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Compatible associative products and trees

Vladimir Dotsenko

We compute dimensions and characters of the components of the operad of two

compatible associative products and give an explicit combinatorial construction

of the corresponding free algebras in terms of planar rooted trees.

1. Introduction

Description of results. An algebra with two compatible associative products is a

vector space V equipped with two binary operations such that each of them is

an associative product and these two products are compatible (that is, any linear

combination of these products is again an associative product). Such algebras

were recently studied by Odesskii and Sokolov [2006], who classified simple finite-

dimensional algebras of this type. In this paper, we study another extreme case: free

algebras of this type. Namely, we compute dimensions of graded components of

this algebra, and also give an interpretation of operations in terms of combinatorics

of planar rooted trees.

Just as for an arbitrary algebraic structure, to get information about free algebras,

one first computes the Sn-module structure (with respect to the action by permu-

tations of the generators) on the “multilinear part” (that is, the space of elements

in which each of the generators occurs exactly once) of the free algebra with n

generators. Then this information is used in a rather straightforward way to compute

the dimensions of all graded components.

As our computation shows the free 1-generated algebra with two compatible

products has Catalan numbers as dimensions of its graded components. We provide

a materialisation of this formula describing two compatible products on planar

rooted trees and proving that the algebra of planar rooted trees is a free algebra with

two compatible products. (We actually give a more general construction which is

valid for any number of generators.) We use this construction to obtain yet another

proof of the results on the Grossman–Larson algebra of planar rooted trees.
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Machinery. To compute dimensions and characters for spaces of multilinear ele-

ments, we use Koszul duality for operads and the theory of Koszul operads developed

by V. Ginzburg and M. Kapranov. It turns out that the Koszul dual to the operad of

two compatible products is much simpler than the original operad. For any Koszul

operad, information on the dimensions of its components can be used to obtain

similar information for the dual operad. Namely, the following assertion is true.

Proposition 1.1 [Ginzburg and Kapranov 1994]. Let fO(x) :=
∑∞

n=1

dim O(n)

n!
xn .

If O is a Koszul operad, then

fO(− f
O!(−x)) = x .

A similar functional equation holds for the generating functions of characters of

representations of the symmetric groups in the components of an operad.

Example 1.2. For the associative operad As, we have dim As(n) = n! , and thus

fAs(x) = x/(1 − x). This operad is Koszul and self-dual, which agrees with the

functional equation
x

1+x

1 −
x

1+x

= x .

Koszulness of the operad of two compatible products was proved in [Strohmayer

2008], and this result is crucial for us. In our study of free algebras over As2, we

use a simple but very elegant idea [Chapoton 2007; Fresse 1998] which applies in

many cases when one wants to prove that some class of algebras consists of free

algebras.

Outline of the paper. Throughout the paper, we assume that the reader is familiar

with the main notions of operad theory. Still we briefly remind the reader of some

of them when they appear in the text.

In Section 2, we recall some standard definitions of operad theory, define the

operad of two compatible brackets, and list necessary facts about Koszul duality for

operads. In Section 3, we compute the generating functions for the characters of our

operads using functional equations on these generating functions and use them to

identify the corresponding representations. In Section 4, we construct a monomial

basis in the multilinear part of the free algebra with two compatible products. In

Section 5, we prove that free algebras with two compatible products are free as

associative algebras. In Section 6, we relate compatible associative products to

combinatorics of trees. It turns out that the linear span of planar rooted trees has two

compatible associative products and that the resulting algebra is a free algebra with

two compatible products. We also give another proof of the result of [Grossman
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and Larson 1989] on the algebra of planar rooted trees. We conclude with some

remarks and conjectural generalisations for other compatible structures.

All vector spaces and algebras throughout this paper are defined over an arbitrary

field of zero characteristic.

2. Operads: summary

S-modules and operads. An S-module is a collection {V (n), n ≥ 1} of vector

spaces, where each V (k) is an Sk-module. Morphisms, direct sums, tensor products

and duals of such objects are defined in the most straightforward way.

The module Det, where Det(n) is the sign representation of Sn , is an important

example of an S-module. We need the following version of the dual module:

V ∨ = V ∗ ⊗ Det; this is the ordinary dual twisted by the sign representation. In

some cases, we consider differential graded S-modules; all preceding constructions

are defined for them in a similar way. The graded analogue of Det is denoted

by E ; the space E (n)1−n is one-dimensional and is the sign representation of the

symmetric group, while all other spaces E (n)k are zero.

Each S-module V gives rise to a functor from the category Fin of finite sets

(with bijections as morphisms) to the category of vector spaces. Namely, for a set

I of cardinality n let

VI = ❦HomFin([n], I ) ⊗❦Sn
V (n).

(Here [n] stands for the “standard” set {1, 2, . . . , n}.) This space is often denoted

by V (I ); we prefer to use a different notation to avoid confusion with free algebras

later.

For S-modules V and W , define the composition V ◦ W as

(V ◦ W )(n) =

n⊕

m=1

V (m) ⊗❦Sm

( ⊕

f : [n]։[m]

m⊗

l=1

W f −1(l)

)
,

where the sum is taken over all surjections f . This operation equips the category

of S-modules with a structure of a monoidal category. An operad is a monoid in

this category. See [Markl et al. 2002] for a more detailed definition. To simplify

the definitions, we consider in this paper only operads O with O(1) = ❦.

Let V be a vector space. By definition, the operad EndV of linear mappings is

the collection {EndV (n) = Hom(V ⊗n, V ), n ≥ 1} of all multilinear mappings of V

into itself with the obvious composition maps.

Using the operad of linear mappings, we can define an algebra over an operad O;

a structure of such an algebra on a vector space is a morphism of the operad O into

the corresponding operad of linear mappings. Thus an algebra over an operad O

is a vector space W together with a collection O(n) ⊗❦Sn
W ⊗n → W of mappings
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with obvious compatibility conditions. The free algebra generated by a vector space

X over an operad O is

O(X) := O ◦ X =

∞⊕

k=1

O(n) ⊗❦Sn
X⊗n.

Operads defined by generators and relations. The free operad FG generated by

an S-module G (with G (1) = 0) is defined as follows. A basis in this operad

consists of some species of trees. These trees have a distinguished root (of degree

one). A tree belonging to FG (n) has exactly n leaves, its internal vertices (neither

leaves nor the root) labelled by basis elements of G , any vertex with k siblings

being labelled by an element of G (k). The unique tree whose set of internal vertices

is empty generates the one-dimensional space FG (1). The composition of a tree t

with l leaves and trees t1, . . . , tl glues the roots of t1, . . . , tl to the respective leaves

of t . (In every case, two edges glued together become one edge, and the common

vertex becomes an interior point of this edge.)

Free operads are used to define operads by generators and relations. Let G be

an S-module, and let R be an S-submodule in FG . An (operadic) ideal generated

by R in FG is the linear span of all trees such that at least one internal vertex is

labelled by an element of R. An operad with generators G and relations R is the

quotient of the free operad FG modulo this ideal.

Definition 2.1. The associative operad As is generated by one binary operation

⋆ : a, b 7→ a ⋆ b. The relations in this operad are equivalent to the associativity

condition for every algebra over this operad:

(a ⋆ b) ⋆ c = a ⋆ (b ⋆ c).

The operad of two compatible associative products As2 is generated by two

binary operations (products) ⋆1 and ⋆2. The relations in this operad are equivalent to

the following identities in each algebra over this operad: the associativity conditions

(a ⋆1 b) ⋆1 c = a ⋆1 (b ⋆1 c) and (a ⋆2 b) ⋆2 c = a ⋆2 (b ⋆2 c)

for products and the four-term relation

(a ⋆1 b) ⋆2 c + (a ⋆2 b) ⋆1 c = a ⋆1 (b ⋆2 c) + a ⋆2 (b ⋆1 c) (2-1)

between the products.

Koszul duality for operads. Let an operad O be defined by a set of binary operations

B with quadratic relations R (that is, relations involving ternary operations obtained

by compositions from the given binary operations). In this case, O is said to be

quadratic. For quadratic operads, there is an analogue of Koszul duality for quadratic

algebras. To a quadratic operad O , this duality assigns the operad O ! with generators
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B∨ and with the annihilator of R under the natural pairing as the space of relations.

Just as in the case of quadratic algebras, (O !)! ≃ O .

Example 2.2 [Ginzburg and Kapranov 1994]. The operad As is self-dual:

As! ≃ As .

The cobar complex C(O) of an operad O is the free operad with generators

{O∗(n), n ≥ 2} equipped with a differential d with d2 = 0 (see [Markl et al. 2002]

for details). Once again we use twisting by the sign, now to get another version

of the cobar complex, D(O) = C(O) ⊗ E . The zeroth cohomology of D(O) is

isomorphic to the operad O !.

Definition 2.3. An operad O is said to be Koszul if H i (D(O)) = 0 for i 6= 0.

Proposition 2.4 [Strohmayer 2008]. The operad As2 is Koszul.

Generating functions and characters. As we mentioned above, to each operad

(and more generally, to each S-module) O one can assign the formal power series

(the exponential generating function of the dimensions)

fO(x) =

∞∑

n=1

dim O(n)

n!
xn,

and if O is a Koszul operad, then fO(− f
O !(−x)) = x .

This functional equation is an immediate corollary of a functional equation

relating more general generating functions that will be defined now.

The character of a representation M of the symmetric group Sn can be identified

[Macdonald 1995] with a symmetric polynomial FM(x1, x2, . . . ) of degree n in

infinitely many variables. To each S-module V we assign the element

FV (x1, . . . , xk, . . . ) =
∑

n≥1

FV (n)(x1, . . . , xk, . . . )

of the algebra 3 of symmetric functions. This algebra is the completion of the

algebra of symmetric polynomials in infinitely many variables with respect to the

valuation defined by the degree of a polynomial. It is isomorphic to the algebra

of formal power series in Newton power sums p1, . . . , pn, . . . . The series FV is a

generating series for the characters of symmetric groups. Namely, by multiplying the

coefficient of p
n1

1 . . . p
nk

k by 1n1n1! . . . knk nk !, we obtain the value of the character

of V (n) on a permutation whose decomposition into disjoint cycles contains n1

cycles of length 1, . . . , nk cycles of length k. This definition can be generalised

to the case of differential graded modules; for such a module V =
⊕

i Vi we set

FV =
∑

i (−1)i FVi
(the Euler characteristic of V ).
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If V is equipped with an action of a group G commuting with the action of the

symmetric groups, then for each n the group Sn ×G acts on the space V (n). In this

case, to V we assign an element of the algebra 3G of symmetric functions over the

character ring of G (or, in other words, a character of G ranging over symmetric

functions). We denote this element by FV (x1, . . . , xn, . . . ; g), where g ∈ G.

Remark 2.5. Further in this text we use the following properties of specialisations

of our generating functions:

(1) fV (x) = FV (p1, . . . )|p1=x, p2=p3=···=0.

(2) FV (p1, . . . )= FV (p1, . . . ; g)|g=e, where e is the identity element of the group

G.

(3) for any finite-dimensional vector space V (considered as an S-module concen-

trated in degree 1),

fV (V )(x) = FV (p1, . . . )|p1=x dim V, p2=x2 dim V, p3=x3 dim V,...,

where V (V ) = V ◦ V and fV (V )(x) is the generating function for dimensions

of the (graded) vector space V (V ).

Functional equation for characters.

Definition 2.6. Fix H(x1, x2, . . . ; g) ∈ 3G . The plethysm corresponding to H (the

plethystic substitution of H ) is the algebra homomorphism F 7→ F ◦ H of 3G

into itself that is linear over the character ring of G and is defined on symmetric

functions by pn ◦ H = H(xn
1 , xn

2 , . . . ; gn).

In particular,

pn ◦ (H(p1, p2, . . . , pk, . . . ; g)) = H(pn, p2n, . . . , pkn, . . . ; gn).

Let ε be the involution of 3G linear over the character ring of G and taking pn

to −pn .

Theorem 2.7 [Dotsenko and Khoroshkin 2007]. Suppose that the operad O is

Koszul. Then the following equation holds in 3G :

ε(FO) ◦ ε(F
O !) = p1.

3. Calculation of dimensions and characters

Note that the components of As2 and (As2)! are equipped with an action of SL2

(arising from the action on the space of generators of the operad As2), which

commutes with the action of the symmetric groups. All information about these

operads will follow from the functional equation on the characters and the explicit

description of the representation (As2)!(n) of the group SL2 ×Sn .
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The character ring of SL2 is isomorphic to the ring of Laurent polynomials

in one variable q — for example, the character of the n-dimensional irreducible

representation L(n − 1) is equal to (qn − q−n)/(q − q−1). The element of 3SL2

corresponding to an S-module V is denoted by FV (p1, . . . , pn, . . . ; q). This

notation differs a little from the one introduced above, but we hope that this will

not lead to confusion. In this case, the plethysm is defined by pn ◦ q = qn .

Theorem 3.1. For the operad of two compatible associative products, we have

fAs2(x) =
∑

n≥1

cnxn, FAs2(p1, . . .) =
∑

n≥1

cn pn
1 ,

FAs2(p1, . . . ; q) =
∑

n≥1

pn
1(qn−1 + Nn,1qn−3 + · · · + Nn,kqn−1−2k + · · ·),

where cn =
1

n+1

(
2n

n

)
and Nn,k =

1

n

(n

k

)( n

k+1

)
are the Catalan and Narayana

numbers.

Proof. Note that the substitution p1 = x transforms the second formula into the

first one, and the substitution q = 1 transforms the third equation into the second

(Narayana numbers refine Catalan numbers; see [Stanley 1999]). Thus, the third

statement implies the other two, so we shall restrict ourselves to proving only the

former. From the results from [Strohmayer 2008] (combined with results from

[Dotsenko and Khoroshkin 2007] on SL2-modules), it follows that as an Sn × SL2-

module,

(As2)!(n) = QSn ⊗ L(n − 1).

Thus, the Sn × SL2-character of the Koszul dual operad is given by the formula

∑

n≥1

qn − q−n

q − q−1
pn

1 =
p1

(1 − qp1)(1 − q−1 p1)
.

The functional equation for characters implies that the character

FAs2(p1, . . . , pn, . . . ; q)

satisfies
FAs2

(1 + q FAs2)(1 + q−1 FAs2)
= p1. (3-1)

From this equation it is clear that FAs2(p1, . . . ; q) depends only on p1 (and q).

On the other hand, it is well known (see, for example, [Stanley 1999], which

should be adjusted to our parametrisation of Narayana numbers) that the generating

function

N (t, x) = 1 +

∞∑

n=1

n−1∑

k=0

Nn,k tnxk
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of Narayana numbers satisfies the equation

t x N 2(t, x) − t x N (t, x) + t N (t, x) − N (t, x) + 1 = 0. (3-2)

It is easy to see that the third statement of the theorem is equivalent to the following

equation for generating functions:

N (p1q−1, q2) = 1 + q−1 FAs2(p1, q).

Let

N (p1q−1, q2) = 1 + q−1G(p1, q).

From the functional (3-2) we deduce that G satisfies

p1q(1 + q−1G)2 − p1q(1 + q−1G) +
p1

q
(1 + q−1G) − (1 + q−1G) + 1 = 0,

which can be rewritten as

p1(1 + (q + q−1)G + G2) = G.

The latter equation coincides with (3-1), and determines G uniquely; thus G = FAs2 .

�

Corollary 3.2. (1) As Sn-module, As2(n) is free of rank cn .

(2) As Sn × SL2-module,

As2(n) ≃ QSn ⊗ (L(n − 1) + L(n − 3)Nn,1−1 + L(n − 5)N (n,2)−N (n,1) + · · ·).

Proof. The SL2-character of the module

L(n − 1) + L(n − 3)Nn,1−1 + L(n − 5)N (n,2)−N (n,1) + · · ·

is equal to

qn−1 + Nn,1qn−3 + Nn,2qn−5 + · · · + Nn,kqn−1−2k + · · · + Nn,n−1q1−n,

so the second statement follows. The first statement is obtained from the second

one, if we forget about the SL2-action. �

Corollary 3.3. The dimension of the k-th component of As2(V ), the free As2-

algebra generated by a vector space V, is equal to ck(dim V )k . In particular, the

dimension of the k-th graded component of the free As2-algebra with one generator

is equal to the k-th Catalan number.

Proof. This follows immediately from our previous results: we just apply the third

formula of Remark 2.5 to As2(V ). �

Remark 3.4. The relations in As2 do not change the order of arguments of the

operations. This means that this operad is a symmetrisation of a nonsymmetric
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operad, which justifies our observations above that

• As2(n) is free as an Sn-module,

• dim As2(V )k =
dim As2(k)

k!
(dim V )k , and

• FAs2(p1, . . . ; q) depends only on p1 (and q).

(No recourse to the functional equation is necessary, since these observations are

reflections of a general fact on symmetrisations of nonsymmetric operads.)

4. A monomial basis for As2

In this section we describe a monomial basis for the components of the operad

As2. One can compare the methods and structure of this paragraph to the same in

[Dotsenko and Khoroshkin 2007] in the case of the operad of two compatible Lie

brackets. In this section, we prefer to think of components of our operad in terms

of the multilinear elements in free algebras.

Definition 4.1. Given a finite ordered set

A = {a1, a2, . . . , an},

with a1 < a2 < · · · < an , define a family of monomials B(A) in the free algebra

As2(A) recursively. Our recursive definition also assigns to a monomial m its “top

level operation” t (m) ∈ {1, 2}, which is used to define further monomials.

• For A = {a1}, let B(A) = {a1}, and let t (a1) = 1.

• For n > 1, a monomial b belongs to B(A) if and only if it satisfies one of the

two conditions:

(1) b = ak ⋆1 b′, where 1 ≤ k ≤ n and b′ ∈ B(A \ {ak}); in this case we put

t (b) = 1.

(2) b = b1 ⋆2 b2, where b1 ∈ B(A1), b2 ∈ B(A2) for some A1 ⊔ A2 = A, and

t (b1) = 1; in this case we put t (b) = 2.

Theorem 4.2. The family of monomials B(A) provides a basis for the multilinear

part of the free algebra As2(A).

Proof. We shall prove that this family spans the multilinear part of As2(A), and

that its number of elements is equal to the dimension of this component — that is,

the dimension of As2(|A|). It will follow that it has to be a basis.

Lemma 4.3. The family of monomials B(A) spans the multilinear part of As2(A).

Proof. Consider a monomial m. It is a product of two monomials, and by induction

we can assume that they both belong to families B(A′) for some sets A′ ⊂ A. Using
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the associativity property for each of the products, we are left with only one case in

which m does not belong to B(A), namely

m = (m1 ⋆2 m2) ⋆1 m3

for some m1, m2, m3. In this case, we use the compatibility relation (2-1):

m = m1 ⋆2 (m2 ⋆1 m3) + m1 ⋆1 (m2 ⋆2 m3) − (m1 ⋆1 m2) ⋆2 m3,

which shows that we can proceed by induction: in the first two summands, the

degree of the first factor has decreased, and the last summand has fewer products

of the second type in its first factor. �

Lemma 4.4. The number of elements in B(A) is equal to (2|A|)!/(|A| + 1)!.

Proof. Let βn =|B([n])|. Moreover, for i = 1, 2 let βi,n =|Bi ([n])|, where Bi ([n])

is the set of all monomials b ∈ B([n]) with t (b) = i . We use exponential generating

functions again:

β(x) =
∑

l≥1

βl x
l

l!
, βi (x) =

∑

l≥1

βi,l x
l

l!
,

The first condition implies that β1,n+1 = (n + 1)βn, which can be rewritten as

β1(x) − x = xβ(x). (4-1)

The definition of B([n]) basically means that on the level of S-modules,

B2(n) = (As ◦B1)(n)

for n ≥ 2, so

β2(x) = ( fAs(x) − x) ◦ β1(x).

Let us rewrite this equation using the formulae

β1(x) + β2(x) = β(x) and fAs(x) =
x

1 − x
.

We get

β(x) =
β1(x)

1 − β1(x)
. (4-2)

This can be rewritten as β1(x) =
β(x)

1+β(x)
. Now we can substitute it into (4-1), and

get the equation

β(x)

1 + β(x)
= x(1 + β(x)),

which coincides with the functional equation for fAs2(x) obtained from (3-1) by

setting q = 1. This concludes the proof of the lemma and of Theorem 4.2. �
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5. Free algebras over As2

In this section, we prove that any free algebra with two compatible products is

free as an associative algebra. Let us recall a theorem which is one of the main

ingredients in our proof.

A criterion for free algebras. Let P be an operad. Assume that P(1) = Q and

let P+ be the S-module such that P = P(1) ⊕ P+. Let A be a P-algebra

in the category of S-modules. The structure of a P-algebra on A is given by a

morphism µ : P ◦ A → A .

Let us define a decreasing P-algebra filtration of A : for each k ≥ 0 we a define

a subspace A≥k of A . Let A≥0 be A , and for k > 0 let A≥k be the image under µ

of P+ ◦ A≥k−1.

We will assume that this filtration is separating, which is true, for instance, if A

has a grading concentrated in positive degrees.

Let us define H0(A ) to be the degree 0 component A≥0/A≥1 of the associated

graded P-algebra gr A .

Let us choose a section of H0(A ) in A . Consider P(H0(A )), that is the

free P-algebra generated by H0(A ). Then there exists a unique morphism θ of

P-algebras from P(H0(A )) to A extending the chosen section.

Theorem 5.1 [Chapoton 2007; Fresse 1998]. The morphism θ is surjective. There-

fore, if dimensions (or graded characters) of A and P(H0(A )) are equal, then θ

is an isomorphism.

Free algebras with two compatible products are free.

Theorem 5.2. Free algebras with two compatible brackets are free as associative

algebras.

Proof. Let us first prove that there exists an S-module G such that the S-modules

As2 and As ◦G are isomorphic. To do that, we apply the above criterion for free

algebras in the case P = As and A = As2, where the P-algebra structure is given

by the second product. This means that we should put G := H0(A ), and in order to

prove our theorem, we only need to prove that graded characters of As2 and As ◦G

are equal. This is guaranteed by the next lemma.

Lemma 5.3. (1) For each component of As2, the part of its monomial basis

consisting of elements b with t (b) = 1 can be taken as a lift θ : G → As2;

(2) fAs2(x) = fAs ◦ fG (x).

Proof. From our proof of the spanning property, it follows that any monomial for

which the top level operation is the second product belongs to the subspace spanned

by all basis elements b with t (b) = 2, so the quotient by the space of all such

monomials is identified with the complementary subspace.
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Also, the (4-2) is

fAs2(x) = fAs ◦ β1(x),

which is exactly what our second statement claims. �

Now we are ready to prove our theorem. For a vector space V ,

As2(V ) ≃ As(G (V )),

so the free As2-algebra with generators V is isomorphic to the free associative

algebra with generators G (V ). �

6. Labelled rooted trees and compatible products

A planar rooted tree is an abstract rooted tree with a linear order on the set of

children of every vertex. Alternatively, one can imagine a tree embedded into the

plane in such a way that all children of any vertex v have their y-coordinates less

than the y-coordinate of v (in this case, the linear order appears from reading the

outgoing edges from left to right).

Proposition 6.1 [Stanley 1999]. The number of planar rooted trees with n + 1

vertices is equal to the Catalan number cn .

Thus, if we consider the planar rooted trees with k + 1 vertices equipped with a

labelling of all nonroot vertices by elements of some finite set S, the number of

these objects is equal to ck(#S)k , which is, by Corollary 3.3, equal to the dimension

of the k-th component of the free As2-algebra generated by S. In the remaining

part of this section, we show that this fact is not a mere coincidence. Namely, we

define two compatible associative products on the linear span of all planar rooted

trees with S-labeled nonroot vertices, and show that this linear span is free as an

As2-algebra.

Denote by RT(S) the collection of all planar rooted trees whose nonroot vertices

are labeled by elements of a finite set S (possibly with repeated labels). We start by

defining several operations on the linear span QRT(S).

Definition 6.2. Let T1, T2 ∈ RT(S). Define the tree T1 · T2 as the tree obtained by

identifying the roots of T1 and T2; the linear ordering of the children of this vertex

is uniquely defined by the condition that all children coming from T1 precede all

children coming from T2. This operation is associative, and every T ∈ RT(S) whose

root has k children can be uniquely decomposed as T = T [1] · T [2] · · · · · T [k],

where for each j the root of the tree T [ j] has only one child.

Let us denote by Vertices(T ) the set of all vertices of a tree T ∈ RT(S) (including

the root), and by Internal(T ) the set of all internal vertices of T .

Definition 6.3. Let T1, T2 ∈ RT(S). Assume that the root of T1 has k children (as

in Definition 6.2).
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(1) To every mapping f : [k] → Vertices(T2) we assign a new tree T1 ◦ f T2 which

is obtained as follows. For each v ∈ Vertices(T2) we let

f −1(v) = {i1 < · · · < is},

form a tree T1[i1] · · · · · T1[is], and identify the root of this tree with the vertex

v (keeping the label of v) in a way that all children of this tree are placed left

of all the children of v in T2.

(2) To every mapping g : [k] → Internal(T2) we assign a new tree T1 ◦g T2 which

is obtained as follows. For each v ∈ Internal(T2) we let

g−1(v) = { j1 < · · · < jr },

form a tree T1[ j1] · · · · ·T1[ jr ], and identify the root of this tree with the vertex

v (keeping the label of v) in a way that all children of this tree are placed left

of all the children of v in T2.

We now define two products on QRT(S).

Definition 6.4. Let T1, T2 ∈ RT(S). Assume that the root of T1 has k children.

Define the products T1 ⋆1 T2 and T1 ⋆2 T2 by

T1 ⋆1 T2 =
∑

f : [k]→Vertices(T2)

T1 ◦ f T2, (6-1)

T1 ⋆2 T2 =
∑

g : [k]→Internal(T2)

T1 ◦g T2. (6-2)

Example 6.5. For the trees

T1 =

a

T2 =

b c

the product T1 ⋆1 T2 is equal to

a b c

+

a

b c

+

a

b c

while the product T1 ⋆2 T2 is equal to

a b c
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Theorem 6.6. (1) The products ⋆1 and ⋆2 are associative and compatible with

each other.

(2) The As2-algebra QRT(S) is isomorphic to the free As2-algebra generated

by S.

Example 6.7. For the trees

T1 =

a

T2 =

b c

T3 =

d

the four products that occur in the compatibility relation (2-1) are as follows.

T1 ⋆1 (T2 ⋆2 T3):

a b c d

+

a

b c d

+

a

b c d

+

a

b c d

T1 ⋆2 (T2 ⋆1 T3):

a b c d

+

a

b c

d
+

a b c

d
+

a b

c

d

+

a

b

c

d
+

a

b

c d

+

c

a b

d

(T1 ⋆2 T2) ⋆1 T3:

a b c d

+

a b c

d
+

a

b c

d
+

b

a c

d
+

c

a b

d
+

c

a b d

+

b

a c d

+

a

b c d

(T1 ⋆1 T2) ⋆2 T3:

a b c d

+

a

b c d

+

a

b c d

Thus the compatibility condition is satisfied.

Proof. The associativity conditions for both products are pretty transparent; to show

that all the terms in consecutive product 51 = T1 ⋆1 (T2 ⋆1 T3) appear in the product

52 = (T1 ⋆1 T2) ⋆1 T3 one should just notice that to obtain the terms in 51 where

subtrees of T1 are attached directly to vertices of T3 (all other terms appear in 52
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for tautological reasons) we should just attach the corresponding subtrees to the root

of T2 when computing T1 ⋆1 T2 for 52, then we can attach them as required when

computing the final product. The same argument works for the second product.

We shall establish the compatibility condition rewritten in the form

(T1 ⋆2 T2) ⋆1 T3 − T1 ⋆2 (T2 ⋆1 T3) = T1 ⋆1 (T2 ⋆2 T3) − (T1 ⋆1 T2) ⋆2 T3.

The reason is that for our products both the left hand side and the right hand side

are combinations of trees with nonnegative coefficients, and we can interpret the

summands that appear there in a rather nice and simple way. Namely, the trees

that appear on the left hand side are those for which there exist subtrees of T1

that are attached to some leaves of T3. Obviously, the left hand side has the same

interpretation. Details are simple and we leave them to the reader.

Now we shall prove that the algebra QRT(S) is free as an As2-algebra. Note

that this algebra admits a natural grading by the number of nonroot vertices of a

tree, and the dimensions of graded components are precisely the dimensions of the

graded components of the free As2-algebra generated by S. It remains to show that

our algebra is generated as an As2-algebra by elements of degree 1; it will follow

that it is a quotient of the corresponding free algebra, and since it has the same

dimensions of graded components, these two algebras should be isomorphic. Thus,

it remains to prove the following lemma.

Lemma 6.8. As an As2-algebra, QRT(S) is generated by elements of degree 1.

Proof. We use induction on degree. Assume that all trees of degree at most k are

products of elements of degree 1. We show that the same holds for trees of degree

k + 1. For a tree T , let us call the children of the rightmost child of the root the

principal grandchildren of the root; denote the number of principal grandchildren

by pg(T ). Let us prove the step of induction using the induction on pg(T ).

For pg(T ) = 0, the rightmost child of the root is a leaf. Denote by s the label of

that leaf, and by T ′ the tree obtained from T by deleting the rightmost child of the

root. Then

T ′ ⋆2 T (s) = T,

where T (s) denotes the tree with two vertices whose nonroot vertex is labeled by s.

The degree of T ′ is less, so our statement follows.

For pg(T ) = k, let us denote by T1 the tree obtained from T by deleting all

principal grandchildren of the root (and the trees they are the roots of), but keeping

the rightmost child of the root (and its label). Also, denote by T2 the complementary

tree, that is, the subtree whose root is the rightmost child of the root of T (with its

label deleted). Then the tree expansion of T2 ⋆1 T1 consists of T and a combination

of other trees T̃ for which pg(T̃ ) < k, so we can proceed by induction. �
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Remark 6.9. Theorem 6.6 can be used to obtain an alternative proof of one of

the main results in [Grossman and Larson 1989]. Namely, since the first product

T1 ⋆1 T2 is the Grossman–Larson product on QRT(S), it follows from Theorem

5.2 that the Grossman–Larson algebra of planar rooted trees is a free associative

algebra; moreover, from our proofs it is easy to see that as a generating set of this

algebra we can take all trees whose root has only one child. These are exactly the

results of Grossman and Larson.

7. Remarks and open questions

Relation to the Grossman–Larson Hopf algebra structure. Recall that Grossman

and Larson [1989] introduced an algebra of planar rooted trees as a Hopf algebra

with the coproduct defined as follows.

Definition 7.1 [Grossman and Larson 1989]. Define the coproduct

1 : QRT(S) → QRT(S) ⊗ QRT(S)

by the formula

1(T ) =
∑

I⊔J=[k]

T [i1] · · · · · T [i p] ⊗ T [ j1] · · · · · T [ jq ],

where T = T [1] · · · · · T [k] ∈ QRT(S), and the notation I = {i1 < · · · < i p},

J = { j1 < · · · < jq} is used.

One could ask what is the relation between this coproduct and the second product

that we introduced.

Proposition 7.2. Consider QRT(S) as an associative algebra with respect to either

of the products ⋆1, ⋆2 (and introduce the product on its tensor square accordingly).

Then 1 is an algebra homomorphism.

Proof. For the first product, this statement is proved in [Grossman and Larson 1989].

For the second product, one can use the same proof with some slight modifications

(basically, what should be done is simply forgetting all summands where grafting

to leaves occurs). �

Remark 7.3. It is worth mentioning that although the tensor product of two As2-

algebras can be turned into an As2-algebra in many different ways, two products

on the tensor square of the free algebra that we just described are not compatible;

the family of products

(a1 ⊗ b1) ⋆λ,µ (a2 ⊗ b2) = (λa1 ⋆1 a2 + µa1 ⋆2 a2) ⊗ (λb1 ⋆1 b2 + µb1 ⋆2 b2)

is a pencil of associative products, but it is not a linear pencil anymore (they

rather resemble pencils of associative products from [Moerdijk 2001]). Thus, the
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relationship between Hopf algebra structure and the structure of an algebra with

two compatible products is yet to be clarified.

Relation to other operads realised by planar trees. The following observation is

due to Loday (private communication).

Remark 7.4. Consider the operad Oq generated by two binary operations ◦ and •

which satisfy the relations

(x ◦ y) ◦ z = x ◦ (y ◦ z),

(x • y) ◦ z + q(x ◦ y) • z = x • (y ◦ z) + q x ◦ (y • z),

(x • y) • z = x • (y • z).

Then O0 is the operad Dup of duplicial algebras [Loday 2008], while O1 is the

operad As2.

Also, consider the operad Pt generated by two binary operations ≺ and ≻ which

satisfy the relations

(x ≺ y) ≺ z = x ≺ (y ≺ z) + t x ≺ (y ≻ z),

(x ≻ y) ≺ z = x ≻ (y ≺ z),

(x ≻ y) ≻ z + t (x ≺ y) ≻ z = x ≻ (y ≻ z).

Then P0 is the operad Dup, while P1 is the operad Dend of dendriform algebras

[Loday 2008].

It is known that free algebras over Dend and Dup can be realised by planar

trees. It would be interesting to define in a pure combinatorial way a 2-parameter

family of pairs of binary operations ⋆1,q,t and ⋆2,q,t on QRT(S) which have correct

specialisations to q = t = 0 (duplicial case) q = 1, t = 0 (compatible associative

products) and q = 0, t = 1 (dendriform case).

Other Hopf-algebraic families of trees. Some general phenomenon that we think

is worth mentioning here is the existence of compatible associative products for

many other well known algebras where the product is described via combinatorics

of trees. The main idea is very simple. If the product in the linear span of rooted

trees (planar or not) is defined for two trees T1 = T1[1] · T1[2] · · · · · T1[k] and T2 as

the sum of all graftings of some type of trees T1[i] to vertices of the tree T2, then

another product over all graftings of the same type but only to internal vertices is

compatible with the first product. For algebras of planar binary trees (which also

often occur in literature) an analogous recipe holds: if a product is defined in terms

of graftings, then graftings only to the “left-going” leaves produce a compatible

product.
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Example 7.5. The Connes–Kreimer Hopf algebra of renormalisation is a polyno-

mial algebra on (abstract) rooted trees, or, in other words, an algebra on the linear

span of forests of rooted trees [Connes and Kreimer 1998]. If we take its dual, and

identify the dual of each forest with the rooted tree having all trees of the forest

grafted at its root vertex, the coproduct of Connes and Kreimer yields a product

on the linear span of rooted trees which is defined in terms of graftings as above.

Thus, this algebra is naturally endowed with another product which is compatible

with the original one.

Example 7.6. Similarly, consider the noncommutative Connes–Kreimer Hopf al-

gebra NCK of Foissy [2002a; 2002b], which is a free associative algebra on planar

rooted trees, or, in other words, an algebra on the linear span of (ordered) forests of

planar rooted trees. If we take its dual, and identify the dual of each forest with

the planar rooted tree having all trees of the forest grafted at its root vertex, the

coproduct of Foissy leads to another product on QRT(S) which is again defined

in terms of graftings. It follows that NCK has a natural structure of an algebra

with two compatible products. Results of Foissy on isomorphisms of Hopf algebras

also produce compatible products on some other algebras on trees, for example, the

Brouder–Frabetti [2003] Hopf algebra of renormalisation in QED.

One can easily check that unlike the case of the Grossman–Larson product, the

dual of the Foissy algebra is not a free algebra with two compatible products; for

example, the ⋆2-subalgebra of NCK generated by elements of degree 1 (that is,

trees with one leaf) is commutative. We expect that this is in some sense the only

obstruction to freeness.

Conjecture 7.7. As2-subalgebra of NCK generated by elements of degree 1 is a

free algebra over the operad of two compatible associative products one of which is,

in addition, commutative.

The operad that shows up here does not seem to have many good properties. In

particular, it is not Koszul, and not much is known about the growth of dimensions

of its components.

It was pointed out by the referee that our results in Section 6 carry a certain

resemblance with those of Patras and Schocker [2008], who studied the Hopf algebra

structure on the linear span of set compositions (the twisted descent algebra). They

prove that certain combinatorially defined algebras are free; labeled planar trees

(with some restrictions on labels) do appear in their work, they also define two

products on their trees for which the difference of two products is a combination

of trees with nonnegative integer coefficients (just as in our case). However, their

products are not compatible, and we do not know whether there is any relation of

our results to those of Patras and Schocker.
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General compatible structures. It is natural to ask which of our results have ana-

logues for other operads of compatible structures (see [Strohmayer 2008] for the

formal definition of compatible O-structures for any operad O). For the operad

of compatible Lie brackets, we can prove an exact analogue of Theorem 5.2: free

algebras over that operad are free as Lie algebras. The proof is similar to the

proof for compatible associative structures and also makes use of an appropriate

monomial basis. We expect that actually both of these statements are particular

cases of a very general theorem.

The following conjecture consists of two parts. The first part generalises the main

theorem of Strohmayer [2008], while the second one suggests that our theorem also

holds in that generality.

Conjecture 7.8. (1) Let O be a Koszul operad. Then the operad O2 of two

compatible O-structures is also Koszul.

(2) If the operad O is Koszul, then free O2-algebras are free as O-algebras.
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