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The phase diagram of water harbors controversial views on

underlying structural properties of its constituting molecular

moieties, its fluctuating hydrogen-bonding network, as well

as pair-correlation functions. In this work, long energy-range

detection of the X-ray absorption allows us to unambiguously

calibrate the spectra for water gas, liquid, and ice by the

experimental atomic ionization cross-section. In liquid water,

we extract the mean value of 1.74 ± 2.1% donated and

accepted hydrogen bonds per molecule, pointing to a continuous-

distribution model. In addition, resonant inelastic X-ray scat-

tering with unprecedented energy resolution also supports

continuous distribution of molecular neighborhoods within liquid

water, as do X-ray emission spectra once the femtosecond scat-

tering duration and proton dynamics in resonant X-ray–matter

interaction are taken into account. Thus, X-ray spectra of liq-

uid water in ambient conditions can be understood without

a two-structure model, whereas the occurrence of nanoscale-

length correlations within the continuous distribution remains

open.
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S ince the electronic structure of water molecules can support
both twofold and fourfold coordination in their molecular

interaction, both a view of continuous distribution of molec-
ular moities (homogeneous view) (1–7) and a view of oscil-
lations between separate distinct phases (heterogeneous view)
(8–12) of liquid water can be envisaged. The heterogeneous
view foots strongly on the consideration that in the super-
cooled regime, statistical response functions diverge at 228 K,
introducing a liquid–liquid critical point that would termi-
nate the transition line between high- and low-density liquid
phases (13).

The possible heterogeneous picture with fluctuations between
two classes applied in the supercooled regime has also been
suggested to exist far up in temperatures (320 K) of the ambi-
ent regime (14). This suggestion contradicts the physical view
that above a critical point, the system is homogeneous and free
from the need for multiphase classification (5, 15). However,
even such a homogeneous or continuous-distribution model does
not exclude statistical variation: Ambient and supercooled water
have been found to naturally undergo density fluctuations in
single-phase simulations (15). The two-phase model of liquid
water has been repeatedly promoted by the interpretation of X-
ray spectroscopic findings (ref. 16 and references therein), but
the spectra have also been interpreted on the basis of homoge-
neous water models (17–19). The mixture hypothesis proposed
by W. C. Röntgen (20) was refuted in 1970 by H. Frank (21)
after a parallel review of contemporary X-ray scattering and
vibrational spectroscopy data.

X-Ray Absorption Spectra

Soft X-ray oxygen 1s X-ray absorption spectroscopy (XAS),
electron energy loss spectroscopy (EELS), and equivalent infor-
mation from hard X-ray Raman scattering (XRS) for the oxygen
1s excitations have been used to characterize the various phases
of water (11, 22–27). In these studies, integral or area normaliza-
tion within the measured spectral range between 530 and 550 eV
has typically been used, with the aim to fulfill the theoretical
concept of the f-sum rule (28) present for an ideal—complete—
spectral range with clearly discernible bound and continuum
states. Combining simulations with area normalization, a sig-
nificant signature of broken hydrogen bonds in liquid water
has been postulated (11) based on the observation of increas-
ing intensity in the 4a1 lowest unoccupied molecular orbital
(LUMO) line (I in Fig. 1C) along transitions from ice to liq-
uid water and finally the gas phase. However, in the f-sum rule
normalization, the decrease of intensity in the preedge region
is exactly counterbalanced by an intensity gain in other regions
within the normalization range, because the integrated spec-
tral intensity is forced to a fixed value. Therefore, using area
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Fig. 1. (A) Schematic phase diagram of water in relation to oxygen 1s XAS

obtained from saturation-free hard X-ray Raman spectroscopy. (B and C) We

replace the f-sum rule normalization with f-density (df(E)/dE) normalization

at mean ionization cross-section between 580 and 585 eV for gas, liquid, and

ice. Region I: LUMO 4a1 preedge feature. Region II: Overlapping LUMO+1

2b2 and continuum features. Region III: Continuum region, with shape

resonance (hvin ∼542 eV) from second-shell O–O continuum scattering reso-

nance. (D) Line-intensity–structural-parameter correlation coefficients based

on first-principles liquid simulation (30) for regions I–III (lesser correlations

in SI Appendix, Fig. S4): donated (D) and accepted (A) hydrogen bonds, sum

angular deviation from tetrahedrality (∆a), and furthest-nearest difference

(∆d) for the closest four neighboring O sites.

normalization within the range of 530–550 eV to fulfill the f-
sum rule induces a trade-off in spectral intensity within the
experimentally accessed energy range. Moreover, this trade-off
is limited to the normalization range, which is unjustified, as such
spectra do not meet each other at the end of the integration
interval (SI Appendix, Fig. S1).

In Fig. 1 A–C, we present the phase diagram of water in rela-
tion to oxygen 1s XAS spectra obtained from saturation-free
hard X-ray Raman spectroscopy for ice and liquid and EELS
for gas from ref. 22 (raw data after subtraction of constant
background), where we follow the idea presented in refs. 27
and 29 and replace the f-sum rule normalization with f-density
(df (E)/dE ) normalization at the high-energy end (see also SI
Appendix, Fig. S2). Fig. 1 B and C represent scans of gas, liq-

uid, and ice. The use of f-density normalization is based on
the reasoning that at the sudden limit (a fast photoelectron),
the photoionization cross-section is an atomic property, inde-
pendent of sample composition and varying bonding situations.
Thus, f-density links XAS state populations of different mate-
rials and molecules via fundamental core-continuum transition
properties in the most reliable way when the spectra reach the
asymptotic regime.

Most notably, the intensity variation of the LUMO 4a1
preedge feature in region I of Fig. 1B under f-density nor-
malization yields a quantitative measure of donated hydrogen
bonds per molecule for the liquid, ice, and gas phases of water.
With zero donated bonds for gas and two donated bonds for
ice and a linear dependence between the structural parameter
average and line intensity, we derive from the f-density nor-
malized prepeak intensities (SI Appendix, Table S1) of liquid
water an average of 1.74 ± 2.1% donated hydrogen bonds per
molecule (for discussion about the error estimate and linear
interpolation used, see SI Appendix). One should notice that
correlation between the area of the preedge peak σ and the
number of donated H-bonds used here is based on our work
(30), and it resembles the relation of the relative intensity of
preedge peak and bond order between the donor H and the
acceptor O atoms (figure 1 in ref. 31). The result obtained in
this manner is significantly closer to the two donated bonds of
ice than the previously derived 1.1 (ref. 11 and SI Appendix)
bonds per molecule. With the interpolation method used here,
for the spectra normalized in area up to 550 eV, the value 1.67
is obtained. We conclude that breaking of H-bonds between
ice and liquid water occurs to a lesser degree than concluded
in ref. 11.

Quantitative line-intensity–structural-parameter correlation
based on a first-principles liquid simulation (30) can now be
considered (Fig. 1D). For the preedge LUMO 4a1 (region I),
intensity is anticorrelated to donated (D) and accepted (A)
hydrogen bonds, but correlated to the sum angular deviation
from tetrahedrality (∆a) as well as furthest-nearest difference
(∆d ) of the closest four neighboring O sites.

For the postedge region III, we observe in f-density normal-
ization a strong rise of spectral intensity going from liquid water
toward ice structures and no contributions in gas (Fig. 1C).
Since the postedge of condensed water resides in the contin-
uum [O1s binding energy in liquid BEO1s = 538.21 eV (32)], its
interpretation must not foot on bound-state arguments, but can
only be attributed to continuum-scattering resonances (shape
resonances) reflecting structural order (26). The shape reso-
nances provide direct information about bond length or radius
of a coordination shell (33, 34). For a shape resonance at
hvin ∼542 eV, the poles of the electronic wave function in con-
tinuum with Ekin = hvin −BEO1s = 542–538.21 eV ∼ 4 eV show
characteristic length scales of 3.1 and 4.6 Å, respectively (SI
Appendix). This makes the shape resonance region sensitive to
the first and second solvation shell radii (35) and the correspond-
ing potential barrier height, values of which (from digitization)
are presented in SI Appendix, Table S2. The interpretation of
the postedge (III) as a shape resonance has been proposed
to originate from the nearest neighbors (36). We attribute the
postedge (III) intensity behavior to be caused by a shape reso-
nance that is due to both first and second solvation shells. This
conclusion is supported by matching the solvation shells and
their radial-distribution-function peak heights as a measure of
the mean barrier height. This continuum scattering resonance
in liquid and ices is responsible for the artificial suppression
of the preedge when area normalization from 530 to 550 eV
is used.

The complete breakdown of the hydrogen-bond network of
water in the gas phase is reflected in a rising preedge (I)
(Fig. 1 B and C), whereas the postedge (III) disappears due
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to loss of solvation-shell order needed for the shape reso-
nance. In the language of quantitative line-intensity–structural-
parameter correlation coefficients based on first-principles
liquid simulation (30), in Fig. 1D, this is expressed as domi-
nant anticorrelation between the shape-resonance intensity in
region (III) with the sum angular deviation from tetrahedral-
ity (∆a) and correlation with donated (D) and accepted (A)
hydrogen bonds.

Resonant Inelastic X-Ray Scattering Spectra

Next, we turn to liquid water by studying O K-edge resonant
inelastic X-ray scattering (RIXS) (Fig. 2). We focus on the bound
excitations to 4a1 LUMO (region I) to states at the main edge
and core-ionization continuum through the scattering resonance.
In this work, the RIXS spectra were recorded with unprece-
dented resolving power (>10,000) by using the superadvanced
X-ray emission spectrometer (SAXES) (37) at the Advanced
Resonant Spectroscopies (ADRESS) beamline (38) of the Swiss
Light Source at the Paul Scherrer Institut. Finally, we present
X-ray emission spectra (XES) taken at numerous incident ener-
gies approaching the sudden core ionization, measured with
an instrument of more modest resolution (for complete XES
spectra, see SI Appendix, Fig. S3).

By comparing the RIXS spectra of electronic loss features
(Fig. 2B) taken at 545 eV to those excited to the shape resonance
at ∼540–542 eV (region III), a noticeable shift of +0.20 eV is
observed, due to different coupling and screening of a fast photo-
electron and a slow resonantly trapped photoelectron. Trivially,
for both continuum excitations, photoionization leads to no
vibrational excitations in the quasielastic region (Fig. 2C), as
the ionized system cannot return to the neutral ground state.
We note that XES spectra with differing energy calibrations

Fig. 2. Liquid water at ambient conditions. (A) Oxygen 1s X-ray absorption

in direct relation to O1s RIXS with sub-natural-linewidth spectral resolution

of 50 meV. (B) 1b1 highest occupied molecular orbital (HOMO) electronic

losses at various incident-photon energies normalized to respective maxi-

mum value. (C) Vibrational losses normalized to main elastic peak height

mapping the ground-state potential energy surface along selected coordi-

nates. The shaded area is the contribution of photoionization continuum

with an ionization threshold built up from step functions of each of the

manifolds of the molecular species in liquid water.

have been reported (39, 40); we calibrated with respect to data
from ref. 39.

As seen in Fig. 2C, excitation into the electronic bound-state
4a1 LUMO of liquid water yields strong vibrational excitations
next to the elastic line. These excitations represent the projec-
tion of the core-hole-state-propagated wavepacket back onto the
molecular ground-state potential energy surface (41–43). For the
main edge, the experimental vibrational progression in liquid
water shows significant shortening over the gas phase, a sign of
suppression to exhibit the symmetric stretch mode in the liquid
environment.

In Fig. 3, we show side by side the experimental vibrational
losses via the electronic bound-state 4a1 LUMO for gas-phase
water (Fig. 3A) and for liquid water (Fig. 3D). The ground-
state potential energy surface as a function of O–H distance
extracted from experimental RIXS for the gas phase, using a
Morse-potential-cut approach as has been used in ref. 43, is
shown for gas (Fig. 3C). The vibrational progressions for both gas
and liquid water show only a single dominant O–H stretch mode.
In the gas phase, this mode persists as a distinct peak up to very
high vibrational quantum numbers. In the liquid phase, however,
broadening toward higher vibrational quantum numbers sets in,
which is caused by a statistical distribution of the liquid local
environments. No indication for two energetically shifted, dis-
tinct O–H stretch frequencies indicative of a two-phase model
can be detected.

X-Ray Emission Spectra

Finally, let us turn to the RIXS electronic losses in Fig. 2B,
where the 1b1 emission line in the water O K-edge XES appears
as a double peak in condensed phases (16). This splitting (A
and B in Fig. 2B) has been promoted as a fingerprint of two
distinct structural motifs within the liquid phase (44), which is
opposed by arguments of nuclear dynamics causing this effect
(18, 19, 45). In the latter view, it is important to realize that
the splitting at ionization may have a different origin compared
with those of different resonant states due to different core-
hole-state potential energy landscapes, and therefore possibly
different dynamics.

The XES spectrum taken at 550 eV and above in Fig. 2B
(for full spectra, see SI Appendix, Fig. S3) manifests the pho-
ton energy dependence in the continuum, which indicates that
the ionized electron still is coupled to the decay. Matching the
behavior of the XAS spectra in Fig. 1C, at 585 eV and above,
convergence of the XES spectral shape is observed, with a result-
ing spectrum that significantly resembles that recorded for ice
recorded by using an X-ray tube (figure 1 in ref. 46) than at
lower energies. This finding alone questions the use of the split
peak components as indicators of two liquid phases, as this would
imply solid ice at liquid-nitrogen temperature to have these
phases.

Our Bethe–Salpeter equation XES simulations (average 1.88
accepted and donated hydrogen bonds per molecule) account
for core-hole dynamics of different durations (Fig. 4A). They
show that the formation of the lower-energy split component
requires core-ionized-state dynamics in the long and the short
O–H bonds to take place between ionization and X-ray emis-
sion. This dynamical interpretation also explains why slower-
moving deuterated samples show a reduced peak A (19, 39, 40,
47–49). For resonant excitations and ionization, the quantita-
tive details of the split peak may be different, as the poten-
tial energy surfaces governing the dynamics, in principle, may
differ from each other. Still, the dynamic view is consistent
with spectra obtained at detuned 4a1 resonance, where the
electronic loss feature appears as a single line that develops
into a double peak when tuned to the 4a1 and above. This
is understood as an indication of longer effective scattering
duration.
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Fig. 3. (A, B, D, and E) Ground-state vibrational levels along the O–H coor-

dinate of molecular moities present in gas-phase (A and B) and liquid water

at ambient conditions (D and E) extracted from the vibrational progressions

of O1s subnatural linewidth RIXS excited at the 4a1 LUMO X-ray absorp-

tion resonances, respectively. (D) Broadening of vibrational progression

in the liquid phase from continuous distribution of molecular configura-

tions. There is no increasing broadening in the spectrum from a single-H2O

molecule in the gas phase (B). The single potential energy surface along the

O–H coordinate for the gas phase H2O is extracted as a Morse potential (C).

The split peak has a weak dependence to underlying struc-
ture seen in the branching ratio A/B, similarly to what we have
established for the chain-length dependence in liquid alcohols
(50). We performed (Fig. 4) a full statistical analysis linking the
A′/B′ branching ratio to the continuum RIXS simulation for liq-
uid water. We reveal how A′/B′ increases by increased hydrogen
bonding (donated, D; accepted, A) and decreases by increased
deviations from tetrahedrality (∆a , angular; ∆d , distances) of
the environment (Fig. 4B). These findings are in full agreement
with experiments presented here and earlier: The lower-energy
component (Fig. 2A) of the split peak in water is reduced in
higher temperatures of the liquid (19, 47) and increased upon
freezing (19, 46). The occurrence of the split peak of water XES
itself is a dynamical effect, equivalent to, i.e., alcohols, where the
branching ratio picks up some weak but notable statistical trend
to structural parameters, as shown in our simulations.

Conclusions

When putting the information from the three spectroscopies,
X-ray absorption, RIXS, and nonresonant X-ray emission,
together, we can proceed to conclusions. Analysis of the X-ray
absorption across the phase diagram of water using f-density
normalization reveals for liquid water 1.74 donated hydrogen
bonds per molecule, being closer to the two donated hydrogen
bonds in fourfold coordinated tetrahedral ice than previously
derived from short-range spectral normalization. In this quanti-
tative normalization, the occurrence of a continuum scattering
or shape resonance representing the structural order of the
oxygen–oxygen next-neighbor coordination shells in the liquid
and ice is established. This shape resonance is absent in gas
and supercritical phases, since the number of hydrogen bonds
is reduced.

The consequence of this quantitative understanding is that
RIXS via the H2O LUMO 4a1 state is sensitive to all bonding
arrangements that might be present in liquid water. Potential-
energy-surface mapping with subnatural linewidth RIXS on
gas-phase and liquid water finds no indication of two distinct
molecular potentials. A split peak in RIXS vibrational progres-
sion would be a potential (but not conclusive) indication of two

structural motifs. This kind of behavior is not observed at spectral
bandwidth of 50 meV. Instead, we observe gradual broadening in
a continuous way, which strongly supports the continuum-model
description of liquid water.

In nonresonant X-ray emission spectroscopy, the branching of
the HOMO 1b1 state into a split peak has been promoted as a
signature of two structural motives in liquid water. The experi-
mental finding, that in the sudden limit (at high incident energy),
the photoelectron decouples from decay, yielding an ice-like
emission spectrum, rules out the use of this emission spectrum
as evidence for two structural motives in the liquid. This rea-
soning roots on similarity of the emission spectra and the fact
that ice does not have two liquid phases. Additional support is
given by a liquid 64-water simulation with periodic boundary con-
ditions, including both structural variation and core-hole-state
dynamics on equal footing, being in line with numerous previous
simulations. In particular, split-peak branching-ratio relation-
ships show that dynamics play a key role in the formation of the
1b1 double peak, with a very weak dependence on the starting
structure.

Thus, the findings of X-ray-spectroscopic tools are in full
agreement with the continuous-distribution model of liquid

Fig. 4. Formation of a split peak in the 1b1 HOMO electronic losses from

ultrafast molecular relaxation during the femtosecond natural lifetime of

the O1s core ionized intermediate state of RIXS in the sudden limit (X-ray

emission, XES). (A) Molecular dynamics (MD) simulation of O1s RIXS under

sudden limit as a function of scattering duration τ= 0, 2, 4, 6, 8, and 10

fs (individual decay-time averaged spectra scaled ×0.2). The instantaneous

average is shown as a dashed line. (B) Correlation coefficients between the

split-peak branching ratio (A′/B′) from core hole dynamics (time-averaged

integrated XES spectra) and structural parameters at the site of ionization.

The error bars represent 1,000-fold bootstrap resampling. Shown is weak

correlation of split-peak intensity sum branching ratio (A′/B′) to angular

deviation from tetrahedrality (∆a), to the furthest-nearest difference (∆d)

for the closest four neighboring O sites, and to donated (D) and accepted

(A) hydrogen bonds (the parameters are calculated at the moment of ion-

ization). Long(τ ), strongest correlation to the elongation of the long O–H

bond during the scattering process; short(τ ), stronger correlation to the

elongation of the short O–H bond during the scattering process.
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water structure equally reported in the vast number of non-X-
ray–based investigations of water.

Materials and Methods

The hard X-ray Raman experiment for liquid water and ice was performed

by using the XRS spectroscopy instrument (51) at the beamline ID20 of the

European Synchrotron Radiation Facility. The momentum transfer used for

detection was q = 2.6 ± 0.6 Å−1. The scans for the ice sample were per-

formed from below and from above to confirm that radiation damage did

not introduce an error in the data (SI Appendix, Fig. S2). For the experi-

ment, the liquid water sample was filled into a custom-made flow cell (52),

and the ice sample was prepared in situ in a 2-mm quartz capillary contin-

uously cooled by using a cryostream (Oxford cryosystems) at approximately

at −88 ◦C. For both samples, milli-Q water was used. The raw data were

handled as described in ref. 53. The intensity integral values in the data are

presented in SI Appendix, Table S1. There are also problems in using the

f-sum rule due to varying completeness of the set of accessible final states

(54), here seen as a mismatch between the gas phase and condensed phases.

The XAS of Fig. 3 was recorded by using the flat-jet transmission near-edge

X-ray absorption fine structure setup (55) at BESSY-II. The ionization step

of Fig. 2 was taken from Gaussian-shaped assumed O1s photoline (32) with

width from ref. 56.

The RIXS experiment was performed with the SAXES spectrometer (37) at

the ADRESS beamline (38) of the Swiss Light Source at Paul Scherrer Institut.

The RIXS process proceeds via a core-hole state, thus rendering the tech-

nique element-specific and local. Core excitation with subsequent decay into

the electronic ground state can furthermore lead to a population of purely

vibrational final states. The energy spacing of the obtained vibrational pro-

gression allows extraction of the local ground-state potential energy surface

(41, 57) The propagation in the core excited-state potential takes the wave

packet violently away from the ground-state equilibrium position. Decay of

this wavepacket then allows population of ground-state vibrational eigen-

states; in particular, is it possible to easily reach the high eigenstates that are

not accessible by Raman or IR spectroscopy. This enables reconstruction of

the potential energy surface far away from the equilibrium geometry. The

dynamics of the core-excited wave packet is state-dependent, which allows

for different modes of the system to be probed by selection of the excited

state (58).

We used a flow cell separating the sample from the vacuum by a Si3N4

window of 150-nm thickness with a ∼10-nm Au coating. The energy calibra-

tion was based on O2 spectrum (41). Due to breakdown of the windows in

irradiation, the cell was moved between the spectra. To avoid errors from

this procedure, these individual scans were shifted to the same energy by

using a fit to the elastic line before joining them. The data in the electronic

loss region are presented with larger energy binning for improved statistics.

The XES experiment for photon energies 550 eV and above was per-

formed at the beamline U49-2/PGM-1 in BESSY-II by using the setup

described in ref. 59. The XES data were calibrated by using the spectrum

at 550.1 eV reported in ref. 39.
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