(β,σ 2)]2 ,

using the further second-order approximation
E[log(U)] ≈ log[E(U)] − (1/2)Var(U)/[E(U)]2, for
a positive random variable U .

Since Var(U) = Var(1/U−1) ≈ [1/E(U−1)]4 ·
Var(U−1) and E(U) = E(1/U−1) ≈ 1/E(U−1) we
conclude

�(dKL
k /2) − log(dKL

k /2)

≈ �(d/2) − log(d/2) − 1

2

Var([R−1
k (β, σ 2)])

E[R−1
k (β, σ 2)]2

with E[R−1
k β, σ 2)] and Var[R−1

k (β, σ 2)] given in (44)
and (45). �
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